Millisecond burning of confined energetic materials during cookoff

PDF Version Also Available for Download.

Description

The response of a system containing an energetic material (EM) to an abnormal thermal environment is termed cookoff. To predict the violence of reaction of confined energetic materials during cookoff requires a description of the relevant physical processes that occur on time scales Ranging from days to submicroseconds. The time-to-ignition can be characterized accurately using heat transfer with chemistry and quasistatic mechanics. After ignition the energetic material deflagrates on a millisecond time scale. During this time the mechanical processes become dynamic. If the confinement survives burning then accelerated deflagration can lead to shock formation and deflagration to detonation transition. The ... continued below

Physical Description

12 p.

Creation Information

Schmitt, R.G. & Baer, T.A. November 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The response of a system containing an energetic material (EM) to an abnormal thermal environment is termed cookoff. To predict the violence of reaction of confined energetic materials during cookoff requires a description of the relevant physical processes that occur on time scales Ranging from days to submicroseconds. The time-to-ignition can be characterized accurately using heat transfer with chemistry and quasistatic mechanics. After ignition the energetic material deflagrates on a millisecond time scale. During this time the mechanical processes become dynamic. If the confinement survives burning then accelerated deflagration can lead to shock formation and deflagration to detonation transition. The focus of this work is the dynamic combustion regime in the millisecond time domain. Due to the mathematical stiffness of the chemistry equations and the prohibitively fine spatial resolution requirements needed to resolve the structure of the flame, an interface tracking approach is used to propagate the burn front. Demonstrative calculations are presented that illustrate the dynamic interaction of the deflagrating energetic material with its confinement.

Physical Description

12 p.

Notes

OSTI as DE98001172

Source

  • 1997 Joint Army, Navy, NASA, Air Force (JANNAF) CS/propulsion systems hazards subcommittee meeting, West Palm Beach, FL (United States), 27-31 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98001172
  • Report No.: SAND--97-2668C
  • Report No.: CONF-9710108--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 548611
  • Archival Resource Key: ark:/67531/metadc694224

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 14, 2016, 7:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Schmitt, R.G. & Baer, T.A. Millisecond burning of confined energetic materials during cookoff, article, November 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc694224/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.