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Abstract. Nuclear many-body calculations have the complication of strong spin- 
and isospin-dependent potentials. In these lectures I discuss the variational and 
Green's function Monte Carlo techniques that have been developed to address this 
complication, and present a few results. 

1 Introduction 

A major goal in nuclear physics is to understand how nuclear binding, stabil- 
ity, and structure arise from the underlying interactions between individual 
nucleons. To achieve this goal, we must both determine the Hamiltonian to 
be used, and devise reliable methods for many-body calculations with it. In 
principle quantum chromodynamics can prescribe the nuclear Hamiltonian, 
but it will be a long time before this will be done with useful accuracy. Thus 
the nuclear Hamiltonian is determined phenomologically, and our knowledge 
of it is refined, in part, by the many-body calculations we make with it. A 
large amount of empirical information about the nucleon-nucleon scattering 
problem has been accumulated over time, resulting in ever more sophisticated 
NN potential models. These models have strong spin and isospin dependence, 
and spin and orbital angular momentum are mixed by a strong tensor interac- 
tion. In addition the three-nucleon interaction must be considered in realistic 
calculations, however there is very little experimental knowledge of it. 

Thus the nuclear many-body Hamiltonian is significantly more compli- 
cated than those encountered most atomic and condensed-matter problems, 
and progress in accurate nuclear ground state calculations has been quite 
slow. As Table 1 shows, it took 30 years to  progress from the twc-body ground 
state to the three-body one; the four-body problem was solved in a few more 
years. It then took some time until ongoing advances in computational re- 
sources, particularly the advent of massively parallel computers, allowed us 
to apply sophisticated quantum Monte Carlo methods to the study of light 
p-shell nuclei, up to 8-body nuclei. 

Quantum Monte Carlo methods for central interactions are discussed in 
R. Guardiola's contribution to  this volume; here I will concentrate on the 
complications due to the state-dependence of the nuclear forces. The nuclear 
Hamiltonian is presented in the next section, variational Monte Carlo (VMC) 
for nuclei is presented in Sec. 3 and Green's function Monte Carlo (GFMC) 
in Sec. 4. Finally a very few recent results are given in the last section. The 
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Table 1. Exact (1%) realistic ground-state solutions. 

Nucleus Method First Done Floating Ops. Computer Time 
2H Variational, 1940's - 

Coupled Dif Eq 1953 - 50 x lo3 Illiac-I 15 min 

3H 34 Chn Faddeev 1984 100 x lo9 Cray XMP 30 min 
4He GFMC 1987 15 x 1OI2 Cray 2 40 hr 
5He GFMC 1993 100 x 10" Cray C90 100 hr 
6Li GFMC 1995 1 x lOI3 IBM SP1 40 nodes, 150 hr 
'Li GFMC end 95 1.5 x 1015 IBM SP2 100 nodes, 50 hr 
*Be GFMC end 96 7 x lOI5 . IBM SP2 25 nodes, 120 hr 

(+ 5 for printing) 

specific methods and results presented here are from the work of the Argonne, 
Los Alamos, and Urbana groups; a complete description of our VMC and 
GFMC calculations may be found in [l]. A good pedagogical discussion of 
the nuclear VMC method, including a complete, simplified, program may be 
found in [2]. 

2 The Nuclear Hamiltonian 

In this section I discuss a slightly simplified version of the Hamiltonian used 
in our calculations. Specifically the complications of charge dependence and 
of the full electromagnetic potential will be only briefly mentioned. The com- 
plexity of the nuclear Hamiltonian is dictated by a number of experimental 
observations: 

Nuclear forces are of short but finite range. The binding energy for few- 
body nuclei increases as the number of pairs, from 2.2 MeV in 2H to 2.8 
MeV/pair in 3H to 4.7 MeV/pair in 4He. For larger nuclei the binding en- 
ergy per nucleon is approximately constant at 8 MeV/A. This indicates that 
nuclear forces are short-range, roughly equal to the radius of 4He, or - 1.7 
fm . 

As is indicated by the fact that the low-energy S-wave phase shifts are 
positive, the nuclear force is attractive at intermediate and long ranges. How- 
ever, the nuclear force has a short-ranged repulsive core. The 'SO phase shifts 
turn negative for Etab - 250 MeV, while the D2 phase shifts remain positive 
up to 800 MeV. This can be understood as a repulsive core of - 0.6 fm, which 
is masked in the D-wave by the centrifugal barrier. 

The force depends on the spins and isospins of the nucleons. Only the 
S = 1, T = 0 channel has a bound state, while the phase shifts are very 
different in different SI T channels. In addition, the structure of the deuteron 
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indicates that there is a tensor force. The deuteron has a quadrupole moment, 
a magnetic moment that requires a D-state, and an asymptotic D/S state 
ratio. In scattering states there are finite mixing parameters E J  (transitions 
between L = J - 1 and L = J + 1 states). Finally, there is also a spin-orbit 
force; the energy-dependence of the 3P~,1,4 partial wave phase shifts requires 
both tensor and spin-orbit forces. 

Our Hamiltonian includes a nonrelativistic one-body kinetic energy, the 
Argonne 2118 two-nucleon potential [3] and the Urbana IX three-nucleon po- 
tential [41, 

Ignoring the difference in proton and neutron masses, the kinetic energy 
operator is 

The Argonne V I 8  potential can be written as a sum of electromagnetic 
and one-pion-exchange terms and a shorter-range phenomenological part, 

(3) vij = v?. + vx  + V R  . 
13 $3 13 

The electromagnetic terms include one- and two-photon-exchange Coulomb 
interactions, vacuum polarization, Darwin-Foldy, and magnetic moment terms, 
with appropriate proton and neutron form factors. 

pion-exchange part of the potential can be written as 
Ignoring the difference between charged and neutral pion masses, the one- 

XG = Y(r)gi . cj + T(r)Sij . (5) 
Here Y ( r )  and T ( r )  are the normal Yukawa and tensor functions with a cutoff 
specified by a parameter c: 

1 
m7r 

Y ( r )  = -e-mrrC(r) , 

T ( r )  = [1+ - 3 + 7 1 - e  3 1 --m,rCa 
m,r ( m r )  m,r 

The ui are the 2x2 Pauli spin matrices; the nucleon spin operator is Si = ?pi. 
The ri are the same Pauli matrices acting in isospin space; our convention is 
that ~ ( z )  = +1 for protons and -1 for neutrons. The tensor operator, Sij, is 
introduced below. 

The one-pion-exchange and the remaining phenomenological part of the 
potential can be written as a sum of eighteen operators, which is where the 
name comes from: 
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vifi + v t  = vp(Tij)o; . 
p=1,18 

(9) 

The first fourteen are charge-independent, 

o;;~J* = pI  (.i . uj ) ,  si j ,  (L . SI, L’, L ’ ( ~ ~  . (L - s)?] 8 [I, (Ti . Tj)l(,lo) 

and the last four break charge independence. In addition to the one-pion Y ( r )  
and T(r) ,  the vp(r)  contain intermediate- and short-range functions which are 
determined by fitting NN scattering data. 

The potential was fit directly to the Nijmegen NN scattering data base [5, 
61, which contains 1787 p p  and 2514 n p  data in the range 0 - 350 MeV, with 
a x’ per datum of 1.09. It was also fit to the nn scattering length measured 
in d ( ~ ,  y)nn experiments and the deuteron binding energy. 

A brief discussion of the effects of some of the operators in the potential 
follows. Nuclear isospin is (approximately) conserved by the strong interac- 
tion. This means that it is useful to project a pair of nucleons into states of 
good total isospin: 

T = 0 pair : [ Ipn) - l np ) ]  ; (11) 

T = 1 pairs : IPP) I &[ Ipn) + lnp)] , 1.4 f (12) 

(13) 

(14) 

These are eigenstates of r i  . r j :  

~i - ~j IT = 0) = -31T = 0) ; 

~i . ~j IT = 1) = 1IT = 1) . 
Thus operators with or without T . T allow for different potentials in T = 0, 
T = 1 states. Similarly ui - u j  results in different forces in spin-singlet and 
spin-triplet states. 

The tensor operator is 

4 2  = 3Ul -?lzC72 . - U1 - (72 . 
This produces a D-state in the S = 1, J = 1 deuteron: 

(15) 

IJ = 1, M J )  = d n  I3S1) + p I3D1) ; p2 - 6% . (16) 

The spin-orbit operator is 

and gives different forces in 3P01 3P1, and 3P2 waves. L2 and (L . S ) 2  operators 
are one (non-unique) way of fine-tuning the interaction in L = 2,3 (D,F) 
waves. Other potential models use P’ terms instead of L2, but this can result 
in much more difficult many-body calculations. 
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The tensor-isospin potential is very important in nuclear physics both be- 
cause it provides most of the binding and because it greatly complicates calcu- 
lations. It arises from pion exchange which provides the longest-range strong 
interaction (21" - e-r/mr , m, - 0.7 fm-'), and dominates the nucleon- 
nucleon interaction. As an example, consider the binding of the deuteron: 

E?, = 2.224 MeV , 
= +(19.81 kinetic) - (21.28 v") - (0.75 othervij) 

Typically vx provides 70% of vij in other nuclei. As shown above, v x  has 
ui uj ri rj and Sij Ti * rj terms and it turns out that Sij is typically 70% 
of vn; without the Sij ri . 7-j term, no nuclei would be bound! But, 

while 

d2Q,-12(Sla)a = 2 4 ~  - (20) J 
So in E = (!P~.s.lHl@~.s.) we need a Sij operator in !PG.s. to get the v x  
contribution. This results in the 6% D-state in the deuteron. 

The Urbana series of three-nucleon potentials is written as a sum of two- 
pion-exchange and shorter-range phenomenological terms, 

K j k  K;: $- K F k  . 

The two-pion-exchange term can be expressed simply as 

where X3 is defined in Eq. 5, For the Urbana models C?x = +A?", as in 
the original Fujita-Miyazawa model [7]. The shorter-range phenomenological 
term is given by 

K y k  = v&!+(rij)T'((Tjk) . (23) 
cyclic 

The parameters for model IX are A2= = -0.0293 MeV and VO = 0.0048 MeV. 
They have been determined by fitting the density of nuclear matter and the 
binding energy of 3H in conjunction with the Argonne 2118 interaction. The 
qyk certainly should have other terms [8], however we need additional data to 
obtain their strengths; presumably a part of it is also really due to relativistic 
effects [g, IO, 111. 

In light nuclei we find 

(V NNN ) - .04 (dVN) , 
- .25 ( H )  . 
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where the second line is due to the large cancelation of T and v. We expect 
a similar ratio for the four-body potential: 

(v”) - .04 (VvN”) , - .01 ( H ) .  

Calculations are just approaching this accuracy. 

3 Variational Monte Carlo 

The variational method can be used to obtain approximate solutions to the 
many-body Schrodinger equation, H P  = E P ,  for a wide range of nuclear 
systems, including few-body nuclei, light closed shell nuclei, and nuclear and 
neutron matter [12]. A suitably parameterized wave function, PT, is used to 
calculate an upper bound to the exact ground-state energy, 

The parameters in PT are varied to minimize ET, and the lowest value is 
taken as the approximate ground-state energy. 

Upper bounds to excited states are also obtainable, either from standard 
VMC calculations if they have different quantum numbers from the ground 
state, or from small-basis diagonalizations if they have the same quantum 
numbers. The corresponding Pi. can then be used to calculate other proper- 
ties, such as particle density or electromagnetic moments, or it can be used 
as the starting point for a Green’s function Monte Carlo calculation. 

3.1 Wave Function 

Here I discuss a simplified form of PT; see [l] for the complete form used in 
current calculations, 

A 

IPT> = s FijIQ) ; 
i< j 

The complete PT also includes three-body correlations induced by K j k .  
The Q is the one-body part; it determines the J, MJ, T, T, of the nucleus, 

and is completely antisymmetric. The Fij are the two-body correlations in- 
duced by vij. Therefore, Fij is written in terms of a subset of the operators 
in vij: 

---e*- - .. -.- 
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The f p ( r )  are the solutions of Euler-Lagrange equations; see [2] for an intro- 
duction to these and [13] for details on the complete fp(r )  used in modern 
calculations. 

These operators do not commute, for example 

[.j . gj  ~i . ~ k ]  = 2i ( ~ i  x cj) . ~k . (29) 

Hence, [Fjj , Pia] # 0, and we must use a symmetrized product. As an exam- 
ple, for 3H1 

1 sn Fij = 6 (Fl2F13F23 + F12F23F13 + F13F12F23 + F23F13F12 
i< j 

+ F13F23F12 + F23F12F13) (30) 

Note that it has [w]! terms! 
The PT must be translationally invariant. The Fij are functions of ~i - rj 

and hence satisfy this. If @ has dependence on ri, then we use ?i in Qi, where 

The 
by having 

or 

or some combination of these. 

must also describe a localized (bound state) system. This is achieved 

f i j ( r i j )  + 0 , rij + 03 , (32) 

@ ( r 1 1 r 2 1 - - - , r A )  - 0 , ri 7 co , (33) 

Spin-isospin structure of !Z+. Each nucleon can be a proton or neutron 
but total charge is conserved. Thus for 3H we can have pnn, npn, or nnp. 
Each nucleon can be spin up or down and tensor correlations do not conserve 
the total spin (J = L + S  is of course conserved); for 3H we can have T T T ,  tTl, 
...-, 111. Thus 3H has 3 x 8 = 24 components in its spin-isospin structure. 

The number of components can be reduced by noting that 3H has total 
isospin T = i1 so one really needs only two states: 

(34) 1 IT = ; i t  4 = $( I P 4  - I v n )  1 1 

and 
I T = i , b ) = ~ [ ~ ( I p n n ) + I n p n ) ) - ~ I n n p ) ] .  (35) 

The 3rd linearly independent state does not contribute: 

IT = ;) = &( I P 4  + Ivn) + Innp)) . (36) 
The number of components in !&- grows rapidly with the number of nu- 

cleons, as is shown in Table 2. Calculations of the sort being described here 

, ,.. , 
.. ~. .. . , 
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Table 2. Number of spin-isospin components 

b d A T h-sptna  Ncharge  Ntsosptn' Ivtotal 

3 1 1/2 8 3 2 16 
4 2 0  16 6 2 32 

6 2 1  64 15 9 576 
6 3 0  64 20 5 320 

7 2 312 128 21 14 1792 
7 3 1/2 128 35 14 1792 

8 2 2 256 28 20 5120 
8 3 1 256 56 28 7168 , 

8 4 0 256 70 14 3584 

1 2 6  0 4096 924 132 540,672 
16 8 0 65,536 12,870 1430 93,716,480 
40 20 0 1.0995312 1.3785311 6.564139 7.2173321 
a 2* 

are currently feasible up to only A = 8. Cluster methods have been used for 
VMC calculations of larger nuclei [14], and these are being developed for the 
GFMC. 

For 3H and 4 H e ,  @ contains just the spin and isospin structure and has 
no spatial dependence: 

Thus the 24component @ has 6 elements = &&; the rest are 0. It is totally 
antisymmetric and has total isospin and angular momentum T = 1/2, J = 
1/2. For 4He we have 
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; u:! -v3!P = 

It has 24 non-zero terms in a 96-component vector. An antisymmetric state of 
more than four nucleons cannot be made in just spin and isospin; one needs 
spatial degrees of freedom (the p-shell). 

2att1 - U t l t  

2UllT - U l f l  
2QlTl - a u t  

(41) OT11 
a1tt 

Operators in @T. The full I!PT) is a sum of terms like 

Fnm . . . F23F13F12IQ) (39) 

where all orderings of the Fij are used. Each Fij is a (very) sparse matrix 
operating on a column vector in spin-isospin space to produce a resultant 
vector. 

For example, consider the ai - uj operator 

ui . uj = 2(u’q + uyu;) = 2P4 - 1 (40) 
where PG exchanges the spin of i and j. For 3H and considering just the spin 
of the nucleons: 

1 0  0 0  

U i * ~ j  = ( 0 -’ 2 - 1 0  O )  acting on (iii) . (42) 

0 0  0 1  011 

Similarly, the tensor operator (Eq. 15) is 

. (43) 

z2 - 1/3 Z(Z - iy) Z(Z - iy) (Z - i ~ ) ~  
Z(Z + iy) -z2 - 1/3 
Z ( Z ~ Y )  z2 + y2 - 2/3 -z2 + 1/3 ( (z + iy)2 -Z(Z + iy) -Z(Z + iy) z2 - 1/3 

X’ + y’ - 2/3 -Z(Z - iy) 
-Z(Z - iy) Sij = 3 

This is dense in the space of two nucleons but in an A-body nucleus, there 
will be A - 2 spectators whose spins remain unchanged. Thus the A-body 
operator will be sparse with many 4 x 4 blocks. Efficient programs for these 
calculations contain explicit code for the operators and do not use general 
sparse-matrix routines. 
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Considerations for A > 4. For nuclei with A > 4, the one-body part 
must have spatial dependence in order to be completely antisymmetric. As 
an example, for 6Li, the one-body part has the general form 

The LS components of the single-particle wave function are given by 

The q 5 t S ( R a k )  are pwave solutions of a particle of reduced mass fmlv in an 
effective a-N potential. They are functions of the distance between the center 
of mass of the a core (which contains particles 1-4 in this partition) and nu- 
cleon H, and may be different for different LS components. The parameters of 
the effective a-N potential are variational parameters and do not necessarily 
represent a phenemological a-N interaction. The antisymmetry operator A 
sums, with appropriate minus signs, over all partitions of 6 nucleons into 4+2 
subdivisions. 

After other parameters in the trial function have been optimized, we make 
a series of calculations in which the PLS may be different in the left- and 
right-hand-side wave functions to obtain the diagonal and off-diagonal ma- 
trix elements of the Hamiltonian and the corresponding normalizations and 
overlaps. We diagonalize the resulting energy matrices to  find the PLS eigen- 
vectors. The one-body wave functions, @ are orthonormal, but the correlated 
!PT are not. Hence the diagonalizations use generalized eigenvalue routines 
including overlap matrices. 

3.2 The VMC Method 

The energy expectation value of Eq.(26) is evaluated using Monte Carlo in- 
tegration. A detailed technical description of the methods used here can be 
found in Refs. [13, 2, 151. Monte Carlo sampling is done both in configuration 
space and in the order of operators in the symmetrized product of Eq.(27) by 
following a Metropolis random walk. The expectation value for an operator 
0 is given by 

- _  . .-, 
,, , 
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The subscripts p and q specify the order of operators in the left and right 
hand side wave functions, while the integration runs over the particle coor- 
dinates R = (rl, r?, . . . , r A ) .  This multidimensional integration is facilitated 
by introducing a probability distribution, W,,(R), such that 

This probability distribution is taken to be 

which is constructed from the wave function, PT, but with only one operator 
order of the symmetrized product. 

Expectation values of the kinetic energy and spin-orbit potential require 
the computation of first derivatives and diagonal second derivatives of the 
wave function. These are obtained by evaluating the wave function a t  6A 
slightly shifted positions of the coordinates R and taking finite differences, 
as discussed in Ref. [13]. Potential terms quadratic in L require mixed second 
derivatives, which can be obtained by additional wave function evaluations 
and finite differences. A rotation trick can be used to reduce the number of 
additional locations at which the wave function must be evaluated [16]. 

The heart of the VMC calculation is the Metropolis algorithm, an inher- 
ently serial algorithm which must be adapted to modern parallel computers. 
Since the bulk of the work in our variational calculations lies in the energy 
expectation value, the straightforward division of labor is to have one master 
processor perform the Metropolis walk while several slave processors calcu- 
late the energy and other expectation values for the configurations that the 
master generates. The number of slave processors that can be efficiently used 
is the ratio of the CPU time needed for expectation values to that needed to 
walk from one configuration to the next. We find that typically 50 processors 
can be used efficiently in a 7Li VMC calculation. 

4 Green's Function (Diffusion) Monte Carlo 

GFMC projects out the lowest energy ground state using 

Po = lim exp[-(H - Eo)T]PT. 
7403 

(49) 

The eigenvalue EO is calculated exactly while other expectation values are 
generally calculated neglecting terms of order  PO - and higher. In con- 
trast, the error in the variational energy, ET, is of order l!Po-P~l?, and other 
expectation values calculated with !PT have errors of order l!Po - $TI. GFMC 
for scalar potentials is presented in R. Guardiola's and J.  Boronat's contribu- 
tions to this volume; here I will discuss some of the complications due to the 
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state-dependence of the nuclear Hamiltonian. It is not possible to present all 
of the details necessary for a successful nuclear GFMC calculation; a rather 
complete discussion may be found in [l]. 

We use the PT of Eq.(27) as our initial trial function and define the 
propagated wave function P ( r )  as 

= e-(H-Eo)rPT. (50) 

obviously P ( r  = 0) = PT and P ( r  + co) = PO. Introducing a small time 
step, Or, r = nAr, gives 

where G is the short-time Green's function. The P ( r )  is represented by a vec- 
tor function of R, and the Green's function, G,p(R', R )  is a matrix function 
of R' and R in spin-isospin space, defined as 

It is calculated with leading errors of order  AT)^ as discussed below. Omit- 
ting spin-isospin indices for brevity, P(& , r)  is given by 

P(%, 7) = J G(&, &-I) -G(Ri, Ro)P~(Ro)d&-i * -RidRo. (53) 

4.1 The Short-Time Propagator 

The short-time propagator should allow as large a time step AT as possible, 
since the total computational time for propagation is proportional to l/Ar. 
The first nuclear GFMC calculations [4, 17, 181 used the propagator obtained 
from the Feynman formulae. Ignoring three-nucleon interaction terms in H, 
it is given by 

Note that it is useful to symmetrize the product of e-u'jAr/2 when [vij, v j k ]  # 
0, in order to reduce the error per iteration. The nuclear vij has a repulsive 
core of order GeV. The main error in the above propagator comes from terms 
in e-HAr having multiple vij, like v i j I C v i j ( A ~ ) ~  for example, which can 
become large when particles i and j are very close. In order to make them 
negligible, a rather small AT - 0.1 GeV-' is used with the above propagator. 

The matrix elements of the propagator are given by: 
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Remember that v j j  is an operator in spin-isospin space, so evaluating 
e-%uaj is nontrivial. Consider the first 6 operators: 

01-6 = 1 ,T - T ,c -c , u . a r .  T , S I 2  ,S12T. r. (57) 

These form a closed algebra: 

6 

k=l  

where the K i j k  are just numbers. For example 

(a1 62)2 = (2Pu - 1)2 = 4P: - 4Pu + 1 = 5 - 4P0 
= 5 - 44(U1 - U2 - 1) = 3 - 2U1 . U 2 .  

J = 1 - u u i  ' O j  + TU (Oi  - O j ) 2  - ... , 

(59) 

Tables of K i j k  may be found in [19]. Thus 

e--ao,.o. 1 2  

= 1 + $ a2 - . . . - (a - a2 + . . . ) U i .  g j  

= $(3e-" + e3a) + +(e-" - e 3 a ) r i  . a j  , (60) 

where the last line may be verified by expanding the e-" and e3". More 
complete formulas, including those for exponentiating S i j ,  may be found in 

Evaluating L -S involves gradients, so a first-order expansion is used when 
~ 5 1 .  

using the propagator of Eq. 54: 
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Note that 
r x r’= r x ( r + A r )  = r x Arm 6, (63) 

since Ar will be sampled from the free Green’s function. Thus even though 
the explicit AT cancel in Eqn. 61 and 62, the contribution of v ~ s  still, on the 
average, decreases as AT decreases. 

It is well known from studies of liquid helium [20] that including the 
exact two-body propagator allows much larger time steps. This short-time 
propagator is 

where gij is the exact two-body propagator, 

and g0, i j  is the free two-body propagator, 

where p = m/2 is the reduced mass. All terms containing any number of the 
same V i j  and K are treated exactly in this propagator, as we have included 
the imaginary-time equivalent of the full two-body scattering amplitude. Eq. 
64 still has errors of order  AT)^, however they are from commutators of 
terms like v i j T v i k ( A ~ ) ~  which become large only when both pairs ij and ik 
are close. Since this is a rare occurrence, the AT of Eq. 65 can be five or more 
times larger than that used with Eq. 54. 

To calculate g i j ,  we use the techniques developed by Schmidt and Lee[21] 
for scalar interactions. The basic idea is to use the convolution equation to 
write g i j  as a product over N steps: 

N 

g i j ( r N ,  ro ;  AT) = n g i j ( r i 3 r i - l ;  €1, (68) 
i = l  

with E = A r / N  and an implied integration over intermediate points. The 
very-short-time propagator, g i j ( r i ,  r i - 1 ;  E ) ,  is evaluated using the methods 
of Eqn. 55-62 applied to one pair. The errors for g i j ( A T )  contain only even 
powers of l / N ,  starting with 1/N2..[21] By evaluating g i j ( r ,  r’; AT) for several 
values of N (and consequently E )  and extrapolating to E + 0 the gij can be 
calculated with high (- 10 digit) accuracy. 
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Calculating this propagator is computationally intensive. Therefore, prior 
to the GFMC calculation, we compute and store the the propagator on a grid. 
For a spin-independent interaction, the propagator gi j  would depend only 
upon the two magnitudes r’ and r and the angle cos(8) = ?’.e between them. 
Here, though, there is also a dependence upon the spin quantization axis. 
Rotational symmetry allows one to calculate the spin-isospin components of 
g i j ( r ‘ ,  r) for any r’ and r by simple SU3 spin rotations and values of g i j  on a 
grid of initial points r = (0, 0, z )  and final points r’ = (a?, 0,z’). In addition, 
the fact that the propagator is Hermitian allows us to store only the values 
for z > 2’. 

Finally, including the three-body forces and the EO in Eq.(52), the com- 
plete propagator is given by 

AT G,p(R‘, R) = eEoATGo(R’, R) exp[- x(%Fk(R’) + V$~JR))T] 
-, 

c 

The exponential of V$ is expanded to first order in AT thus, there are addi- 
tional error terms of the form KiIK?7k,(A~)2. However, they have negligible 
effect since If$ has a magnitude of only a few MeV. It was verified that the 
results for 4He do not show any change, outside of statistical errors, when 
AT is decreased from 0.5 GeV-l. 

The exact propagator of Eq. 65 can be computed for the full 2118 potential, 
however the L2 and (L S ) 2  terms in the potential correspond to state- 
dependent changes of the mass appearing in the free Green’s function. Since 
we do not know how to sample such a free Green’s function, we cannot use 
the exact gij for the full potential, but rather must use one constructed for an 
approximately equivalent potential that does not contain quadratic L terms. 
The difference between the desired and approximate potentials is computed 
perturbatively. For the rest of this paper, I ignore this complication and 
present results and equations as if the full potential is used in the GFMC 
propagator. 

4.2 Mixed Estimates 

The mixed expectation value of an operator 0 is defined as: 
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where P n  = Ro, R1,. - - ,  R, denotes the 'path', and dPn = dRodRl. . -dR,,,. 
In GFMC, the integral over the paths is carried out stochastically. Gener- 
ally, the required expectation values are calculated approximately from the 
variational PT and mixed expectation values. Let 

Retaining only the terms of order b @ ( ~ ) ,  we obtain 

where 

More accurate evaluations of (O(T))  are possible, [22] essentially by measuring 
the observable at the mid-point of the path. However, such estimates require 
a propagation twice as long as the mixed estimate. 

An important exception to the above is the energy, EO given by ( H ( T  + 

co)). The ( H ( T ) ) M ~ = ~ ~  can be re-expressed as (Ref. [23]) 

(75) (pT Ie-(H-Eo)r/2He-(H-E" )T/2 I@T) 
(H(r ) )Mized = (PT le-(H-Eo)T/2e-(H-Eo)T/2 pT) ' 

since the propagator exp[-(H-Eo)r] commutes with the Hamiltonian. Thus 
( H ( T ) ) M ~ = ~ ~  approaches Eo in the limit T -, co, and furthermore, being an 
expectation value of H ,  it obeys the variational principle 

Because the expectation values of the individual energy components, such 
as IC, V i j ,  and K j k ,  are extrapolated by Eq. 73, while the total Eo is not, they 
may not sum to the correct total energy. Indeed, there must be a collective er- 
ror in these individual terms equal to the total difference between the GFMC 
( H ) ~ i = ~ d  and the VMC (H)T, This is illustrated in Table 3 for the case of 
6Li, where the difference ( H ) ~ i = ~ d  - (H)T is -4.3 MeV, and the sum of the 
individual (0) is an additional -4.3 MeV lower than ( H ) .  In this case, the 
individual corrections are comparable in magnitude to the collective error, 
but small compared to the total expectation values. 
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Table 3. Contributions to the GFMC (0 ( r ) )  of Eq. 73 for 6Li. All quantities are 
in MeV. 

(0)T ( 0 ) M i z e d  ( 0 ) M i z e d  - (0)T (0) 
I( 143.8(4) 147.3(5) 3.5(7) 150.8(10) 
wil -165.6(4) -172.4(5) -6.8(7) -179.3(10) 
VI.,I; -5.2(1) -6.2(1) -l.O(l) -7.2(1) 
Sum -27.0(1) -31.3(1) -4.3(1) -35.6(1) 
H -27.0(1) -31.3(1) - -31.3(1) 

4.3 Dependence of Results on r 

For more than four nucleons, GFMC calculations suffer significantly from 
the well-known Fermion sign problem which is discussed elsewheres in this 
volume. The resulting exponential growth of the statistical errors as one 
propagates to larger T limits our calculations to T 5 0.1 M e V 1 ,  and for most 
cases we do not go beyond T = 0.06 MeV-'. This means that any errors in 
!PT corresponding to excitations of less than - 10 MeV will be damped out 
by less than l/e. If we write 

where 
H!Pi = (Eo + q ) ! P i  , 

then the GFMC E(r)  will be 

and by fitting such a form to the computed E(r )  one can hope to extract EO. 
Figure 1 shows such fits made for *He, for which we could afford cal- 

culations with very small statistical errors. The solid curve is a fit with 
Eo = -28.335 MeV, excitation energies = 20.2, 341, and 1477 MeV, 
and corresponding a: = 0.0062, 0.0018, and 0.00046. The lowest O+ excita- 
tion of 4He is at 20.2 MeV and this energy was not varied in the fit. The 
x2 of the fit is 19 for 31 E(r)  (25 degrees of freedom), so the E(r )  are 
not statistically independent. The dashed curve shows a fit without the 20.2 
MeV excitation; it gives x2 = 23 and EO = -28.28 MeV. Finally, the heavy 
solid line with short dashed error bars shows the average of the E(r )  for 
0.04 5 T 5 0.1 : -28.300(15). It appears that in this most favorable case, 
with high statistics, high first excited state, and large maximum T ,  we can see 
that including the first excited state improves the extrapolation marginally. 

..-, r 
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However, the extrapolated EO is not significantly lower than a simple average 
of the E(r )  for 0.04 5 r 5 0.1. Therefore we simply use such an average for 
all other nuclei. 
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Fig. 1. 4He GFMC energy as a function of imaginary time. The fits are described 
in the text. 

Because of the difficulties in making useful extrapolations in 7, it  is impor- 
tant to understand contaminations in PT, particularly from low-excitation- 
energy states which will not be fully filtered out in limited-r calculations. We 
have made several calculations of the ground-state of 6Li to study the effects 
of changes in PT on the GFMC E(r) .  Figure 2 shows the effects of removing 
some of the noncentral correlations in !&; the solid circles are from a calcu- 
lation with the full PT which includes the NNN correlation based on Kjk. 

1 -.- 
. .  ... 
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. o  0 

' 0  

0 
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I 

j ;  I ;  0.  

The open diamonds were computed by omitting this NNN correlation. This 
makes the energy at  7 = 0 worse by - 1.7 MeV. However by T = 0.01, the 
GFMC has fully corrected for this defect and thereafter the differences are 
just statistical fluctuations. Hence removing this NNN correlation enhances 
the admixtures of excitations > 250 MeV. 

-24 

-26 

-28 z e 
w 

-30 

-32 

-34 

6Li 

Fig. 2. 6Li GFMC energy as a function of imaginary time for various truncations 
of the noncentral parts of !&. 

The open squares in Fig. 2 come from a much more drastic approximation 
of !&. Here the tensor components of Fij have also been omitted, resulting in 
a four-operator wave function. In such a wave function, the dominant tensor 
components of the twc-body potential have zero expectation value and the 
energy at T = 0 is +41 MeV. It is completely corrected by T = 0.03; again 
the rate of correction indicates excitation energies - 250 MeV. However, the 
statistical errors from such a bad !PT are much larger. 

These two tests indicate that defects in the non-central parts of the cor- 
relation, which have been the subject of much optimization in VMC studies, 
are easily corrected by the GFMC. Deficiencies in the one-body part of !PT 
present more of a problem. The excitation energies corresponding to different 
LS components in Eq. 44 are typically 5 to 10 MeV. Thus the PLS must be 
reliably determined in PT. 

5 Some Results 

. . 
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Table 4. VMC, GFMC, and experimental ground-state (negative numbers) and 
excitation (positive) energies of A = 2 - 8 nuclei in MeV 

9( J"; T) VMC GFMC Expt 

3H(3+; 3) -8.32(1) -8.47(1) -8.48 
'He(O+; 0) -27.78(3) -28.30(2) -28.30 
'He(@; 1) -24.87(7) -27.64(14) -29.27 
'He(2+; 1) 1.86(10) 1.80(18) 1.80 
6Li(l+; 0) -28.09(7) -31.25(11) -31.99 
'Li(3+; 0) 2.93(10) 2.72(36) 2.19 
'Li(O+; 1) 3.84(10) 3.94(23) 3.56 
'Li(2+;0) 4.23(11) 4.43(39) 4.31 

'Li(l+;O) 5.68(11) 5.65 
'He(+-; $) -20.43(12) -25.16(16) -28.82 
'Li( $-; 3) -32.78( 11) -37.44(28) -39.24 
'Li(L-. 2 '2 L) 0.33(16) 0.76(41) 0.48 
'Li(g-; $) 5.48(16) 5.72(41) 4.63 
'Li( $-; $) 6.64(16) 6.56(45) 6.68 
'He(0+;2) -19.71(18) -25.77(61) -31.41 
'He(2+; 2) 2.34(25) 2.6 
'Li(2+; 1) -29.70(19) -38.26(19) -41.28 
'Li(l+; 1) 1.19(26) 0.98 
'Li(3+; 1) 2.81(25) 2.26 
'Li(4+; 1) 5.63(26) 6.53 
'Be(O+; 0) -48.06(27) -54.66(64) -56.50 
'Be(2+; 0) 3.90(37) 3.04 
'Be(4+; 0) 11.96(35) 11.4 

2H(1+; 0) -2.2248(5) -2.2246 

'Li(2'; 1) 5.64(10) 5.37 

These lectures are primarily about Monte Carlo methods for nuclear 
physics, so I will present only results for the computed energies of nuclei 
here. Many other results may be found in [l]. Table 4 shows the ground- 
state energies and excitation energies of several excited states for nuclei up 
to A = 8. Only statistical errors are shown for the Monte Carlo calcula- 
tions; we believe that the GFMC calculations are converged to - 0.3 MeV 
for A = 6 and - 0.6 MeV for A = 8. The GFMC ground state results show 
that the Hamiltonian being used underbinds the pshell nuclei more and more 
as A increases. Also the underbinding becomes worse as one moves away from 
2 = N, indicating an isospin problem. A comparison of the VMC and GFMC 
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results shows that our variational wave functions are much poorer for the p 
shell than for the 3- and 4body nuclei. However, wherever we have done 
GFMC calculations for excited states we find that the VMC excitation en- 
ergies are reliable. Thus the failure of the variational wave function appears 
to be a bulk property with little state dependence. The computed excitation 
energies are in quite good agreement with experiment, indicating that failure 
of the Hamiltonian is also principally a bulk feature. 

As is shown in Table 1, there has been much recent progress in nuclear 
QMC calculations. The present results show that we must make improve- 
ments on all fronts: the Hamiltonian, the variational wave function, and 
GFMC methods for calculations to larger 7. 
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