Embrittlement data base, version 1

PDF Version Also Available for Download.

Description

The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need ... continued below

Physical Description

Medium: P; Size: 227 p.

Creation Information

Wang, J.A. August 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need for annealing the pressure vessel. Large amounts of data from surveillance capsules and test reactor experiments, comprising many different materials and different irradiation conditions, are needed to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) is such a comprehensive collection of data resulting from merging version 2 of the Power Reactor Embrittlement Data Base (PR-EDB). Fracture toughness data were also integrated into Version 1 of the EDB. For power reactor data, the current EDB lists the 1,029 Charpy transition-temperature shift data points, which include 321 from plates, 125 from forgoings, 115 from correlation monitor materials, 246 from welds, and 222 from heat-affected-zone (HAZ) materials that were irradiated in 271 capsules from 101 commercial power reactors. For test reactor data, information is available for 1,308 different irradiated sets (352 from plates, 186 from forgoings, 303 from correlation monitor materials, 396 from welds and 71 from HAZs) and 268 different irradiated plus annealed data sets.

Physical Description

Medium: P; Size: 227 p.

Notes

INIS; OSTI as TI97008821

Source

  • Other Information: PBD: Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: TI97008821
  • Report No.: NUREG/CR--6506
  • Report No.: ORNL/TM--13327
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/525050 | External Link
  • Office of Scientific & Technical Information Report Number: 525050
  • Archival Resource Key: ark:/67531/metadc693941

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 8, 2016, 7:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, J.A. Embrittlement data base, version 1, report, August 1, 1997; Washington D.C.. (digital.library.unt.edu/ark:/67531/metadc693941/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.