SPALLATION STUDIES ON SHOCK LOADED URANIUM

Los Alamos National Laboratory, Los Alamos, NM.

Several spallation experiments have been performed on uranium using gas gun driven normal plate impacts with VISAR instrumentation and soft recovery. The shock pressures achieved were 81, 53, and 37 kbar. This paper will focus on modeling the free surface particle velocity trace U with U of 300 ppm carbon using the 1D characteristics code CHARADE. The spallation model involves the growth and coalescence of brittle cracks. Metallurgical examination of recovered samples and details of the experimental apparatus are discussed in separate papers.

INTRODUCTION

Several studies of spallation in uranium have been done in the past. They have included VISAR traces and computer modeling but no soft recovery with metallurgical examination. Metallurgical examination should be done where possible, however, as it helps greatly in modeling micromechanical processes.

In recent work, our group has measured VISAR traces and done metallographical examination of recovered samples of pure uranium (30 ppm carbon) and less pure uranium (300 ppm carbon). Shock strengths induced were nominally 81, 52.7, and 37 kbar for the less pure uranium and 53 and 35 kbar for the pure uranium. The details of the gas gun work and of the metallographical examinations are presented in other papers in this volume.

In this paper, calculations of a simple brittle crack growth model of the less pure uranium VISAR traces are presented. The intent is to show that the brittle crack description has some validity. Preliminary spall strength results for the pure uranium data are also presented using a simple tensile threshold model. More detailed model calculations for the pure uranium will be done in the future.

SPALLATION MODELING

The 1D characteristics code CHARADE was used to model VISAR free surface traces using both ductile and brittle crack damage models. The brittle crack model results were more like the data and these results will be reported on here, with brief comments about the ductile model results. The metallurgical sample examinations of the less pure uranium showed a mixed brittle/ductile mode of fracture with the brittle component predominating.

Before presenting the brittle crack damage model, the equation of state and plasticity modeling will be briefly described. The equation of state (eos) treatment is patterned after the "almost isotropic" approximation of Wallace. A "pressure dependent bulk modulus" for use in this treatment was obtained from the Hugoniot relations in the usual way. Strictly speaking, this modulus applies only on the Hugoniot. The elastic moduli were degraded because of damage using the framework for isotropically distributed and oriented brittle cracks of Addessio and Johnson. Their Eq. (10) was used to obtain...
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
the volumetric “inelastic crack opening strain” as a function of pressure. The inelastic strain was then added to elastic volumetric strain. The resulting formula leads to the following scaled bulk modulus:

\[B' = B / (1 + D), \]

where \(B' \) and \(B \) are the scaled and unscaled bulk moduli, respectively, and \(D \) is the effective damage quantity:

\[D = 15B(2 - v)\beta \bar{C}^3, \]

where \(\beta = \frac{64\pi (1 - v)}{15 (2 - v)} \frac{N_o}{G}. \)

\(v \) is Poisson’s ratio; \(G \) is the “solid” shear modulus, \(N_o \) is the volumetric crack center density; and \(\bar{C} \) is the average crack radius. The elastic constants were scaled only under volumetric tension, not for volumetric pressure. A similar treatment was used to obtain the effect of crack growth on the pressure for use in the characteristic equations.

In Eq. (1) above, \(B \) is the bulk modulus in the “equivalent” solid material. In the expression for \(B \) mentioned earlier, \(B \) is a function of the compression, so using this equation for \(B \) requires an “equivalent solid compression”. Such a compression was obtained using \(B \) and the “equivalent solid stress”\(\sigma_e \), given by:

\[\sigma_e = \sigma_{cell}(1 + \phi), \]

where \(\phi \) is a “porosity” given by:

\[\phi = 1 - \exp(4\pi \bar{C}^3 N_o / 3), \]

and \(\sigma_{cell} \) is the longitudinal stress in the computational cell.

The quantity \(\phi \) should approximately account for the unstressed regions around a penny shaped crack: the quantity in the exponent is an effective crack volume and the exponential takes overlaps of such volumes into account.

The deviatoric plasticity, which was not degraded by damage, is the same as used earlier for Ta spall modeling.(8). The “normal” component of the deviatoric plasticity was approximated by writing the plastic strain rate as a power law to the second power in the deviatoric stress. Both a forward and backward yield stress were used. This deviatoric plastic strain rate was supplemented by a simple back stress model \((8) \) in which a release immediately produces reverse plastic flow. These two plasticity models helped to produce a realistic release behavior preceding spall.

The brittle crack damage model is patterned somewhat after that of Grady and Kipp (9) and involves the breakout and growth of a single sized population of cracks of size \(\bar{C} \). These cracks have all orientations and uniformly fill a computational cell. The cracks break out when the stress intensity reaches \(K_{cr} \) and arrest when it reaches \(K_{ar} \). The applied stress intensity factor \(K \) is given by:

\[K_f = (2/\pi)\sigma c(t), \]

where \(\sigma \) is the longitudinal stress and \(c(t) \) is the time dependent crack radius. During breakout and arrest, the crack radius grows at the constant rate \(v_{cr} = f c, \) where \(c \) is a shear sound velocity and \(f \) is a reducing factor. Thus, \(c(t) \) during the first such breakout is given by:

\[c(t) = c_0 + v_{cr} (t - t_0), \]

where \(c_0 \) is the initial crack radius and \(t_0 \) is the time of crack breakout. Before first breakout, the cracks are considered not yet formed and no elastic moduli reduction is performed.

Grady and Kipp’s modeling included a time delay in crack loading. In calculations using this delay, the results were almost identical to the ones given here.

The effect of the damage on the equation of state has already been discussed. Spallation is taken to occur when \(\phi \) defined in Eq. (5) reaches 0.30. This rule uses a percolation argument to take approximately into account the regions unloaded by the cracks. When these regions overlap to form a path across the sample, it should be close to total fracture.
TABLE 1. Tensile threshold model spall strengths

<table>
<thead>
<tr>
<th>Shot #</th>
<th>Shock Strength</th>
<th>Spall Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-96-3</td>
<td>81 kbar</td>
<td>26 kbar</td>
</tr>
<tr>
<td>56-96-4</td>
<td>37 kbar</td>
<td>20 kbar</td>
</tr>
<tr>
<td>56-96-5</td>
<td>52.7 kbar</td>
<td>25 kbar</td>
</tr>
<tr>
<td>56-97-3 (pure)</td>
<td>35 kbar</td>
<td>25 kbar</td>
</tr>
<tr>
<td>56-97-5 (pure)</td>
<td>53 kbar</td>
<td>30 kbar</td>
</tr>
</tbody>
</table>

RESULTS

To obtain a rough idea of the spall behavior, a tensile threshold spallation model was used to calculate “spall strengths”. In this model, a computational cell is spalled when the normal stress, \(\sigma \), falls below the “spall strength”. \(\sigma \) is defined positive in compression. The equation of state is not degraded by damage. This model can predict only the point at which the damage release first occurs in the free surface trace. Table 1 shows these calculated spall strengths for both the impure and pure uranium. Note that these strengths are somewhat larger for the pure uranium (30 ppm carbon) than for comparable impure uranium (300 ppm carbon).

Figure 1 shows the calculated CHARADE free surface profiles with the experimental data. The experimental times were shifted arbitrarily to obtain correspondence with the calculations. 200 zones were used to model the sample plate in CHARADE. Calculated fits using 500 zones resulted in slightly different parameter values but, often, significant changes in profile lineshape resulted.

TABLE 2. Brittle crack model parameter values, Series 56-96

<table>
<thead>
<tr>
<th>Shock</th>
<th>(V_{f/s}) mm/(\mu)s</th>
<th>(K_{IC}) Mbar(\sqrt{cm})</th>
<th>(K_{IM}) Mbar(\sqrt{cm})</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>0.153</td>
<td>0.9 (\times 10^{-3})</td>
<td>0.2 (\times 10^{-3})</td>
<td>0.11</td>
</tr>
<tr>
<td>52.7</td>
<td>0.0704</td>
<td>0.75 (\times 10^{-3})</td>
<td>0.4 (\times 10^{-3})</td>
<td>0.13</td>
</tr>
<tr>
<td>37</td>
<td>0.1078</td>
<td>0.8 (\times 10^{-3})</td>
<td>0.5 (\times 10^{-3})</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Table 2 gives the brittle crack model parameters and \(V_{f/s} \) values used in the calculations. \(V_{f/s} \) is the flyer/sample interface velocity. In many cases, it was adjusted slightly away from the values given by impedance matching and the experimental flyer velocity so that the calculated shock plateau velocity would match the data. This was done to better model the spallation. The value of 3.017 \(\text{mm/\(\mu \)s} \) was used for \(C_s \). The value \(2 \times 10^4 \text{ cm}^3 \) was used for \(N_s \) in all cases. The initial crack size, \(C_a \), used was \(1.5 \times 10^{-3} \text{ cm} \).

Figure 1 shows that the brittle crack model reproduces the general spallation behavior of the data. In particular the extent of rebound after spall is modeled fairly well. The calculated profiles tend to have too many calculated “wiggles”. This probably means that the late stage damage modeling needs improvement. The modeling contains no detailed crack coalescence mechanisms beyond the inclusion of overlapping in the “regions of influence” of the cracks. In the modeling it was noticed that spallation occurred over a fairly wide area and that the smallest calculated ring periods were due to spalled cells lying closer than reasonable to the free surface.

Another problem is that Equation 1 for the degradation of elastic moduli gave calculated degradations that were quite extreme. This is because the theory behind Eq. (1) is an approximate linearized theory. A more accurate treatment including crack crack interactions would yield smaller degradations. This behavior is probably also responsible for the smallest ring periods in the calculated profiles.

A ductile void growth model, similar to that of Johnson (10) was also tried. Although the general spallation features could be reproduced, the reproduction of the details was significantly worse. The ductile model did the best job for the 81 kbar shot, suggesting that the 81 kbar experiment was more “ductile”.

The brittle crack fitting parameters are reasonable. The initial crack size of 15 microns and crack growth velocity of about \(1/10 \) the shear sound velocity are plausible. Incidentally, the results are very sensitive to the crack growth velocity. The values of \(K_{IC} \) used here are smaller than those typical of low alloy steels(11), e. g. \(5 \times 10^{-3} \text{ Mbar}\sqrt{cm} \) but larger than the \(K_{IC} \) value 0.126 \(\times 10^{-3} \text{ Mbar}\sqrt{cm} \) found by Grady(9) for novaculite, a rock. When quantitative analysis of micrographs is
it seems that the brittle crack description of spallation in not so pure uranium has some validity. It will be generalized in the future to obtain a mixed brittle/ductile spallation model.

REFERENCES

FIGURE 1. Calculated and measured free surface particle velocity profiles.