A Study of Contacts and Back-Surface Reflectors for 0.6eV Ga0.32In0.68As/InAs0.32P0.68 Thermophotovoltaic Monolithically Interconnected Modules

PDF Version Also Available for Download.

Description

Thermophotovoltaic (TPV) systems have recently rekindled a high level of interest for a number of applications. In order to meet the requirement of low-temperature ({approx}1000 C) TPV systems, 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 TPV monolithically interconnected modules (MIMs) have been developed at the National Renewable energy Laboratory (NREL)[1]. The successful fabrication of Ga0.32In0.68As/InAs0.32P0.68 MIMs depends on developing and optimizing of several key processes. Some results regarding the chemical vapor deposition (CVD)-SiO2 insulating layer, selective chemical etch via sidewall profiles, double-layer antireflection coatings, and metallization via interconnects have previously been given elsewhere [2]. In this paper, we report on the study of contacts and ... continued below

Physical Description

vp.

Creation Information

Wu, X.; Duda, A.; Carapella, J. J.; Ward, J. S.; Webb, J. D. & Wanlass, M. W. December 23, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thermophotovoltaic (TPV) systems have recently rekindled a high level of interest for a number of applications. In order to meet the requirement of low-temperature ({approx}1000 C) TPV systems, 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 TPV monolithically interconnected modules (MIMs) have been developed at the National Renewable energy Laboratory (NREL)[1]. The successful fabrication of Ga0.32In0.68As/InAs0.32P0.68 MIMs depends on developing and optimizing of several key processes. Some results regarding the chemical vapor deposition (CVD)-SiO2 insulating layer, selective chemical etch via sidewall profiles, double-layer antireflection coatings, and metallization via interconnects have previously been given elsewhere [2]. In this paper, we report on the study of contacts and back-surface reflectors. In the first part of this paper, Ti/Pd/Ag and Cr/Pd/Ag contact to n-InAs0.32P0.68and p-Ga0.32In0.68As are investigated. The transfer length method (TLM) was used for measuring of specific contact resistance Rc. The dependence of Rc on different doping levels and different pre-treatment of the two semiconductors will be reported. Also, the adhesion and the thermal stability of Ti/Pd/Ag and Cr/Pd/Ag contacts to n-InAs0.32P0.68and p-Ga0.32In0.68As will be presented. In the second part of this paper, we discuss an optimum back-surface reflector (BSR) that has been developed for 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 TPV MIM devices. The optimum BSR consists of three layers: {approx}1300{angstrom} MgF2 (or {approx}1300{angstrom} CVD SiO2) dielectric layer, {approx}25{angstrom} Ti adhesion layer, and {approx}1500{angstrom} Au reflection layer. This optimum BSR has high reflectance, good adhesion, and excellent thermal stability.

Physical Description

vp.

Notes

OSTI as DE00005055

Source

  • A Study of Contacts and Back-Surface Reflectors for 0.6eV Ga0.32In0.68As/InAs0.32P0.68 Thermophotovoltaic Monolithically Interconnected Modules, Presented at the 4th Conference on Thermophotovoltaic Generation of Electricity, Denver, CO (US), 11/11/1998--11/14/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00005055
  • Report No.: NREL/CP-520-25489
  • Grant Number: AC36-99-GO10337
  • Office of Scientific & Technical Information Report Number: 5055
  • Archival Resource Key: ark:/67531/metadc694531

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 23, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • March 31, 2016, 7:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wu, X.; Duda, A.; Carapella, J. J.; Ward, J. S.; Webb, J. D. & Wanlass, M. W. A Study of Contacts and Back-Surface Reflectors for 0.6eV Ga0.32In0.68As/InAs0.32P0.68 Thermophotovoltaic Monolithically Interconnected Modules, article, December 23, 1998; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc694531/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.