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Abstract 
Automatic differentiation is applied to the op- 
timal design of microelectronics manufacturing 
equipment. The performance of nonlinear, least- 
squares optimization methods is compared between 
numerical and analytic gradient approaches. The 
optimization calculations are performed by running 
large finite-element codes in an object-oriented 
optimization environment. The Adifor automatic 
differentiation tool is used to generate analytic 
derivatives for the finite-element codes. The per- 
formance results support previous observations that 
automatic differentiation becomes beneficial as the 
number of optimization parameters increases. The 
increase in speed, relative to numerical differences, 
has a limiting value and results are reported for two 
different analysis codes. 

Introduction 
There is a great need for equipment and process 
design optimization in the microelectronics man- 
ufacturing industry. Manufacturing equipment is 
becoming more expensive to build and operate 
as device feature-scales continue to decrease be- 
low 0.35pm. Sandia has applied computational 
models and optimization techniques to assist U.S. 
semiconductor equipment suppliers to develop and 
improve reactor designs. The equipment of in- 
terest in this paper is used in thermal processes. 
Thermal processing plays an important role in 
manufacturing discrete microelectronic components 
on silicon wafers. The most important design 
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specification for thermal processing is temperature 
uniformity. Strict wafer temperature tolerances are 
crucial to controlling the chemical processes that 
create material features. Designs optimized for 
thermal uniformity lead to higher yield and smaller 
feature scales. 

Our automated optimization approach uses the 
OPT++ object-oriented optimization package’ to 
generate objective functions and numerical gradients 
from our finite-element heat transfer  code^.^.^ The 
objective function is formulated using least-squares 
and is minimized with nonlinear, gradient-based 
methods. The automated optimization design 
methods were first demonstrated for rotating-disk 
reactors4 and later extended to vertical furnaces and 
rapid thermal processing  reactor^.^ 

Gradients derived from numerical differences 
(ND) are often inaccurate and become computation- 
ally expensive when the number of design parame- 
ters becomes very large, such as calculating optimal 
heating trajectories.6 Also, the function evaluation 
is often expensive, requiring on the order of an 
hour of computer time. Automatic differentiation 
(AD) is a fast and accurate alternative. Automatic 
differentiation creates source code for calculating 
derivatives by applying the derivative chain-rule to 
an existing code. Gradients from AD are exact 
so truncation errors in numerical derivatives are 
eliminated. In particular, we use the Adifor code7 
to compute gradient information. 

Automatic differentiation is starting to be used 
to generate sensitivity information for optimization 
and engineering analysis. Automatic differentiation 
has been used for sensitivity analysis in simple 
finite-element structural analysis,s applications to 
various analysis  problem^,^ nonlinear control,1° 
and creating sparse Jacobian matrices.ll More 
recently, AD has been applied to a large-scale 
computational fluid dynamics code12 to generate 



sensitivity derivatives for aerodynamic design. We, 
at Sandia, are applying AD to large-scale radiation 
heat transfer codes, coupled to object-oriented opti- 
mization software, to optimize power configurations 
for thermal processing. 

In the following sections, we define a design 
optimization problem for a vertical batch furnace, 
present the numerical methods used in the optimiza- 
tion and analysis codes, and discuss the performance 
of automatic differentiation in optimization. 

Heat Transfer Design Problem 
The performance of automatic differentiation in 
design optimization is demonstrated for a vertical, 
multi-wafer furnace. Vertical furnaces can process 
up to 200 silicon wafers in a single batch and have 
been used for thin film deposition, oxidation, and 
other thermal process steps. Thermal modeling 
has made particularly important contributions to 
the design of vertical furnaces.13 The engineering 
heat transfer models of Houf2 and Badgwell14 
were written specifically for the analysis of vertical 
furnaces. Application of general-purpose, finite- 
element heat transfer models by Spence15 provided 
more detailed calculations. 

The evolution of vertical furnaces has been 
driven by the need for process uniformity (i.e., 
wafer-to-wafer and within-wafer uniformity) and 
high wafer throughput. A recent variation of the 
multiwafer reactor design is the small-batch, fast- 
ramp (SBFR) furnace. The SBFR is designed to 
heat-up and cool-down quickly, thus reducing cycle 
time and thermal budget. The SBFR consists of 
a stack of 50 eight-inch (diameter) silicon wafers 
enclosed in a vacuum-bearing quartz jar. The 
stack is radiatively heated by resistive coil heaters 
contained in an insulated canister. The heating coils 
can be individually controlled or ganged together in 
zones to vary the emitted power along the length 
of the reactor; a seven-zone configuration is shown 
in Figure 1. There are six control zones (each 
containing several heating coils) along the length of 
the furnace and one heater zone in the base. The 
zones near the ends of the furnace are run hotter 
than the middle zones to make up for heat loss. 

The thermal design optimization problem is: 
given a discrete number of fixed heating coils, how 
can the coils be grouped in the fewest number of 
control zones such that the temperature uniformity 
about a fixed set-point is maximized. For this 
paper, we concentrate on finding the optimal power 
settings and related temperature uniformity for a 
k e d  zone configuration. The objective function, F ,  
is defined by a least-squares fit of the N discrete 
wafer temperatures, T,,,, to a prescribed profile, 
Ts,i, 

N 

F (Pj) = (Tw,z - TS,d2 (1) 
Z = 1  
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where the p j  are the unknown power parameters. 
The power optimization can be automated while the 
integer problem of configuring zones is performed in 
an outer loop. 

Numerical Issues 
The nonlinear, least-squares optimization problem 
is solved using the quasi-Newton and Gauss-Newton 
gradient methods16 from the OPT++ library.' 
The object-oriented software provides optimization 
classes that are based on the availability of deriva- 
tives of the objective function. The user only needs 
to define how the objective function and analytic 
derivatives (if they exist) are generated. In our 
case, the information comes from the heat transfer 
analysis codes. Numerical gradients are generated 
by OPT++ through multiple evaluations of the 
objective function. 

The derivative-code for generating analytic 
gradients of the objective function is created from 
the original finite-element code using the Adifor 
automatic differentiation a oft ware.^? 1 7 3  The 
derivative-code returns both the solution variables 
and their derivatives with respect to the optimiza- 
tion parameters. The procedure for generating 
derivative-code with Adifor consists of three steps: 
code canonicalization, variable nomination, and 
code generation. In the code canonicalization 
step, an existing analysis code is rewritten into 
a standardized format. Adifor produces warnings 
for non-standard code. In the variable nomination 
step, Adifor decides which variables are associated 
with gradient information and generates interaction 
graphs. In the code generation step, Adifor gen- 
erates FORTRAN 77 code for generating analytic 
derivatives. 

We generated analytic gradients for two different 
heat transfer codes applied to vertical furnaces- 
TWAFER2 and TAC0.3.19 For both codes, we 
found it quite easy to run the Adifor code by 
following the steps outlined in the manuaL7 Some 
work was required in rewriting old "legacy code" to 
be ANSI-compliant, consisting mostly of data type- 
casting issues. There were no modifications to the 
solution procedures. 

The TWAFER heat transfer code is an engi- 
neering code, specific to vertical furnaces. The 
heat transfer formulation is simplified by using mass 
lumping and one-dimensional approximations. The 
nonlinear transport equations are solved using the 
TWOPNT solver,20 which is a Newton method with 
a time evolution feature. The TWAFER program 
has approximately 27000 lines of FORTRAN code 
and has an image size of 0.9 Mb '. After 
processing with Adifor for 25 independent variables, 
the program increases to 39000 lines with an image 
size of 6.8 Mb. 
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Detailed finite-element simulations are per- 
formed with the TACO heat transfer code. Radiant 
exchange between enclosure surfaces is based on 
the net radiation method.21 View factors for the 
enclosure radiation exchange are computed using 
VIEWC.22 The finite-element thermal simulations 
of the SBFR use 1500 nodes and three enclosures 
with a total of 500 surfaces. The surfaces are 
treated as diffuse gray and the semi-transparency of 
the quartz window is approximated using enclosure 
averaging. The nonlinear transport equations 
are solved iteratively using time marching with a 
skyline-LDU decomposition. The TACO program 
has approximately 12800 lines of FORTRAN code 
and an image size of 9.3 Mb. After processing with 
Adifor for 25 independent variables, the program 
increases to 20000 lines with an image size of 210 Mb. 

Examde Problems 
The performance of analytic gradients versus numer- 
ical gradients is explored using both the TWAFER 
code and the TACO code. The goal is to study 
the behavior of the methods as the number of 
parameters grows. In all cases, the objective is to 
optimize the heater zone powers in order to bring the 
wafer temperatures as close to 1300 K as possible. 

The power optimization problems are solved 
with either the quasi-Newton method (QN) or the 
Gauss-Newton (GN) method, both with trust region 
search algorithms. Different numerical difference 
accuracies are used to characterize the performance 
of numerical gradients. Forward differences were 
tested with a function accuracy of (FD06) 
and lo-* (FD08). Central differences were tested 
with a function accuracy of 
(CD10). The function accuracy determines the step 
size for numerical differences. 

(CD06) and 

TWAFER: Power Optimization 

There are many different parameter combina- 
tions considered in the study of the TWAFER code. 
There are three different heater zone configurations: 
7 zones, 15 zones, and 25 zones. There is always 
one bottom heater and the rest are equally-sized 
side heaters. In addition, both the QN and 
GN algorithms were tested with the full suite of 
function accuracies. Convergence plots for the 7- 
zone problem are included to demonstrate typical 
behavior. Results for the 15 and %-zone problems 
are tabulated since they exhibit behavior similar t o  
the 7-zone problem. 

The initial guess at the powers is 4.8 kW, 
distributed evenly between the side heaters. The 
bottom heater power is the same power as a side 
heater. The optimization terminates when the norm 
of the gradient of the objective function goes below 

or when the change in the value of the objective 
function becomes less than 

The resulting power distribution is characterized 
by a large central flat zone with temperature 
variations at the ends. The optimal power densities 
are shown in Figure 2. The root-mean-square 
temperature variation across the stack for 7 power 
zones is is less than 0.1 K and the maximum 
temperature differs only by 1 K from the target 
temperature. The uniformity is even better for the 
25-zone configuration because it can adapt to the 
heat losses at the ends of the furnace. 

TWAFER Numerical Gradient Performance 

Of the two optimization methods, Gauss- 
Newton converges much faster than quasi-Newton 
with little sensitivity to errors in the gradient. A plot 
of the function value with respect to computational 
time is shown in Figure 3 for numerical gradients. 
The use of central differences with the GN method 
has no benefit and results in convergence times twice 
as long as forward differences. The QN method with 
numerical gradients is very sensitive to the accuracy 
of the gradients. The use of forward differences 
results in premature termination of the optimization 
when the trust region becomes too small to advance 
the solution. Central differences with a function 
accuracy of are required in order to generate 
gradients accurate enough for QN to work. 

The optimization problem is ill-conditioned. 
Large variations in power near the ends of the 
furnace result in only small changes in temperature. 
The condition number of the approximate Hessian 
used for the Gauss-Newton method is on the 
order of lo9. The quasi-Newton method has a 
difficult time converging for ill-conditioned problems 
and is very sensitive to truncation errors in the 
numerical differences. With- numerical differences, 
QN only achieves a condition number of lo6 before 
failing because of the trust region size. With 
analytic .gradients, the QN method converges and 
the condition number does reach lo9. 

The lz-norm of the gradient is an indication 
of how close the solution is to optimal and a plot 
of the gradient norms is shown in Figure 4. The 
oscillation in the gradient norm for the QN method 
corresponds to the stair-stepping in the function 
value. The QN method is taking several steps in 
directions very close to one another. A sudden drop 
in function value corresponds to a large change in 
search direction. The gradient builds up in size 
before each direction change, indicating that the 
solution might be better advanced by just taking 
the steepest decent. 

TWAFER: Analytic Gradient Performance 

Adifor is applied to TWAFER to generate a 
code called AD-TWAFER that returns both the 
function value and the gradient. The convergence 
rate of the GN and QN methods with analytic 
gradients is compared to the fastest numerical 



gradient method (GN with forward differences) in 
Figure 5. The GN method with analytic derivatives 
is faster than numerical gradients by a factor of 1.6 
for seven parameters. The QN method continues 
to be slow, but the method does converge since 
the gradients are exact. The convergence of the 
ln-norm of the gradient is shown in Figure 6.  A 
tabulation of convergence information for all three 
zone configurations is included in Table 1. 

TWAFER. AD Scaling 

The performance of AD, relative to ND with 
the Gauss-Newton method, improves as the number 
of optimization parameters increases. The compu- 
tational work required to form gradients with AD 
becomes less, relative to  ND, and the supporting 
TWAFER function-call timings are given in Table 2. 
The first row of the table lists the average CPU time 
required to complete one function evaluation with 
TWAFER. The second row of the table lists the 
average CPU time required to calculate the function 
value and analytic gradient with AD-TWAFER. 

Whereas the TWAFER code runs the same 
no matter how many power zones are used, the 
work required by AD-TWAFER appears to scale 
linearly with the number of independent parameters, 
shown in the third row of Table 2. The slope 
of the growth rate of AD (normalized by an ND 
call) with respect to the slumber of parameters is 
0.2, shown in Figure 7. The performance of AD 
over ND improves with the number of parameters, 
but at a diminishing rate. The performance ratio 
compares the work required to take one Newton 
step. The AD/ND performance ratio asymptotes to 
0.2. For the TWAFER code using GN, the largest 
improvement in convergence we expect to see is a 
factor of five. 

TACO: AD Scaling 

It is difficult t o  assess the performance of 
analytic derivatives in the TACO code because 
the computational work required for each function 
evaluation is extremely dependent on the starting 
temperature guess. Each function evaluation 
consists of time-marching the governing equations 
to steady-state, and requires anywhere from 500 
to 3500 seconds of CPU time. The solution of 
the enclosure radiation problem by Gauss-Seidel 
iteration also complicates the overall evaluation. 

The largest change in temperature from the 
actual solution to the transport equations occurs 
after each Newton step when the powers are up- 
dated. It is computationally expensive to generate 
gradients during the time iteration to steady state. 
This fact was noted pre~iously'~ and efficiency 
can be improved by using simplified recurrence 
differentiati0n.2~ As an alternative, we found it 
useful to first update the solution with the standard 

TACO code after each optimization step, before time 
marching with the analytic gradient code. 

The AD parameter scaling is estimated based 
on the work involved in taking a single time step 
in the TACO code. A time step involves loading 
a coefficient matrix, loading a forcing function, and 
inverting the linear system. The matrix and forcing 
function may be reformed many times during a 
sub-iteration process to advance one time step. In 
addition, each time the forcing function is formed, 
the enclosure radiation problem must be solved. The 
matrix and forcing function calculations require the 
bulk of the CPU time with very little time required 
for the matrix inversion. 

The CPU times required for the different 
calculations required in a time step are listed in 
Table 3. The CPU time required for a time step in 
the standard version of TACO is the same, regardless 
of the number of parameters. The timings have been 
broken out into the CPU time to load the matrix, 
the CPU time to evaluate the forcing function, and 
the overall CPU time to take the time step. It turns 
out that the analytic derivatives are more expensive 
than forward differences until there are at least 16 
optimization parameters. Even then, the limiting 
speed-up appears to be only two times faster than 
numerical derivatives. 

As the number of independent variables shrinks 
towards zero, the Adifor-generated code does not 
run as fast as the original code. The automatic 
differentiation adds overhead to the analysis codes, 
mainly through external loops over the independent 
variables. As a result, there is a threshold number 
of variables for which automatic differentiation be- 
comes more expensive than numerical differencing. 
The threshold points for both TACO and TWAFER 
are illustrated in Figure 7, a plot of how the 
computational work scales with the number of 
parameters. 

Concluding Remarks 
Gradient-based optimization methods were applied 
to  the design of power configurations in a vertical 
furnace. The performance using analytic gradients 
was compared to  numerical gradients for two 
different optimization algorithms. 

0 For nonlinear, least-squares optimization prob- 
lems with numerical gradients, the Gauss- 
Newton method is much more robust than the 
quasi-Newton, even though Gauss-Newton is 
more expensive per nonlinear step. 

0 The Gauss-Newton gradient method is not 
very sensitive to numerical difference truncation 
errors. 

0 The analytic gradients are much more accurate 
than numerical gradients. The performance of 
the quasi-Newton method is the best indicator 
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of the difference between the two approaches 
for generating gradients. The quasi-Newton 
method rarely convergences when numerical dif- 
ferences are used, even central differences. The 
method will converge when analytic gradients 
are used. 

0 For the TWAFER code with the Gauss-Newton 
optimization method, the AD gradients lead 
to faster convergence than numerical gradients, 
but the rate ratio asymptotes to a factor of five. 

0 For the TACO code, the AD gradients are 
slower than forward differences until a break- 
even point of 16 parameters. For a large number 
of parameters, the AD gradients are faster, but 
the acceleration factor asymptotes to a factor of 
two. 

0 Given the computer memory resources, it 
is always favorable to use AD gradients for 
optimization with the TWAFER code. The 
TACO code has too large a benefit threshold 
to warrant using analytic gradients for most 
of the problems we are interested in. The 
acceleration factor and threshold for the TACO 
code can probably be improved by changing 
the solution strategy for the transport equations 
and enclosure radiation problem. 

To date, we have only considered parameter 
optimization based on thermal issues. Future work 
looks towards shape optimization based on material 
deposition criteria. The material deposition rate 
and uniformity are computed using reacting Aow 
models with conjugate heat transfer. The shape 
optimization is expected to be very expensive 
because of the radiation transport processes. Each 
shape variation results in recalculating radiation 
view factors. Using numerical gradients increases 
the number of view factor calculations that must be 
performed. 
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Iterations for f to converge to four significant figures shown in () 
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Zones Iterations Function Calls f 1191 12 AT,,, 
7 16 (11) 270 (190) 1.677 9.145 x 0.065 
7 21 f9) 220 (89) 1.677 8.212 x 0.065 

TWAFER Call 
AD-TWAFER Call 
AD/ND Function Call Ratio 
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Timings in CPU seconds on SGI Power Challenge 

7 Zone 15 Zone 25 Zone 50 Zone 
12.2 12.5 12.7 12.9 
67.0 88.5 123.5 192.7 
5.5 7.1 9.7 14.9 
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