Development of SQUID microscope for localization and imaging of material defects (NDE)

PDF Version Also Available for Download.

Description

Dramatic progress was made in FY1997, the first full year of implementing a new technique for detecting and imaging material defects in nuclear weapon components. Design, fabrication, and initial tests of a ``SQUID Microscope`` has been completed utilizing the extraordinary sensitivity of High-Critical-Temperature (HTC) Superconducting QUantum Interference Device (SQUID) technology. SQUIDs, the most sensitive magnetic field detectors known, are used to sense magnetic anomalies caused by the perturbation of an induction field by defects in the material under examination. Time variation of the amplitude (A) and angle ({theta}) of an induction field with unique spatial distribution allows examination of material ... continued below

Physical Description

4 p.

Creation Information

Kraus, R.H. Jr.; Espy, M. & Atencio, L. October 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Dramatic progress was made in FY1997, the first full year of implementing a new technique for detecting and imaging material defects in nuclear weapon components. Design, fabrication, and initial tests of a ``SQUID Microscope`` has been completed utilizing the extraordinary sensitivity of High-Critical-Temperature (HTC) Superconducting QUantum Interference Device (SQUID) technology. SQUIDs, the most sensitive magnetic field detectors known, are used to sense magnetic anomalies caused by the perturbation of an induction field by defects in the material under examination. Time variation of the amplitude (A) and angle ({theta}) of an induction field with unique spatial distribution allows examination of material defects as a function of depth and orientation within the sample. Variation of the frequency of amplitude variation, {Omega}(A), enables depth selection in a given sample. Scanning the sample in physical, A, and {theta} space enables detection and localization of defects to high precision. A few examples of the material defects anticipated for study include cracks, stress fractures, corrosion, separation between layers, and material inclusions. Design and fabrication of a prototype SQUID Microscope has been completed during FY97. Extensive testing of the physical, thermal, precision mechanical, and vacuum performance of the SQUID microscope were performed. First preliminary tests of the integrated system have been performed and initial results were obtained in the first week of September 1997, more than 3 months ahead of schedule.

Physical Description

4 p.

Notes

OSTI as DE98003098

Source

  • Other Information: PBD: 1 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98003098
  • Report No.: LA-UR--97-4271
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/578665 | External Link
  • Office of Scientific & Technical Information Report Number: 578665
  • Archival Resource Key: ark:/67531/metadc693907

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 29, 2016, 2:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kraus, R.H. Jr.; Espy, M. & Atencio, L. Development of SQUID microscope for localization and imaging of material defects (NDE), report, October 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc693907/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.