CFD Simulation of Infiltration Heat Recovery

PDF Version Also Available for Download.

Description

Infiltration has traditionally been assumed to affect the energy load of a building by an amount equal to the product of the infiltration flow rate and the sensible enthalpy difference between inside and outside. Results from detailed computational fluid dynamics simulations of five wall geometries over a range of infiltration rates show that heat transfer between the infiltrating air and walls can be substantial, reducing the impact of infiltration. Factors affecting the heat recovery are leakage path length, infiltration flow rate, and wall construction. The classical method for determination of the infiltration energy load was found to over-predict the amount ... continued below

Physical Description

12 pages

Creation Information

Buchanan, C.R. & Sherman, M.H. July 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Infiltration has traditionally been assumed to affect the energy load of a building by an amount equal to the product of the infiltration flow rate and the sensible enthalpy difference between inside and outside. Results from detailed computational fluid dynamics simulations of five wall geometries over a range of infiltration rates show that heat transfer between the infiltrating air and walls can be substantial, reducing the impact of infiltration. Factors affecting the heat recovery are leakage path length, infiltration flow rate, and wall construction. The classical method for determination of the infiltration energy load was found to over-predict the amount by as much as 95 percent and by at least 10 percent. However, the air flow paths typical of building envelopes give over-predictions at the low end of this range.

Physical Description

12 pages

Notes

OSTI as DE00006425

Source

  • 19th AIVC Conference, Oslo (NO), 09/28/1998--09/30/1998; Other Information: Supercedes report DE00006425; PBD: 1 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--42098
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 6425
  • Archival Resource Key: ark:/67531/metadc693741

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Aug. 30, 2016, 6:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Buchanan, C.R. & Sherman, M.H. CFD Simulation of Infiltration Heat Recovery, article, July 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc693741/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.