One-group interfacial area transport in vertical air-water bubbly flow

PDF Version Also Available for Download.

Description

In the two-fluid model for two-phase flows, interfacial area concentration is one of the most important closure relations that should be obtained from careful mechanistic modeling. The objective of this study is to develop a one-group interfacial area transport equation together with the modeling of the source and sink terms due to bubble breakage and coalescence. For bubble coalescence, two mechanisms are considered to be dominant in vertical two-phase bubbly flow. These are the random collisions between bubbles due to turbulence in the flow field, and the wake entrainment process due to the relative motion of the bubbles in the ... continued below

Physical Description

15 p.

Creation Information

Wu, Q.; Kim, S.; Ishii, M. & Beus, S.G. July 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 36 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Bettis Atomic Power Laboratory
    Publisher Info: Bettis Atomic Power Lab., West Mifflin, PA (United States)
    Place of Publication: West Mifflin, Pennsylvania

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the two-fluid model for two-phase flows, interfacial area concentration is one of the most important closure relations that should be obtained from careful mechanistic modeling. The objective of this study is to develop a one-group interfacial area transport equation together with the modeling of the source and sink terms due to bubble breakage and coalescence. For bubble coalescence, two mechanisms are considered to be dominant in vertical two-phase bubbly flow. These are the random collisions between bubbles due to turbulence in the flow field, and the wake entrainment process due to the relative motion of the bubbles in the wake region of a seeding bubble. For bubble breakup, the impact of turbulent eddies is considered. These phenomena are modeled individually, resulting in a one-group interfacial area concentration transport equation with certain parameters to be determined from experimental data. Compared to the measured axial distribution of the interfacial area concentration under various flow conditions, these parameters are obtained for the reduced one-group, one-dimensional transport equation. The results indicate that the proposed models for bubble breakup and coalescence are appropriate.

Physical Description

15 p.

Notes

INIS; OSTI as DE97007383

Source

  • AICHE/ASME national heat transfer conference: current developments in numerical simulation of heat and mass transfer, Baltimore, MD (United States), 10-12 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97007383
  • Report No.: WAPD-T--3145
  • Report No.: CONF-970824--13
  • Grant Number: AC11-93PN38195
  • Office of Scientific & Technical Information Report Number: 505285
  • Archival Resource Key: ark:/67531/metadc693714

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 16, 2016, 5:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 36

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wu, Q.; Kim, S.; Ishii, M. & Beus, S.G. One-group interfacial area transport in vertical air-water bubbly flow, article, July 1, 1997; West Mifflin, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc693714/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.