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THE RELIABILITY OF DSM IMPACT ESTIMATES 

Edward L. Vine, Lawrence BerkeIey Laborato y, Berkeley, C A  

Martin G. Kushler, Michigan Public Service Commission, Lansing, MI 

Abstract 

Demand-side management (DSM) critics continue to question the 
reliability of DSM program savings and, therefore, the need for funding such 
programs. In this paper, we examine the issues underlying the discussion of 
reliability of DSM program savings (e.g., bias and precision) and compare the levels 
of precision of DSM impact estimates for three utilities. Overall, the precision 
results from all three companies appear quite similar and, for the most part, 
demonstrate reasonably good precision levels around DSM savings estimates. We 
conclude by recommending activities for program managers and evaluators for 
increasing our understanding of the factors leading to DSM uncertainty and for 
reducing the level of DSM uncertainty. 

Introduction 

Supporters of energy efficiency assert that demand-side management 
(DSM) is a reliable resource that should be included in a utility’s resource planning 
activities. However, DSM skeptics continue to question the reliability of DSM 
program savings and, therefore, the need for funding such programs. DSM planners 
and evaluators will need to address this issue in the coming years if DSM is to 
continue. Thus, the purpose of this paper is to examine the issues underlying the 
discussion of reliability (eg., examining other areas of uncertainty in demand-side 
and supply-side planning, and the potential negative side effects of focusing on 
levels of precision). In addition, we compare the levels of precision of DSM impact 
estimates for three utilities. 
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As described below, a few state and federal regulators have addressed the 
reliability of DSM programs and the precision of energy-savings estimates (e-g., 
California, Massachusetts, New Jersey, Pennsylvania, and the US. Environmental 
Protection Agency). As DSM comes under even greater scrutiny in a more 
competitive environment, it is expected that additional state and federal regulators 
will have to respond to these issues (e.g., as part of the development of statewide or 
national measurement and evaluation protocols). In the last few years, a number of 
practitioners in the field of DSM program evaluation have discussed the issue of 
reliability and uncertainty in the literature, in regulatory hearings, and in program 
evaluations (e.g., Buller and Miller 1992; Hanser and Violette 1992; Horowitz 1992; 
Messenger et al. 1994; NEES 1994; Quantum Consulting 1994; Raab and Violette 1994; 
Schlegel et al. 1991; Sedmak et al. 1994; Sonnenblick and Eto 1995; Violette 1991; and 
Xenergy 1993 and 1994). After reviewing this material, we recommend activities for 
improving our understanding and, possibly, reducing the uncertainty of DSM as a 
resource. 

Putting DSM Uncertainty in Perspective 

There is always uncertainty about the savings associated with DSM 
measures. This level of uncertainty permeates all DSM program evaluation 
activities: e.g., designing samples, collecting and analyzing data, and interpreting 
and reporting the results of evaluations. Given this level of uncertainty, one must 
understand the limits of evaluation - what can and cannot be accomplished by 
evaluation. 

Many factors influence the value of a resource to a utility, and uncertainty 
across all of these factors influences the investment risk related to that resource. 
According to a recent report prepared for the National Association of Regulatory 
Commissioners (NARUC), uncertainties are inherent in both supply-side as well as 
demand-side resources and, therefore, the evaluation of demand-side resources may 
in principle be no more uncertain than the evaluation of supply-side resources 
(Raab and Violette 1994): 
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Supply-side Uncertainties 

0 

e 

e 

e 

Future prices of fuels (natural gas, oil and coal) 

Future availability of supply-side plants (major outages at 
baseload plants and forced and unforced outage rates) 

Capital costs of plants 

Operating costs of plants 

Changing environmental regulations 

Demand and energy forecasts 

Development time frames 

Licensing and construction time frames 

Public opposition 

Future regulatory structure 

Demand-Side Uncertainties 

Uncertainty in DSM impacts (operating assumptions, 
interactions between measures, persistence of savings, 
projections of program participation, estimated technical 
potential) 

Uncertainty in DSM costs (program marketing, measure 
installa tion) 

Level of free riders, spillover (including free drivers), and 
snapback 

Demand and energy forecasts 

Future regulatory structure 

Compared to uncertainties in long-run forecasted (incremental) demand 
levels (which may be off as much as +/- 50%), estimated DSM impacts may be 
viewed as relatively accurate (ibid.). For example, the North American Electric 
Reliability Council has experienced large errors in forecasting demand: summer 
peak demand was projected in 1973 to reach 734 GW by 1983, but actual demand was 
448 MW, a 39% error (DOE 1995). Uncertainty bands around Zoad growth may be 
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even greater and is a more important variable because load growth projections 
(especially, peak load growth as well as transmission and distribution growth) are 
used by system planners to determine incremental resource acquisition needs. 

Nevertheless, compared to the supply side, demand-side uncertainties are 
relatively new and, therefore, are of more interest to regulators, utility staff, and 
intervenors. Measures of reliability are needed for characterizing the uncertainty of 
EM, as discussed in the next section. 

Measures of Reliability 

The “mean” (average) estimate is typically regarded as the best estimate of 
DSM impacts. However, two other determinants, the level of bias (e.g., systematic 
omission of key variables, see below) and precision (acceptable variation around the 
estimated mean load impacts) of DSM program impact estimates, are needed to 
assess the reliability of DSM as a resource. A good example of the relationship 
between bias, precision and reliability is presented in the following: 

”. . . imagine a bull’s eye target. If your shots are tightly 
placed in the center, then your rifle (measurement and 
evaluation study) is unbiased and precise. It is reliable. If 
however, your shots are in a tight pattern but all to the left 
of the target, then your rifle is precise, but biased. An 
imprecise but unbiased rifle would produce a pattern that 
is centered about the bull’s eye, but widely scattered. 
Consequently, a study may be quite precise but unreliable 
because it is biased; or unbiased but still unreliable because 
it has too great a variance.” (Messenger et al. 1994) 

Most practitioners feel that evaluations should produce credible results 
that focus on the elimination of bias and attempt to be precise, but are flexible in 
levels of precision.* It is hoped that these unbiased estimates become more precise 
over time. 

Examples of categories of bias include the following: nonrepresentative samples, self-selection in participating in 
programs, contamination from other programs, measurement error in variables examined, and omitted variables. 
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The degree of credibility that may be attached to results is expressed by the 
level of statistical confidence (e.g., 90% confidence). This is in contrast to the 
precision of the estimate, which is gauged by the width of the confidence interval 
itself. Confidence and precision are competing ends. For a fixed sample size and 
variance, a reduction in the interval width, causing greater precision, can be 
achieved only at the expense of reducing the level of confidence, and vice versa. The 
only way to increase both confidence and precision is to collect a larger sample, but 
there are costs associated with this (see below). Thus, precision levels (and our 
confidence in savings results) are typically driven by budgets, not a priori accuracy 
criteria. And the budgets will affect the type of evaluation methods (e.g., 
econometric methods based on whole-premise billing data, or metering methods 
utilizing information on specific equipment installed) used to estimate energy 
savings (and vice versa), also affecting the uncertainty of the evaluation results and 
program cost-effectiveness (Sonnenblick and Et0 1995).2 

As noted above, the accuracy of estimates of DSM impacts is generally 
reported using a measure of precision at a given level of confidence. In 
conventional medical studies, where the risks of error can be life threatening, 
researchers are "confident" that their findings are correct if there is less than a one 
percent chance that the true population mean is 2.5% or above, or 2.5% below, the 
study estimate (this is called a "99/5" decision rule) (Horowitz 1992). In social 
sciences, researchers often report their results at the 95% confidence level (implying 
a willingness to accept a 1 in 20 random event to be misinterpreted). Many 
suggestions regarding what might be reasonable confidence and precision levels for 
DSM impact evaluation are based on the experience of load research. Load research 
has long had a standard of 90% confidence and 10% precision ("90/10" rule), but load 
research simply measures a level of consumption, and not a change in consumption 
which is less predictable and which is relatively small. Thus, the 90/10 standard is 
too stringent for evaluating DSM savings. In general, most experts agree that the 
precision guideline for load research is not suitable for the DSM savings situation 
where changes are being measured, in contrast to the one-time, static precision of 
consumption (as in load research) (Hanser and Violette 1992). 

2Different methods are subject to different uncertainties that will result in different estimates of precision. For 
example, some methods (e.g., multivariate regression) have relatively strict assumptions (e.g., normality and little 
correlation among independent variables). 



Moreover, these specifications of confidence are conventions only: 

”. . . there is no absolute standard for when to be confident 
in study findings; acceptable precision levels depend on 
the conventions of the field of study. The costs of error, 
the costs of measurement, what is technically achievable 
given the available measurement tools, and finally, the 
tolerable level of uncertainty, all play a role in establishing 
reasonable and prudent standards. . . . the field of DSM 
impact evaluation has yet to agree on standards for 
confidence or required precision levels.” (Horowitz 1992) 

A recent study assessing the uncertainty in estimates of DSM program 
cost-effectiveness when evaluation methods of varying precision and accuracy are 
used found that the imprecision in the cost of conserved energy was significant for 
programs with mean total resource cost ratios close to one, while higher ratios seem 
to guarantee cost-effectiveness even with significant estimate imprecision 
(Sonnenblick and Eto 1995). However, they found that biased savings could threaten 
the confidence of cost-effectiveness estimates for programs with ratios approaching 
2.0, especially when estimate imprecision was considered. Thus, the bias of the 
savings estimates is probably just as important (if not more) than the precision of 
the estimates. 

Another issue not examined is at what level should precision standards be 
applied? For the whole DSM portfolio, all DSM programs for a specific sector, an 
individual DSM program, or individual measures? They all have different 
methodological and cost implications. 

In conclusion, confidence intervals and precision levels are important, but 
have sometimes been over emphasized. A practical approach is needed for 
determining the level of precision and should reflect realistic expectations given the 
technical, economic, and practical limitations in the measurement of energy savings 
(Schlegel et al. 1991; Sonnenblick and Eto 1995). 



Side Effects of Precision Requirements 

DSM evaluation is not an exact science and requires the use of judgment 
and interpretation for assessing the performance of utility DSM programs. Making 
sure that the evaluations of these programs can provide the level of confidence 
required by regulators to make decisions about investments in certain types of DSM 
programs is critical; however, too much focus on the precision of the results may be 
detrimental if the ”big picture” is not taken into account. As a result, the setting of 
precision levels may become threshold precision values that the utility will believe 
it has to exceed with its impact evaluation before investing in a DSM program: 

“If these accuracy levels are not achieved, the utility may 
be concerned about penalties. Under these conditions, if 
commissions require high levels of precision, utilities will 
be given an incentive to only invest in those programs 
that produce large, readily identifiable savings where 
impact evaluations are likely to meet these potentially 
restrictive accuracy requirements. Other programs that are 
likely to be cost-effective but, for example, represent small 
percent reductions in consumption when compared to a 
customer’s total consumption may not be undertaken.” 
(&ab and Violette 1994) 

Similarly, the production of precise impact results to qualify for 
shareholder incentives may discourage utilities from attempting to evaluate some 
of the more difficult program parameters, such as spillover effects and market 
barrier costs, as described in a recent report on California’s measurement and 
evaluation load impact studies (Messenger et al. 1994). Market evaluations that use 
baseline studies, conjoint methods, and trade ally and manufacturers’ data should be 
able to estimate precision around program spillover effects, and the neglect of such 
measures may lead to biased (and, therefore, less credible) results. 
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Regulatory Polisies 

NARLIC Report 

Although the National Association of Regulatory Commissioners 
(NARUC) has not formally adopted a policy on reliability and uncertainty, a recent 
NARUC white paper has offered the following recommendations: 

”PUCs should not require higher levels of accuracy than is 
cost-effective to achieve. Moreover, PUCs should not set 
standards for accuracy that are more stringent than those 
required of utility management when making investment 
decisions in supply-side resources or other utility 
investment decisions. PUCs may also want to consider 
setting some lower bound accuracy levels, but should be 
flexible to account for the wide range of program types and 
other factors.” (Raab and Violette 1994) 

EPA’s Conservation Verification Protocols 

The US. Environmental Protection Agency (EPA) recently designed a set 
of Conservation Verification Protocols (CVP) as part of its mission to implement the 
Acid Rain Program of the Clean Air Act Amendments of 1990 (EPA 1993). The CVP 
was designed 

”. . . to be rigorous without being burdensome on the 
utility or the regulator. The CVP has the added benefit of 
helping to ensure the cost-effectiveness of utility 
conservation programs and SO2 emission reduction 
measures, as well as the reliability of energy savings from 
the measures.” (EPA 1993) 

For purposes of the emissions allowances, the objective of the CVP is to 
award allowances for savings that occurred with reasonable certainty. The CVP 
requires that the savings are expressed in terms of the utility’s confidence that the 
true savings were equal to, or greater than, those for which it applied. Thus, the CVP 
uses a 75% level of confidence using a one-tailed test (no specific precision level is 
targeted): in other words, the reporting entity must be statistically confident (at the 
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75% level) that the minimum level of energy savings has been achieved. The 
authors of the CVP note that their approach differs from the more stringent 
procedures employed by some electricity rate regulators, but argue that the CVP 
procedure . . . offers utilities more flexibility, smaller sample sizes, and the 
opportunity to claim some legitimate savings even when the evaluation itself was 
not as successful as planned” (ibid). 

It 

The authors conclude by noting the following: 

”The CVP takes this approach because while it is not based 
on usual statistical standards, it reflects the state-of-the-art 
for reasonable impact evaluation of savings from utility 
conservation programs.” (ibid) 

In summary, EPA considers a one-tailed test appropriate for most DSM 
applications because the real concern is not that there are too much savings, but 
rather that there are too little savings for the program to be cost-effective. Emphasis 
is thus placed on the lower bound only. 

The Massachusetts DPU Decision 

The Massachusetts Department of Public Utilities (MDPU) is the only state 
regulatory commission to have formally addressed the issue of uncertainty and 
precision. The MDPU reviewed the issue of confidence and precision in the early 
1990s and recommended that a 90/10 rule be used. In 1992, the MDPU reviewed and 
revised its earlier order. In the 1992 proceeding, the Boston Edison Company 
presented evidence that precision levels in impact evaluation could be as high as 
+/- 70% at a 90% confidence level for some programs (MDPU 1992). In that 
proceeding, the MDPU retreated from the 90/10 standard, stating: 

“The Company had correctly pointed out statistical errors 
underlying the Department’s earlier reliance on the 90/10 
standard. The Department directs the Company to seek 
the best precision it can expect to attain with a 90% 
statistical confidence, subject to the constraint that the 
marginal value of the precision attained should not 
exceed the marginal cost of attaining it.” (ibid) 
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In that order, the MDPU also indicated that it expected kWh to be 
measured more precisely than kW, due to the greater costs of measuring capacity. 
Furthermore, the MDPU ”found it appropriate and cost-effective to seek similar 
precision levels from one program to the next in terms of absolute kwh or kW, 
rather than in percentages.” This results in tighter relative precision levels (i.e., 
precision expressed in percentage terms) for programs with greater savings than for 
programs with smaller kwh and kW savings. 

In the NARUC report mentioned above, the authors note that it still was 
not clear that “even achieving a targeted absolute kwh precision rather than a 
constant targeted relative precision across most programs would be reasonable given 
the differences in programs” (Raab and Violette 1994). The authors assert that 
different programs target end-uses within different customer groups, and the 
relative savings impact will be different depending on total consumption and 
predicted impact. 

California, New Jersey, and Pennsylvania 

In 1992, the California Collaborative (the major investor-owned utilities, 
the California Energy Commission, the Division of Ratepayer Advocates, and the 
Natural Resources Defense Council) prepared a set of measurement and evaluation 
protocols that were later approved by the California Public Utilities Commission 
(CPUC 1993). Confidence intervals and levels of precision were discussed in 
workshops on the development of the protocols, but were not included in the 
protocols for reporting energy savings for the following reasons (personal 
communication from Don Schultz, CPUC, Division of Ratepayer Advocates, Sept. 
26,1994): 

e 

e 

e 

It was impossible to determine a reasonable standard (reference 
point). 

Applying a reference point would be burdensome and challenging 
(e.g., holding a utility (or an evaluator) to a certain standard). 

Nobody wanted to rely on one statistical reference point. 

There is always a potential for legitimate error - it was best to try to 
minimize error during the process of collecting and analyzing data. 
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The New Jersey Board of Regulatory Commissioners (NJBRC) adopted 
evaluation protocols that are almost exactly the same as the verification protocol 
developed by the National Association of Energy Service Companies (NJBRC 1993), 
but the protocols have no guidelines on confidence and precision levels for savings 
(personal communication from Bill Brady, NJBRC, Sept. 29, 1994). 

Finally, the Pennsylvania Public Utilities Commission is in the process of 
prepariirg evaluation guidelines that must be followed by the state’s utilities, and 
the level of precision to be required of DSM impact evaluations is set at a target 
confidence level of 75%, similar to the EPA standard (Hastie 1995). 

Utility Estimates of Relative Precision 

Until recently, it was hard to find evaluations that reported estimates of 
relative precision. Examples from a few utilities are presented below.3 

Consumers Power Company 

In 1991, the Consumers Power Company (CPCo) initiated large-scale DSM 
programs in the residential, commercial, and industrial sectors (Kushler 1993). In 
1992-93, a comprehensive evaluation of these programs was conducted and is the 
source of the data described below (Vine 1994). In Table 1, we present the relative 
precision of the net annual energy savings estimates for CPCo’s residential and non- 
residential programs at the 90% confidence level. In the residential sector, the 
Residential Free Install was the most precise (lo%), while the Appliance Recycling 
program was the least precise (81%).4 The levels of precision for the Mail Order 
Catalog and the Water Heater Conversion program were in the 20-26% range, while 
the Residential Rebate Coupon program had a 41% relative precision. In the non- 

3The programs were selected after reviewing program evaluation reports in the DEEP Library maintained at Lawrence 
Berkeley Laboratory. The goal of the Database on Energy Efficiency Programs (DEEP) Project is to compile and 
analyze the measured results of energy efficiency programs in a consistent and comprehensive fashion ( V i e  et al. 
1993). The DEEP Library contains over 600 evaluation reports from around the country and Canada. The three 
programs examined in this paper were selected because they wntained the data needed for measuring the precision 
of DSM impacts, data that, until recently, were often missing in DSM program evaluation reports. 

%he precision estimate indicates the relative magnitude of the difference between the low (or high) estimate and the 
mean estimate. For example, at the 90% confidence level, the average net energy savings for the Residential Free 
Install program were 13,005 MWh and ranged from 11,700 MWh to 14,316 MWh. The precision level was 10%: 
(13,005-1 1,700)/13,005. 
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residential sector, the Non-Residential Free Install and Direct Rebates programs, 
which were primarily lighting programs, each had a reasonably good level of 
precision (16%). The Custom-Designed Rebates program, due to the diversity of 
measures applied, was the least precise (57%). 

Pacific Gas and Electric Company 

Pacific Gas and Electric (PG&E) analyzed the relative precision of the gross 
annual energy savings estimates from its 1991 and 1992 commercial and industrial 
programs at the 90% confidence level (Table 1) (PG&E 1993). The most precise 
annual savings estimate was from its lighting rebate program (14%). The 
refrigeration rebate program was the least precise (33%), and the W A C  rebate 
program had medium precision (28%). 

New England Electric System 

The New England Electric System (NEES) reported estimates of the 
relative precision of its 1993 DSM programs offered by one of its companies, the 
Massachusetts Electric Company (Table 1) (NEES 1994). Some programs had relative 
precision levels of loo%, but most of these had small load impacts. Excluding these 
programs, the Residential Space Heating program was the most precise (23%) 
residential program while the Appliance Recycling program was the least precise 
(58%). In the non-residential sector, the most precise was the new construction 
program (Design 2000) targeting motors (23%) and the least precise was the Design 
2000 program targeting lighting (38%). 
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Table 1. The Relative Precision of Energy Savings of Selected DSM Programs 

Energy Initiative 

NEEs/NEES 1994 Residential Energy Fitness 1993 33 100 
NEES/NEES 1994 Residential Multi-Family 1993 1% 53 

NEES/NEES 1994 Residential Residential 1993 83 38 

NEES/NEES 1994 Residential Residential 1993 128 23 

NEES/NEES 1994 Residential Water Heater 1993 2 100 

Retrofit 

Lighting 

Space Heating 

Rebate 
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Cross- Utility Comparisons 

Comparing the precision levels of utility programs within a utility as well 
as between utilities is a difficult endeavor, since precision levels vary by evaluation 
methods, savings estimate (gross versus net savings), targeted measures and 
markets, program evaluation budgets, and utility experience in program design and 
evaluation. In Table 2, we compare precision levels for CPCo and NEES at a more 
aggregate level - by sector (residential and non-residential) and for all programs. For 
NEES’s programs, the relative precision at the 90% confidence level was 16% for all 
of its programs, 20% for its non-residential programs, and 21% for its residential 
programs.5 For CPCo’s programs, the relative precision at the 90% confidence level 
was 18% for all of its programs, 21% for its non-residential programs, and 32% for its 
residential programs, Overall, the precision results from the companies appear quite 
similar and, for the most part, demonstrate reasonably good precision levels around 
DSM savings estimates. 

Table 2. The Relative Precision of Energy Savings By Sector 

i 

Net Relative 
Annual Precision at 

90% 
Confidence Savings 

program (GWh) Level (%) Utility/Reference Sector Year 

- 
cPco/Bco 1994 Residential 1992-93 40 32 
cpco/cPco 1994 Non-Residential 1992-93 229 21 
cPco/Bco 1994 TOTAL 1992-93 269 18 
NEES/NEES 1994 Non-Residential 1993 1,268 20 
NEES/NEE!3 1994 Residential 1993 371 21 
NEES/NEES 1994 TOTAL 1993 1,639 16 

combined relative precision for all of the programs is less than the relative precision for the residential and non- 
residential sectors because random discrepancies tend to offset one another (NEB 1994). 
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Recommendations for Reducing Uncertainty 

A number of opportunities exist for increasing our understanding of the 
factors leading to DSM uncertainty and for reducing the level of DSM uncertainty. 
We briefly recommend below some activities that the evaluation and regulatory 
communities can undertake to take advantage of these opportunities. 

Historical data analysis 

Devise tests and develop procedures to detect and correct bias. 

Support statewide, regional, and national efforts that compile and synthesize 
results from many impact evaluations (e.g., DEEP) (Vine et al. 1993). 

Future program evaluations 

Conduct process evaluations that focus on key uncertainty parameters 
(including evaluation methods) affecting precision and bias. 

Conduct evaluations of the same program periodically to see if uncertainty 
decreases over time. 

Use multiple evaluation methods to see how uncertainty varies with 
methodology (Sonnenblick and Eto 1995). \ 

Program design 

Conduct social science experiments to determine critical parameters of 
uncertainty. 

Once critical uncertainty parameters have been identified, redesign program 
to reduce uncertainty and then evaluate new program. 



Risk assessment and decision analysis 

Assess the risk of not pursuing DSM because of uncertainty problems. 
Evaluate the risks associated with not pursuing DSM versus pursuing DSM, 
or with reduced levels of DSM (Buller and Miller 1992)6 

e Weigh the value of reducing uncertainty? Since there will always be 
uncertainty, focus on achieving the optimal decision given certain levels of 
confidence, precision, and risk. Decision theory may be helpful for this issue, 
including examining the ”penalty” (cost) associated with a utility ignoring 
DSM, even though savings may occur from DSM. 

Measurement and evaluation guidelines 

Prepare guidelines for achieving cost-effective accuracy levels (similar to 
MDPU decision). Consider how to obtain a given reduction in uncertainty in 
the most cost-effective manner. 

Prepare guidelines for reducing measurement bias, so that key factors are 
accounted for (e.g., program spillover). 

Program evaluation is recognized by many for reducing the uncertainty of 
DSM program impacts and for enhancing the value of DSM as a resource (e.g., 
Messenger et a1 1994; Sedmak et a1 1994). By analyzing billing data and end-use 
metered data, using large participant and comparison samples, conducting on-site 
visits, assessing market shipment or sales data, and designing and implementing 
better customer survey questionnaires, evaluators have been able to reduce the 
uncertainty of DSM estimates associated with engineering results and self-reported 
data. On the other hand, these same methods have increased our awareness of the 
remaining uncertainties underlying the evaluation methods used for estimating 
energy savings and program cost-effectiveness. Admittedly, much work remains to 
be done. 

As noted above, precision levels vary by evaluation methods, savings 
estimate (gross versus net savings), targeted measures and markets, program 

%Jsing sensitivity analysis, Eric Erst has suggested that DSM programs generally reduce uncertainties in a utility’s 
resource portfolio compared to a portfolio without DSM. And even increasing the cost of DSM programs by 50% 
had little effect on the conclusions from the sensitivity analysis (Hirst 1992). 
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evaluation budgets, and utility experience in program design and evaluation. 
Accordingly, it is difficult to recommend a single precision standard for impact 
evaluations, due to the importance of individual circumstances. As a constructive 
recommendation, however, evaluators should estimate and report confidence 
intervals, as well as means, and they should include a discussion of how the issues 
of bias and precision were addressed in their research. Finally, it is also important to 
reiterate that one needs to keep DSM uncertainty in perspective: there is lots of 
uncertainty in all aspects of resource planning, on the supply side as well as the 
demand side. That fact, together with the relatively good precision levels 
demonstrated by the three utilities examined in this paper, suggests that there is no 
justification for broadly attacking DSM as a resource on the basis of uncertainty of 
evaluation savings estimates. 

Acknowledgments 

This work was supported by the Assistant Secretary for Energy Efficiency 
and Renewable Energy, Office of Utility Technologies, of the US. Department of 
Energy under Contract No. DE-AC03-76SF0098. The authors are especially grateful 
for the review comments on a previous draft of this paper from the following 
people: Les Baxter, Joe Eto, Liz Hicks, Ken Keating, Alan Meier, Mike Messenger, 
George Penn, Diane Pirkey, Rich Sonnenblick, Ken Train, and Robert Uhlaner. 

References 

1. Buller, S. and W. Miller, "How Should We Treat Factors Contributing to 
Uncertainty in Measurement and Evaluation of DSM?" Proceedings of the 
ACEEE 2992 Summer Study on Energy Ejiciency in Buildings, Vol. 7, pp. 31-35. 
Washington, D.C.: American Council for an Energy-Efficient Economy (1992). 

2. California Public Utilities Commission (CPUC), Decision D.93-05-063, May 19, 
1993, Interim Opinion on Ex Post Measurement and Evaluation. San Francisco, 
CA: California Public Utilities Commission (1993). 

17 



I 

3. Consumers Power Company (CPCo), Testimony in Case No. U-10554. Lansing, 
MI: Michigan Public Service Commission (1994). 

4. Hanser, P. and D. Violette, ”DSM Program Evaluation Precision: What Can 
You Expect? What Do You Want?” Proceedings of the Fourth National 
Conference on Integrated Resource Planning, pp. 299-313. Washington, D. C.: 
National Association of Regulatory Commissioners (1992). 

5. Hastie, S., ”Upheaval in Pennsylvania Over DSM Cost Recovery,” Evaluation 
Exchange 5(1):1-2 (1995). 

6. Hirst, E., “Effects of Utility DSM Programs on Risk,” ORNL/CON-346. Oak 
Ridge, TN: Oak Ridge National Laboratory (1992). 

7. Horowitz, M., ”Savemetrics: The Science of Measuring DSM Impacts,” 
Proceedings of the 1992 International Energy Eficiency & DSM Conference,. 
Bala Cynwyd, PA. SRC International (1992). 

8. Kushler, Martin G. “A Two-by-Four and a Pound of Cheese: A Case Study of 
the Effect of Regulatory Incentives on a Reluctant Utility.” Proceedings of the 
1993 International Energy Program Evaluation Conference, pp. 362-367. 
Chicago, E (1993). 

9. Massachusetts Department of Public Utilities (MDPU), Case DPU 90-335, April 
8,1992. 

10. Messenger, M,, N. Stone, B. True, A. Kandell, P. Purcell, and J- Lang, “Utility 
DSM Program Measurement and Evaluation Studies,” Staff Report, Docket No. 
93-ER-94, Sacramento, CA: California Energy Commission (1994). 

11. New England Electric System (NEES), “1993 DSM Performance Measurement 
Report,” Westborough, MA: New England Electric System (1994). 

12. New Jersey Board of Regulatory Commissioners (NJBRC), ”Measurement 
Protocol for Commercial, Industrial and Residential Facilities,” Trenton, NJ: 
New Jersey Board of Regulatory Commissioners (1993). 

18 



13. Pacific Gas and Electric Company (PG&E), “Annual Summary Report on 
Demand Side Management Programs in 1992 and 1993: Technical Appendix, 
April 1993,” San Francisco, CA: Pacific Gas and Electric (1993). 

14. Quantum Consulting, Inc., ”Consumers Power Company’s REDUCE THE U$E 
Program Non-residential Evaluation Report.” Berkeley, CA: Quantum 
Consulting (1994). 

15. Raab, J. and D. Violette, ”Regulating DSM Program Evaluation: Policy and 
Administrative Issues for Public Utility Commissions.” Washington, D.C.: 
National Association of Regulatory Utility Commissioners (1994). 

16. Schlegel, J., R. Prahl, and M. Kushler, “Measurement in the Age of Incentives.” 
Proceedings of the 2 991 International Energy Program Evaluation Conference, 
pp. 182-190. Chicago, IL (1991). 

17. Sedmak, M, R. Uhlaner, and B. Smith, ”Building Reliable DSM Resources with 
Program Evaluation,” Proceedings of the A C E E E  1994 Summer S f u d y  on 
Energy Eficiency in Buildings, Vol. 8, pp. 177-185. Washington, D.C.: American 
Council for an Energy-Efficient Economy (1994). 

18. Sonnenblick, R. and J. Eto, ”Calculating the Uncertainty in Program Cost- 
Effectiveness Estimates,” Proceedings of the 1995 International Energy Program 
Evaluation Conference. Chicago, IL (1995). 

19. US. Department of Energy, “Performance Issues for a Changing Electric Power 
Industry,” DOE/EIA-0586. Washington, D.C.: Energy Information 
Administration, US. Department of Energy (1995). 

20. U.S. Environmental Protection Agency (EPA), ”Conservation Verification 
Protocols,” EPA 430/8/B-92-0 02. Washington, D.C.: US. Environmental 
Protection Agency (1993). 

21. Vine, E., ”Comparative Evaluation of Consumers Power Company’s Energy 
Efficiency Programs.” LBL-36202. Berkeley, CA: Lawrence Berkeley Laboratory 
(1994). 

19 



22. 

23. 

24. 

25. 

Vine, E., C. Payne, and R. Weiner, ”Comparing the Results of Energy Efficiency 
Programs: The Creation of a National Database on Energy Efficiency Programs 
(DEEP),” LBL-33654. Berkeley, CA: Lawrence Berkeley Laboratory (1993). 

Violette, D., ”Analyzing Data,” in ”Handbook of Evaluation of Utility DSM 
Programs,” pp. 51-72. E. Hirst and J. Reed eds., ORNL/CON-336. Oak Ridge, TN: 
Oak Ridge National Laboratory (1991). 

Xenergy, “Evaluation of the CIA Retrofit Rebate Program, Final Report,” San 
Francisco, CA: Pacific Gas and Electric Company (1993). 

Xenergy Evaluation Team (Xenergy), “Consumers Power Company’s 
Residential Demand-Side Management Programs, Final Report.” Madison, WI: 
Xenergy, Inc. (1994). 

20 


