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1 Introduction 

In this final report we will briefly describe three achievements in the funding period, related to 

the original goals of the research, and attach some representative papers for each achievement. 

The original goal of the project was to implement a numerical scheme to numerically 

solve the shallow water equations (in periodic boundary conditions and on the sphere), in 

such a way as to preserve not just the enstrophy, but all other invariants consistent with 

the level of the numerical truncation. The theoretical framework for this work was set up 

successfully and simple numerical runs were carried out. However because the scheme was 

set up in Lagrangian coordinates, and even though preserved the invariants in the desired 

way, it was inefficient. Therefore this idea was put aside. 
- .  

The second goal achieved arose indirectly from the work on the original project however. 

The Hamiltonian formalism used in the constructions of the original method, were used 

successfully in treating a problem in boundary layer theory. This probelem is of general fluid 

dynamical interest and therefore applies to the atmospheric boundary layer as well. 

The third goal acheived, is much closer in spirit to the original project. Unfortunately at 2 .., . 
the time the proposal for renewal was written, this was still not developed well, and could 

not be included in the renewal request. However, now the project to be described is nearly 

complete. This project led ultimately to an interesting method for solving the shallow water 

equations on the sphere. This method was implemented, and led to successful results, and 

in our opinion, an improvement over the shallow water solver supplied by NCAR. 
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2 Symmetric Truncations 

In climate dynamics, the hydrodynamical equations of motion for the coupled ocean-atmosphere 

system must be integrated over very long time periods. This integration can only be carried 

out numerically, and it is important to have some assurance that the numerically computed 

approximate solution is close the actual solution of the dynamical equations governing the 

ocean-atmosphere system. Current coupled ocean-atmosphere general circuIation models are 

extremely complex, therefore the issue of the numerical accuracy of computed solutions is 

a very difficult one to resolve. Of course, one can by now have some degree of confidence 

in numerically computed solutions of general circulation models, as evidenced for example, 

by the recent successes in the prediction of the El Niiio southern oscillation events, see for 

example [l] and references therein. However, these successes are still for integrations over 

fairly short periods of time. There are certain important questions, such as the effects of 

increased greenhouse gases in the atmosphere, in which one would like to have confidence 

in numerical simulations for a period of 100 years or more. An observational test of the 

numerical predictions is clearly problematic. On the one hand, we cannot wait 100 years to 

see if the prediction comes true and on the other hand, we cannot really test these models 

by “predicting” the past climate from the present one, as accurate climatic data exist only 

from the relatively recent past. 

- .  .. 
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Here we proposed to address this issue of accuracy of numerically computed solutions 

in a new manner. At first, we will look at a fairly limited, albeit important, aspect of 

this problem. Specifically, we will consider the shallow water equations. The majority of 

general circulation models are layer models of the atmosphere and oceans [I, 21. The fluid 

in each layer is assumed to behave in a way that is basically two dimensional. This is 

a good approximation to the actual three dimensional motions because of the thinness of 
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both the oceanic and atmospheric fluid layers compared to the large horizontal length scales 

of interest. The layers are coupled together in complicated ways in order to account for 

the vertical stratification. Additionally, for a realistic model, complex thermodynamical 

equations must be included, bringing in and coupling the pressure, temperature and salinity 

fields with the velocity field in each layer. Other important phenomena, such as cloud cover 

and precipitation must also ,be modeled into the equations. 

Nonetheless, it is true that the basic building block of these models is the set of shallow 

water equations governing the evolution of the velocity field and fluid depth in each layer. 

It seems reasonable, therefore, to look first at the above mentioned issue of accuracy in the 

context of the shallow water equations governing the evolution of a single thin layer of fluid. 

In our investigation of the long time dynamics of the shallow water equations, . we _. . will 

take the matters of symmetry and conservation principles to be our guiding light. Evolution 

equations of physical interest frequently exhibit symmetries. These symmetries imply the 

existence of conserved quantities, if our dynamical equations of interest constitute a Hamilto- 

nian or friction free system. This is always an idealization, since some dissipation is present 
c 

in all physical systems. Nevertheless, ignoring dissipation in the shallow water equations is '--- 

a good first approximation, given that geophysical length scales of interest are greater than 

viscous length scales by many orders of magnitude. Dissipation is a very important factor 

in many situations, and later, we will have something to say about the implications of our 

investigation when it is taken into account. 

The importance of conserved quantities in long term dynamics is not difficult to see. 

Even though the conservation of all conserved quantities for a particular dynamical system 

does not guarantee the accuracy of a numerical code, the nonconservation of some of the 

conserved quantities by a numerical code certainly suggests that one has wandered off the 
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true solution. This is the case since this nonconservation implies that the numerical solution 

is in a region of phase space that is never visited by the true solution. 

A problematic issue in the numerical simulation of many continuum inviscid fluid systems, 

including the shallow water equations is that they have infinitely many conserved quantities 

besides the obvious ones such as energy. Till now, numerical truncations have at best been 

able to conserve energy and enstrophy [3]. It is of course impossible to ask that a truncation, 

which is inherently finite dimensional, conserve an infinite number of conserved quantities. 

It is however, reasonable to demand of a truncation that it have a set of conserved quantities, 

the number of which increase without bound and whose values approach that of the conserved 

quantities of the original infinite dimensional system, as the number of degrees of freedom in 

the truncation is increased. 

In the first attached paper, just such a scheme is described [4]. Preliminary numeri- 

cal investigations of this model are also described in that document. In one sense these 

numerical tests were a great success, since by the techniques of symplectic numerical inte- 

gration [5, 6, 7, 81, we conserved potential vorticity in our runs to within roundoff error. In 

another sense though, they were not satisfactory from a practical point of view. Our dis- - .-: 

cretization employed an awkward Lagrangian formulation, with all the well known difficulties 

r 

of such formulations. Since the whole purpose of this investigation was to investigate very 

long time dynamics of the shallow water equations, inevitably many “remeshings” of the 

Lagrangian grid would be necessary. A naive remeshing will destroy the potential vorticity 

conserving aspect of our scheme. Therefore a very subtle sort of remeshing is necessary. This 

is possible, but would render an already awkward numerical problem even more awkward 

and inefficient. For this reason, I spent the greater part of my time during the last funding 

period, attempting to find an equivalent Eulerian potential vorticity conserving discretiza- 
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tion scheme. This involved finding answers to very intricate mathematical questions, indeed 

it was not a priori obvious whether an Eulerian formulation was even theoretically possible. 

Despite help from mathematicians expert in the field of “reduction” (notably Tudor Ratiu at 

U.C. Santa Cruz), which addresses how one proceeds from Lagarangian to Eulerian formu- 

lations of fluid mechanics using symmetry, [9, 101, I got close but was not quite successful at 

finding an Eulerian formulation. Such a scheme was finally devised however (based partly on 

my work) by Zhong Ge (Fields Research institute, Waterloo, Ontario, Cananda), and Clint 

Scovel at Los Alamos National Laboratory have been successful at formulating an Eulerian 

symmetric truncation [ll]. The main ideas they employed, were similar to the ones wetused 

in our Lagrangian truncation. This scheme however seems extremely awkward also, and it  

did not seem worthwhile to pursue a numerical integration of the Ge Scovel truncation. From 

a practical point of view numerical integration of these equations appeared quite difficult. 
_ _  ~ 

3 Coherent Structures in Boundary Layers 

The second project the we investigated a rather different problem. This was not part of the 

original proposal. In short, the applicant and his collaborator, Jon Wright, constructed a 

unified Hamiltonian formalism for the investigation of the interaction of singular vorticity 

distributions with free and rigid boundaries [12]. This formalism was then applied to a 

model for instabilities in a boundary layer [13] and in a very simple manner yielded results 

in striking agreement with experimental observations of coherent structures in a boundary 

layer. 

~ 

The formalism and analysis have so far been restricted to the simpler situation of classical 

hydrodynamics, i.e., the case of incompressible fluids. However, this research was begun by 

the applicant with an eye to future geophysical applications, in particular to the modelling of 
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the atmospheric boundary layer. The idea here is to model complicated coherent structures 

arising in a turbulent boundar layer, using singular vorticity distributions, such as vortex 

filaments, and vortex layers (with constant vorticity). This is simpler than a full numerical 

modelling of a boundary layer, thus insights into physical processes are easier to gain. Since 

funding was not continued on the project this project is currently on hold. The papers cited 

above have been attached to this report however. 

4 Split Step Methods 

Through familiarity with geometrical methods in differential equation, the researcher devised 

a new method for solving partial differential equations. This methods was implemented for 

the case of the shallow water equations on the sphere and led to very satisfactory results. 

We recently introduced a method of operator splitting for a wide class of partial differen- 

tial equations [14, 151, which permit one to utilize high order time stepping methods which 

have appeared in the recent past in the literature [16, 17, 18, 19, 201. In addition to higher 

accuracy in time, these methods have the advantage that the higher accuracy does not come 

at the expense of computer memory. In investigating this operator splitting method we have 
~. .. - . 

discovered further advantanges that it presents. 

In the attached preprint we applied our method to the solution of the shallow water 

equations in spherical geometry. The initial conditions we have used are the ones proposed 

by Williamson et. al. [21]. In this paper we compared our scheme against the the one 

provided by NCAR not for all the initial conditions suggested by Williamson et. al. [21], 

but rather ones that bring out the differences between the NCAR scheme and ours. In 

particular, since our scheme uses spherical harmonic spectral discretization on the sphere, 
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for the simpler initial conditions, the results obtained are nearly identical to those obtained 

by running the NCAR code. [22] 

The main advantages of our method are better treatment of gravity waves, use of less 

storage and better treatment of artificial viscosity. This material is described in the attached 

preprint. 
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