Higher order beam jitter in the SLC linac

PDF Version Also Available for Download.

Description

The pulse-to-pulse behavior of the beams in the SLC linac is dominated by wakefields which can amplify any other sources of jitter. A strong focusing lattice combined with BNS damping controls the amplitude of oscillations which otherwise would grow exponentially. Measurements of oscillation amplitude along the linac show beam motion that is up to six times larger than that expected from injection jitter. A search for possible sources of jitter within the linac uncovered some problems such as structure jitter at 8 to 12 Hz, pump vibrations at 59 Hz and 1 Hz aliasing by the feedback systems. These account ... continued below

Physical Description

6 p.

Creation Information

Decker, F.-J.; Adolphsen, C.E.; Podobedov, B. & Raimondi, P. August 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The pulse-to-pulse behavior of the beams in the SLC linac is dominated by wakefields which can amplify any other sources of jitter. A strong focusing lattice combined with BNS damping controls the amplitude of oscillations which otherwise would grow exponentially. Measurements of oscillation amplitude along the linac show beam motion that is up to six times larger than that expected from injection jitter. A search for possible sources of jitter within the linac uncovered some problems such as structure jitter at 8 to 12 Hz, pump vibrations at 59 Hz and 1 Hz aliasing by the feedback systems. These account for only a small fraction of the observed jitter which is dominantly white noise. No source has yet been fully identified but possible candidates are dark current in the linac structures (not confirmed by experiment) or subtle correlations in injection jitter. An example would be a correlated x-z jitter with no net offset visible on the beam position monitors at injection. Such a correlation would cause jitter growth along the linac as wakefields from the head of the bunch deflect the core and tail of the bunch. Estimates of the magnitude of this effect and some possible sources are discussed in this paper.

Physical Description

6 p.

Notes

OSTI as DE97009018

Source

  • 18. international linac conference, Geneva (Switzerland), 26-30 Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97009018
  • Report No.: SLAC-PUB--7260
  • Report No.: CONF-9608123--
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 621784
  • Archival Resource Key: ark:/67531/metadc693857

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Aug. 9, 2016, 12:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Decker, F.-J.; Adolphsen, C.E.; Podobedov, B. & Raimondi, P. Higher order beam jitter in the SLC linac, article, August 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc693857/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.