Control of Water Infiltration Into Near Surface Low-Level Waste Disposal Units

Final Report on Field Experiments at a Humid Region Site, Beltsville, Maryland

Prepared by
R. K. Schulz
R. W. Ridky
E. O’Donnell

University of California
University of Maryland

Prepared for
U.S. Nuclear Regulatory Commission
AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001

2. The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC 20402-9328

3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, interstate agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. Federal Register notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852-2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.
Control of Water Infiltration Into Near Surface Low-Level Waste Disposal Units

Final Report on Field Experiments at a Humid Region Site, Beltsville, Maryland

Manuscript Completed: September 1997
Date Published: September 1997

Prepared by
R. K. Schulz a
R. W. Ridky b
E. O'Donnell c

a UCLA-DOE Laboratory of Structural Biology and Molecular Medicine
University of California
Los Angeles, CA 90024

Subcontractor:
b Department of Geology
University of Maryland
College Park, MD 20742

c E. O'Donnell, NRC Project Manager

Prepared for
Division of Regulatory Applications
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC Job Code L2491
Disclaimer

NUREG/CR 4918, Volume 10 is not a substitute for NRC regulations, and compliance is not required. The approaches and/or methods described in the NUREG/CR are provided for information only. Publication of this report does not necessarily constitute NRC approval of or agreement with the information contained herein.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
This study's objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills.

Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consisted of compacted earthen material (e.g., clay). The conductive layer barrier consisted of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care.

As mentioned in the preceding paragraph, a bioengineering management cover might well be the cover of choice during the active subsidence phase of a waste disposal unit. Some maintenance is required during that period. Final closure, using geological materials, could follow cessation of subsidence. No further significant maintenance would then be required. If the geological material used is solely clay barrier to water infiltration, the cover will be "sensitive" to imperfect construction or degradation by penetrating roots. The roots will die and decay, causing markedly increased permeability of the clay with the passage of time. A system using a conductive layer under the clay layer as a water-scavenging system will, in comparison, be "robust." Roots will still degrade the clay layer but will not degrade the scavenging layer. A root hole through the conductive layer will be analogous to a hole through a wick. It will do no significant damage. The combination of a resistive layer with a conductive (scavenging) layer underneath is thus less dependent on perfect construction techniques and will be resistant to damage by root invasion. In the absence of subsidence such a system should function effectively for millennia.

Another very useful application of the resistive layer barrier/conductive layer barrier system would be to protect an earth-mounded concrete bunker disposal unit. In that case, the barrier system would shield the concrete from exposure to flowing water. The resulting stagnant alkaline film of water would tend to protect the concrete from degradation over a long time period. Similarly, a resistive layer barrier/conductive layer barrier system could be used to protect high-level waste. If high-level waste were disposed of in fractured rock, this system could be used to divert possible fracture flow water around the waste.
TABLE OF CONTENTS

Disclaimer. ... ii

Abstract. .. iii

List of Figures. vii

List of tables. ix

Acknowledgements. xi

Introduction. ... 1

Experimental and Demonstration 2
 Bioengineering Management. 2
 Resistive Layer Barrier. 7
 Conductive Layer Barrier 8
 Further Studies of Conductive Layer Materials. 15

Application. ... 16

References. ... 19
LIST OF FIGURES

1. Resistive layer barrier. ... 1
2. Conductive layer barrier. ... 1
3. Bioengineering management. .. 2
4. Plan view showing placement of experimental lysimeters at Beltsville, Maryland. ... 2
5. Bioengineering plots at Beltsville, Maryland ... 4
6. Side view of bioengineered lysimeter ... 4
7. Water table vs. time in reference lysimeters ... 4
8. Water table vs. time in bioengineered lysimeters. ... 5
9. Fate of precipitation in bioengineered, reference (soil with grass), UMTRA (clay with riprap), clay (clay with grass), and clay + capillary (clay and capillary layers with grass), lysimeters. ... 6
10. Calibration of neutron probe using soil of bioengineered lysimeters. ... 8
11. Bioengineered covers. ... 9
12. Bioengineered covers. ... 9
13. Plot of moisture content at the 61, 122, 183, 244 cm levels as a function of time in lysimeters 1 and 2. ... 10
14. Resistive-layer barrier with rock cover; no vegetation. ... 11
15. Resistive-layer barrier with grass cover. ... 11
16. Moisture content of clay layers with time. ... 12
17. Water flow in an unsaturated porous medium. ... 13
18. Substitution of rock layer for holes shown in Fig. 17. .. 13
19. Imperfectly constructed conductive layer with "pocket" extending down into rock (or capillary break) layer. .. 13
20. Schematic of laboratory apparatus for measurement of water tension, using different materials and varying flow rates. 13
21. Miniature soil beam used for evaluation of materials for possible use in conductive-layer barrier application. ... 14
22. Soil water tension at various flow rates, measured in miniature soil beam shown in Fig. 21. ... 14
23. Large soil beam used for final selection of diatomaceous earth as conductive-layer material. ... 14
24. Soil water tension at various flow rates, measured in large soil beam shown in Fig. 23. ... 14
25. Combination resistive-layer barrier over a conductive layer barrier. .. 16
26. Unsaturated flow characteristics of four sands. .. 17
27. Resistive-layer barrier overlaying a conductive-layer barrier as might be used with an earth-mounded concrete bunker. .. 18
28. Artist's concept of resistive and conductive layer barriers to protect high-level waste from water flowing through rock fracture. .. 18
29. Simplified case of Fig. 28. .. 18
LIST OF TABLES

1. Run-off, evapotranspiration and deep percolation from bioengineered plots. 3

2. Calibration of neutron probe used in lysimeters 1, 2, 4, 5, and 6. 8

3. Particle size distribution of the four sands used in unsaturated flow studies, reported in Fig. 26. 15
ACKNOWLEDGMENTS

Funding for this project was provided by the Waste Management Branch, Division of Regulatory Applications, Office of Nuclear Regulatory Research. Dr. Edward O'Donnell is the Project Manager, Dr. Sher Bahadur is Chief of the Waste Management Branch, and Dr. Bill M. Morris is Director of the Division of Regulatory Applications.

The authors wish to express their thanks to Lester M. Fujii for his contribution to this study. Furthermore, we are indebted to the support provided this project by the University of Maryland’s Experiment Station, Beltsville Unit staff, notably Peter Godwin.
INTRODUCTION

Infiltration of water into waste is the foremost problem associated with near-surface disposal of low-level radioactive waste (LLW). Up to this time, disposal unit covers have generally been constructed from soil materials. In humid areas, these soil or clay covers have generally proved less than satisfactory; often, the cover itself has served as the principal pathway for water entry into the waste (1). Water infiltrating to buried wastes, contacting the wastes, then exiting the area can reasonably be expected to be the most important of radionuclide transport agents. Some radionuclides, such as tritium (present as tritiated water), and those present in anionic form or neutral complexes, will essentially move with the flow of water; others, present as cations, will move much more slowly, but all will move to a greater or lesser degree. Clearly then, it is advantageous to reduce water infiltration to buried waste to as low a level as reasonably achievable. It is the purpose of our work to examine and demonstrate various approaches for achieving that goal.

Three kinds of waste disposal unit covers or barriers were investigated in this work:

1. Resistive Layer Barrier
2. Conductive Layer Barrier
3. Bioengineering Management

The resistive layer barrier is the well-known compacted clay layer and depends on compaction of permeable porous materials to obtain low flow rates. A simplified model is shown in Fig. 1. Flow through porous media is described by Darcy's law (2). Investigations on flow through such layers have gone on for over 100 years, so further progress in this area can be expected to be slow.

The conductive layer barrier (1) is a special case of the capillary barrier (3). Use is made of the capillary barrier phenomenon not only to increase the moisture content above an interface, but to divert water away from and around the waste. During such diversion, water is at all times at negative capillary potential or under tension. A simplified model is shown in Fig. 2.

This system consists of a porous medium underlaid by a capillary break (rock layer). Infiltration barriers such as a conductive layer barrier or a clay layer barrier (or a combination thereof) must fail if subjected to substantial shearing caused by waste subsidence. Reestablishment of a layered system after subsidence failure is a difficult undertaking and is exacerbated by the increasing complexity of the layered system. The failure potential of in-ground layered systems during the subsidence period argues for development of an easily repairable surface barrier for use during that period. To that end, a procedure called "bioengineering management" was developed (4). The bioengineering management technique utilizes a combination of engineered enhanced run-off and moisture-stressed vegetation growing in an overdraft condition to control deep water percolation through disposal unit covers. An artist's conceptual drawing is shown in Fig. 3.
EXPERIMENTAL AND DEMONSTRATION

In this section we will discuss experiments that have been conducted in large-scale lysimeters at a humid region site in Beltsville, Maryland (see Fig. 4).

In bioengineering management the necessary run-off is provided by features installed at or above the soil surface rather than within the profile. The procedure, described by Schulz et al. (4), was designated bioengineering management. Its principal advantage is that subsidence can easily be managed by relatively simple, inexpensive maintenance of the above-ground features rather than by difficult reconstruction of below-ground layers. It should be noted that, after a length of time sufficient so that the organics have decayed and the waste containers have completely failed, subsidence will cease and a layered system could be then installed which could last over geological time periods.

In essence, the bioengineering management technique utilizes a combination of engineered, enhanced run-off and stressed vegetation in an overdraft condition to control deep water percolation through disposal unit covers. To describe it further: if a waste burial site is selected so that incoming subsurface flow is negligible, then precipitation is the sole source of input water. In a simplified model, that water has three possible fates: [1] evapotranspiration, [2] run-off, and [3] deep percolation. Evapotranspiration has a definite limit, governed by energy input. Ideally, deep percolation should be zero, leaving only the run-off component available for unlimited manipulation. Positive control of run-off becomes difficult with the use of compacted porous media trench caps as the sole barrier to water infiltration. The compacted material tends to become more permeable with the passage of time, due to fractures caused by waste subsidence and from the inexorable process of root growth, followed by death and decay of the roots, thus creating water channels. Evapotranspiration cannot then use all of the infiltrating water, and water percolates downward to the waste. As stated before, evapotranspiration has a theoretical maximum dictated by solar energy input to the system; only run-off remains available for nearly unlimited management. This run-off can be surface or subsurface, as long as it occurs before water reaches the waste.

Bioengineering Management

In bioengineering management the necessary run-off is provided by features installed at or above the soil surface rather than within the profile. The procedure, described by Schulz et al. (4), was designated bioengineering management. Its principal advantage is that subsidence can easily be managed by relatively simple, inexpensive maintenance of the above-ground features rather than by difficult reconstruction of below-ground layers. It should be noted that, after a length of time sufficient so that the organics have decayed and the waste containers have completely failed, subsidence will cease and a layered system could be then installed which could last over geological time periods.

In essence, the bioengineering management technique utilizes a combination of engineered, enhanced run-off and stressed vegetation in an overdraft condition to control deep water percolation through disposal unit covers. To describe it further: if a waste burial site is selected so that incoming subsurface flow is negligible, then precipitation is the sole source of input water. In a simplified model, that water has three possible fates: [1] evapotranspiration, [2] run-off, and [3] deep percolation. Evapotranspiration has a definite limit, governed by energy input. Ideally, deep percolation should be zero, leaving only the run-off component available for unlimited manipulation. Positive control of run-off becomes difficult with the use of compacted porous media trench caps as the sole barrier to water infiltration. The compacted material tends to become more permeable with the passage of time, due to fractures caused by waste subsidence and from the inexorable process of root growth, followed by death and decay of the roots, thus creating water channels. Evapotranspiration cannot then use all of the infiltrating water, and water percolates downward to the waste. As stated before, evapotranspiration has a theoretical maximum dictated by solar energy input to the system; only run-off remains available for nearly unlimited management. This run-off can be surface or subsurface, as long as it occurs before water reaches the waste.

Surface run-off can be managed to as high as 100% by means of a perfect, leak-proof roof, which is expensive and hard to guarantee. Alternatively, adequate but not total run-off can be engineered rather inexpensively by using an impermeable ground cover over part of the surface to achieve high and controlled levels of run-off. Vegetation planted between areas of impermeable cover will extend over the cover to intercept incoming solar energy to evaporate water. Roots will extend under the cover in all directions to obtain water.
Such a system can be visualized by imagining a supermarket parking lot, where trees are planted in islands, surrounded by concrete curbs, within an extensive paved area. In this case, the trees are maintained in a drought environment due to the small soil surface available for infiltration of precipitation. The paving, along with the curbing around the trees, causes run-off of most precipitation. Aboveground, the tree's branches and leaves extend over the parking lot and intercept incident solar energy. Beneath the surface, the roots, in a drought state, explore outward under the paving for any available water. Utilizing this concept, it should be possible, by combining engineered run-off with vegetation, to maintain the soil profile in a potential overdraft condition on a yearly basis.

Initial investigations of the bioengineering management technique were carried out in lysimeters at Maxey Flats, Kentucky. Results obtained in seasonal 1984-1985 and 1985-1986 were reported by O'Donnell et al. (5). In that work, a fescue grass crop was used with an engineered cover of stainless steel. Following seasonal 1985-1986 the grass cover was removed, a new stainless steel engineered cover was constructed, and Pfitzer junipers were planted in the lysimeters. After the junipers were established, percolation management, taken in September, 1985, was pumped out to prevent overflow. It was then discontinued as a reference lysimeter and converted to a rock-surfaced, resistive-layer barrier plot. Lysimeters 1 and 2 (bioengineered) and lysimeter 3 were continued. A summary of run-off, evapotranspiration, and pumping from those three lysimeters is given in Fig. 9.

Figure 9 shows that there was very little run-off from the grass-covered plot. Most of the precipitation was disposed of, via evapotranspiration, by the fescue crop, but this was not adequate to prevent the rise of the water table. Table I gives the run-off, evapotranspiration, and deep percolation in the bioengineered plots during the past 9 years. There was no deep percolation during this period. Until seasonal 1993-1994 the evapotranspiration had been rising annually, probably as a result of the greater vegetative canopy intercepting a greater percentage of the precipitation. In 1988, 1989, 1990, 1991, 1992, 1993, 1994 and 1995 the run-off percentages were 80, 74, 70, 67, 63, 61, 61, and 58 respectively (7). In 1996, the runoff decreased to 57% of the encouraging initial results obtained in the Maxey Flats lysimeter experiment led to the establishment of a large-scale field demonstration at Beltsville, Maryland (Fig. 4). Figure 5 is a photograph of lysimeter 1, bioengineering management, taken in September, 1996, ten years after planting of the Pfitzer junipers. Alternating panels of aluminum and fiberglass were used as the hard cover. These plots, or lysimeters, are 21.3 m (70 ft) long by 12.7 m (45 ft) wide, and the bottoms are 3.05 m (10 ft) below grade. The only difference between the two was the initial water level in the lysimeters. The water level was 90 cm above the bottom of lysimeter 1 and 190 cm above the bottom of lysimeter 2. The water level in the lysimeters simulates the water table in a flooded disposal cell. In addition to the two bioengineered lysimeters, two reference lysimeters (3 and 4) were initially constructed. They were similar to the former, except that they were merely planted with fescue grass. No hard cover was present, but surface slopes were similar to the two bioengineered lysimeters (i.e., a slope of 1:5). Performance data for the reference lysimeters are given in Fig. 7.

The water level in the two reference plots or trenches (lysimeters 3 and 4) rose until it was near the surface. At that time, water was pumped from the lysimeters to keep them from running over. The graphs of the water tables (i.e., water levels) in the bioengineered plots (lysimeters 1 and 2) show an entirely different story, as evidenced in Fig. 8. In both cases, the water table was eliminated. It appears that the bioengineering approach could prevent water infiltration to a disposal unit. It also could be used for a remedial action in dewatering existing problem sites such as Maxey Flats.
Surface run-off was 8% of precipitation.

To keep the field from becoming waterlogged, a drain tile with tile between rows was constructed. The rows were 15 ft. wide.

Figure 7. Water table vs. time in reference to the surface, 1983-1994.

Figure 6. Side view of biosolids disposal area.

Percolation

Juncus. Run-off is 7% of precipitation, evapotranspiration is 3.5% of precipitation; there is no deep percolation. Photo taken in September 1986 of the location shown on Figure 5.
the precipitation. During 1989, the water table was completely eliminated in both plots (Fig. 8).

In addition to rainfall, run-off, and evapotranspiration measurements discussed above, neutron-probe soil-moisture measurements were made continuously to monitor soil moisture changes in lysimeters 1, 2, 4, 5, and 6 depicted in Fig. 4. The neutron probe measurements will indicate whether there is a gain or loss of moisture from the soil profile or, perhaps, steady-state situation, where there is little or no net gain or loss of soil moisture during a year. A steady-state situation with relatively constant-moisture "dry" soil above waste would be highly desirable with a bioengineered cover. There would then be a large safety margin to protect the waste from infiltrating water.

Neutron probe apparatus, as supplied by the manufacturer, is calibrated against moisture measurements in sand. Such calibration is of unknown accuracy when applied to soil measurements. For this reason, the probe was calibrated using the same soil as in the lysimeters. Six hundred and twenty-eight kilograms (1400 lbs) of soil were placed in a weighing lysimeter, and measurements were made over a eight year period. Calibration data obtained using the weighing lysimeter are given in Table II. The resulting curves, depicting the factory calibration and the weighing lysimeter calibration, are given in Fig. 10. It is evident that use of the factory calibration on sand would result in a very large error in soil moisture determination.

Results of some neutron probe measurements are shown in Fig. 11 for bioengineered lysimeters 1 and 2. The data are plotted as volumetric moisture content, as a function of soil depth, on specific dates. Eleven widely spaced measurement dates are shown, for clarity. From inspection of the figure it is seen that, at the start of the experiment in July, 1987, the moisture content of the soil increased with depth until the water table was reached, then became constant. By July, 1989, the water table had been eliminated from both lysimeters, and the soil profiles were drying out. However, the soil moisture content, although much lower in the soil profile than in July, 1987, still increased with depth. This same relationship was still evident in August, 1996, although the soil profile had become still drier.

Figure 12 shows the moisture content of the soil profiles in lysimeters 1 and 2 at the end of each seasonal year. Following the complete removal of the water tables during the 1987-1989 period, the soil profiles were dried out further during the ensuing years. However, an unanticipated result turned up in lysimeter 1 at the end of seasonal 1993-1994. The moisture content of the soil profile increased slightly. To shed light on that result, the moisture content in the soil profiles at four depths were plotted monthly along with monthly rainfall data (Fig. 13). Here we see seasonal cyclical variations in moisture content in the soil profiles, with peak moisture concentrations occurring in the early spring, following periods of significant rainfall and minimal evapotranspiration. That cycling is both obvious and expected.
Fig. 9. Fate of precipitation in bioengineered, reference (soil with grass), UMTRA (clay with riprap), clay (clay with grass), and clay + capillary (clay and capillary layers with grass), lysimeters. Deep percolation is present in reference lysimeter. No deep percolation has occurred to date in any other cover system with the exception of 0.13 cm (0.05 in) in lysimeter 5 in 1993-1994 and 0.21 cm (0.08 in) in 1994-1995 and 0.10 cm (0.04 in) in lysimeter 4 in 1994-1995.
What was unanticipated was the increase in the moisture peaks in lysimeter 1 in each of the 3 seasonal years leading to 1994-1995. The increasing amplitudes of the moisture curves did not appear to be a result of rainfall variations, nor were they present in lysimeter 2. The aforementioned trend did not continue during the past two years, seasonal 1994-1995 and seasonal 1995-1996. The results to date indicate that bioengineered closure, as described in this experiment, would maintain the cover over buried waste in a "dry" steady-state condition. This would not only prevent water from percolating down to the waste, but would do so with a large safety factor.

Resistive Layer Barrier

As previously mentioned, on February 4, 1988, lysimeter 4 was pumped out, discontinued as a reference lysimeter, and converted to a rock-surfaced, resistive-layer barrier plot. The primary reason for constructing that particular cover is the likelihood of such covers being used for uranium mill tailings. An end view of that plot or lysimeter is shown in Fig. 14. This lysimeter was completed in the fall of 1988, and data collection (measuring performance) was carried out. The most important information to be gained here was the relative weighing of the advantages and disadvantages of rock surface vs. a vegetated surface.

In addition to the UMTRA or rock-surfaced, resistive-layer barrier plot, a vegetated resistive layer barrier plot was constructed. The primary purpose of this plot was for comparative measurements. Essentially, this plot was similar to the rock-surfaced plot except that topsoil replaces the rock layer, and the plot was planted with fescue grass. A diagram of this plot is given in Fig. 15.

In Fig. 9, the fate of precipitation in the UMTRA and grass-covered, clay-layer lysimeters is given. There was more than twice as much run-off from the rock-covered plot than that from the grass-covered plot. The data shows no deep percolation through the clay layers through seasonal 1993-1994 in either lysimeter and there is little indication as to how much safety margin has been offered. In seasonal 1994-1995, 0.10 cm (0.04 in) passed through the UMTRA cover. In seasonal 1995-1996 no water passed through the cover. It is not known how consistently such near-perfect clay barriers would be installed in a routine operation. That remains a problem for future consideration.

Another concern is the possible drying out of clay barriers. If this were to happen, the clay layer would not be as efficient a barrier for preventing radon escape as planned in the UMTRA application. In addition, drying out of the
Table II. Calibration of neutron probe used in lysimeters 1,2,4,5 and 6. Calibration was carried out in a weighing lysimeter using the soil of the field lysimeters.

<table>
<thead>
<tr>
<th>Date of Measurement</th>
<th>Moisture Content</th>
<th>Volumetric</th>
<th>Oven Dry Weight Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Counts cm³ H₂O</td>
<td>Std. Count cm³ Soil</td>
<td>V/V</td>
</tr>
<tr>
<td>9-11-87</td>
<td>.191</td>
<td>.0109</td>
<td>.65</td>
</tr>
<tr>
<td>10-14-87</td>
<td>1.78</td>
<td>.256</td>
<td>15.6</td>
</tr>
<tr>
<td>10-23-87</td>
<td>1.72</td>
<td>.246</td>
<td>15.0</td>
</tr>
<tr>
<td>2-02-88</td>
<td>1.62</td>
<td>.223</td>
<td>13.6</td>
</tr>
<tr>
<td>5-27-88</td>
<td>1.52</td>
<td>.203</td>
<td>12.4</td>
</tr>
<tr>
<td>10-05-88</td>
<td>1.44</td>
<td>.183</td>
<td>11.2</td>
</tr>
<tr>
<td>11-30-88</td>
<td>1.38</td>
<td>.170</td>
<td>10.4</td>
</tr>
<tr>
<td>1-11-89</td>
<td>1.29</td>
<td>.159</td>
<td>9.7</td>
</tr>
<tr>
<td>3-02-89</td>
<td>1.23</td>
<td>.147</td>
<td>9.0</td>
</tr>
<tr>
<td>4-26-89</td>
<td>1.13</td>
<td>.132</td>
<td>8.0</td>
</tr>
<tr>
<td>6-14-89</td>
<td>1.04</td>
<td>.115</td>
<td>7.0</td>
</tr>
<tr>
<td>8-04-89</td>
<td>.93</td>
<td>.097</td>
<td>5.9</td>
</tr>
<tr>
<td>10-11-89</td>
<td>.84</td>
<td>.084</td>
<td>5.1</td>
</tr>
<tr>
<td>1-03-90</td>
<td>.76</td>
<td>.072</td>
<td>4.4</td>
</tr>
<tr>
<td>7-09-90</td>
<td>.73</td>
<td>.065</td>
<td>4.0</td>
</tr>
<tr>
<td>12-07-90</td>
<td>.62</td>
<td>.052</td>
<td>3.1</td>
</tr>
<tr>
<td>5-22-91</td>
<td>.56</td>
<td>.043</td>
<td>2.6</td>
</tr>
<tr>
<td>11-14-91</td>
<td>.52</td>
<td>.040</td>
<td>2.4</td>
</tr>
<tr>
<td>4-28-92</td>
<td>.50</td>
<td>.036</td>
<td>2.2</td>
</tr>
<tr>
<td>9-10-92</td>
<td>.46</td>
<td>.033</td>
<td>2.0</td>
</tr>
<tr>
<td>1-18-93</td>
<td>.44</td>
<td>.030</td>
<td>1.8</td>
</tr>
<tr>
<td>6-13-93</td>
<td>.41</td>
<td>.025</td>
<td>1.5</td>
</tr>
<tr>
<td>9-17-93</td>
<td>.37</td>
<td>.021</td>
<td>1.3</td>
</tr>
<tr>
<td>1-7-94</td>
<td>.35</td>
<td>.020</td>
<td>1.2</td>
</tr>
<tr>
<td>6-23-94</td>
<td>.32</td>
<td>.016</td>
<td>0.98</td>
</tr>
<tr>
<td>11-22-94</td>
<td>.29</td>
<td>.014</td>
<td>0.87</td>
</tr>
<tr>
<td>7-11-95</td>
<td>.27</td>
<td>.010</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Fig. 10. Calibration of neutron probe using soil of bioengineered lysimeters. Calibration was carried out in weighing lysimeter over a 8-yr period. Factory calibration was supplied by manufacturer of neutron probe and made against sand rather than soil.

Conductive Layer Barrier

If we consider the case of water flowing downhill in an unsaturated porous medium, we have the case shown in Fig. 17. The "holes" shown in the diagram could be a rock layer, affording a capillary break or capillary discontinuity (Fig. 18). Under appropriate conditions, water everywhere in these cross-sections will be under tension, and there will be no leakage. This might then serve as an excellent means of protecting waste by conducting water around the waste. Figure 18 simulates a conducting porous medium, such as a fine sandy loam soil, lying smoothly on top of a rock layer. Problems with water flow under saturated conditions could certainly arise where a less than smooth surface ends up being constructed as depicted in Fig. 19. That is, what happens if imperfections are constructed so that "pockets" of soil extend down into the rock layer? Figure 19 represents that case. Again, there will be no leakage, provided conditions are such that the water in all parts of the conductive layer remains under tension.
Fig. 11. Bioengineered covers. Volumetric soil moisture content plotted as a function of soil depth at eleven different dates. By July, 1989, water table was eliminated from soil profiles. As of August, 1996, entire soil profiles, although relatively dry, still showed slightly increasing moisture content with depth.

Fig. 12. Bioengineered covers. Volumetric soil moisture content at four depths in the soil profile at the end of each seasonal year. In lysimeter 1 and at the 244 cm (8 ft) level the moisture content continued to drop through the end of seasonal 1992-1993. However, a rise in moisture content is evident in lysimeter 1 at the end of seasonal 1993-1994, followed by a drop again in seasonal 1994-1995. No change was observed in seasonal 1995-1996. No rise in moisture content is evident in lysimeter 2.
Table 13. Plot of moisture content at the 61, 122, 183, and 244 cm levels as a function of time in years 1 and 2. Bar graphs of monthly precipitation (cm).
A number of materials were evaluated using the miniaturized soil beams. It was quickly established that it would be necessary to construct a resistive layer barrier above the conductive layer barrier to have a practical system. The standard was set that the resistive layer barrier have an easily achievable conductivity of not greater than 10^{-6} cm/sec. On this basis it was found that material such as fine sandy loam could provide an effective conductive layer barrier, that is, conduct around the waste 100% of water percolating through the resistive layer. However, the measurements showed that such materials would not provide the desired (factor of 10) safety margin.

Further investigations turned up a material, diatomaceous earth, that would fit these requirements. Measurements of tension vs. distance of flow are shown in Fig. 22.

The results of this experiment in the 137 cm (4.5 ft) long beam suggest that, as long as the flow rate is no greater than 4.2×10^{-4} cm/sec, the soil water will remain under tension regardless of the soil beam length. These results show that with the use of diatomaceous earth for the conductive layer and following the easily achievable standard set above for the resistive layer, it should be possible to construct a barrier that would allow no water leakage to a waste disposal unit. However, before final selection of the diatomaceous earth as the conductive layer material, we believed it to be prudent to conduct tests in a large-scale soil beam. The large beam, shown in Fig. 23, has a soil beam length of 6.4 m (21 ft). As shown in Fig. 24, a matric potential of about -15 to -20 cm of water is maintained over the entire 6.4 m length of the beam when the flow rate does not exceed 3.1×10^{-4} cm/sec.

The studies carried out in the large soil beam closely confirmed the data obtained in the miniaturized beam. Accordingly, diatomaceous earth was used as the conductive layer material in the demonstration lysimeter (lysimeter 5). It has been estimated that purchasing and shipping the diatomaceous earth to a job site any place in the United States will add about $0.50 per ft3 of disposed waste. This is over the cost of using locally obtained soil, and based on waste being 3.05 m (10 ft) deep.

After the time-consuming task of selecting the conductive layer material was accomplished, a resistive layer barrier over a conductive layer barrier was constructed in lysimeter 5. It was completed in January, 1990. A local clay from Beltsville, Maryland, the Christiana Clay, was selected as the resistive layer barrier. Testing has shown this material more than meets specifications. A cross-section of the cover system is shown in Fig. 25.

The big question is, can conditions required to maintain the necessary soil water tension be practically maintained while using this procedure to effectively protect waste disposal units? To answer this question the apparatus schematically depicted in Fig. 20 was constructed, i.e., a "soil beam." Several miniaturized soil beams (Fig. 21) were constructed for use in the laboratory so that a variety of candidate conductive-layer materials could be quickly evaluated.

Fig. 14. Resistive-layer barrier with rock cover; no vegetation. Possible UMTRA cover. Possible advantages over vegetated, resistive-layer barrier: (1) Clay layer remains wet and more efficient barrier to escape of radon. (2) Initially, superior erosion protection. (3) No root penetration of waste. Major disadvantage: no plant transpiration, therefore requiring clay barrier of extremely low hydraulic conductivity. For clarity, most instrumentation and some details not shown. Plot (lysimeter) is 21.34 m (70 ft) long by 13.72 m (45 ft) wide; bottom is 3.05 m (10 ft) below grade. Clay layer is 46-61 cm (1½-2 ft) thick. Slope is 1:5.

Fig. 15. Resistive-layer barrier with grass cover. Similar to UMTRA cover but has soil and vegetation in place of rip-rap. See Fig. 14.

The measuring well, possible UMTRA cover. Possible advantages over vegetated, resistive-layer barrier: (1) Clay layer remains wet and more efficient barrier to escape of radon. (2) Initially, superior erosion protection. (3) No root penetration of waste. Major disadvantage: no plant transpiration, therefore requiring clay barrier of extremely low hydraulic conductivity. For clarity, most instrumentation and some details not shown. Plot (lysimeter) is 21.34 m (70 ft) long by 13.72 m (45 ft) wide; bottom is 3.05 m (10 ft) below grade. Clay layer is 46-61 cm (1½-2 ft) thick. Slope is 1:5.
Fig. 16. Moisture content of clay layers with time. Lysimeter 4 cover system is a clay layer covered with gravel and rip-rap. No vegetation is present, and clay shows a very slight increase of water content with time. Lysimeter 5 has a capillary (conductive-scavenging) layer underneath clay layer; plot is planted with grass. During six-year life of plot, largest variations in moisture content were during summer. Lysimeter 6 has clay layer with a grass cover. As in lysimeter 5, largest moisture excursions were in summer.
Fig. 17. Water flow in an unsaturated porous medium. A drop of water placed at one of the holes shown would flow upward into the soil.

Fig. 18. Substitution of rock layer for holes shown in Fig. 17. Voids between rocks act exactly like holes shown in Fig. 17. They form a capillary discontinuity, preventing leakage downward under the influence of gravity.

Fig. 19. Imperfectly constructed conductive layer with "pocket" extending down into rock (or capillary break) layer. No leakage if conditions required to maintain tension are met.

Fig. 20. Schematic of laboratory apparatus for measurement of water tension using different materials and varying flow rates.
Fig. 21. Miniature soil beam used for evaluation of materials for possible use in conductive-layer barrier application. Soil beam has total length of 137 cm (4.5 ft). Lead bricks were placed on top of test material to simulate overburden.

Fig. 23. Large soil beam used for final selection of diatomaceous earth as conductive-layer material. Lead bricks were placed on top of diatomaceous earth to simulate overburden.

Fig. 22. Soil water tension at various flow rates, measured in miniature soil beam shown in Fig. 21. Tension vs. horizontal distance from discharge point. Results suggest that, at 4.2×10^{-4} cm/sec or less, water would remain under tension at any beam length. Slope of beam is 1:5.

Fig. 24. Soil water tension at various flow rates, measured in large soil beam shown in Fig. 23. That beam is 6.4 m (21 ft) long and has slope of 1:5. At -15 to -20 cm, matric potential water flow rate is approximately 3×10^{-4} cm/sec. At this rate, unsaturated flow can be maintained over an infinite distance, confirming results of soil beam measurements (Fig. 22).
Performance of this cover is shown in Figures 9 and 16 (lysimeter 5). Until seasonal 1993-1994 the cover system was 100% effective in preventing water movement downward through the cover. In seasonal 1993-1994, 0.13 cm (0.05 in) of water passed through the cover to the pan shown in Fig. 25. In seasonal 1994-1995, 0.21 cm (0.08 in) of water passed through the cover. Although those amounts are an extremely small percentage of the total rainfall, in theory no water should have percolated through the cover to pan. It is possible that the cover system was slightly compromised by the instrumentation installed to measure performance. No water passed through the cover in seasonal 1995-1996. Thus the total leakage was only 0.34 cm (0.13 in) over the 6 year period. That is 0.34 cm (0.13 in) percolation out of a total rainfall of 665 cm (261 in).

Further Studies of Conductive-Layer Materials

For the Beltsville study, diatomaceous earth was selected for the conductive-layer material, based on a combination of performance and cost considerations. Based on these two considerations only, diatomaceous earth would still be the material of choice, particularly since it has a much lower bulk density than sand and is therefore less expensive to ship. However, the engineering properties of sand are better known, thus sand may be more attractive to some installers. Therefore, we have conducted further studies with various sands. Results of studies of the unsaturated flow characteristics of four different sands are given in Fig. 26. All these sands exhibit unsaturated flow rates that are about twice that of the diatomaceous earth at any given negative matric potential. The particle size distribution of the four sands is given in Table III. The mortar sand, for example, had the narrowest particle size range, and the foundry sand had the widest particle size distribution, although the particle size distribution did not have an important effect on the flow rates reported in Fig. 26. The Nevada dune sand and the Kelso dune sands are from large eolian deposits in the Nevada and California deserts, respectively. The Kelso deposit has been mined commercially.

<table>
<thead>
<tr>
<th>Mesh Size (microns)</th>
<th>% Retained, Per Sieve</th>
<th>%Retained, Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 600</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>45 335</td>
<td>24.2</td>
<td>26.0</td>
</tr>
<tr>
<td>80 180</td>
<td>47.2</td>
<td>73.2</td>
</tr>
<tr>
<td>140 106</td>
<td>24.9</td>
<td>98.1</td>
</tr>
<tr>
<td>200 75</td>
<td>1.5</td>
<td>99.6</td>
</tr>
<tr>
<td>230 63</td>
<td>0.1</td>
<td>99.7</td>
</tr>
<tr>
<td>Pan <63</td>
<td>0.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh Size (microns)</th>
<th>% Retained, Per Sieve</th>
<th>%Retained, Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 600</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>45 335</td>
<td>13.7</td>
<td>13.7</td>
</tr>
<tr>
<td>80 180</td>
<td>61.0</td>
<td>74.7</td>
</tr>
<tr>
<td>140 106</td>
<td>20.5</td>
<td>95.2</td>
</tr>
<tr>
<td>200 75</td>
<td>2.4</td>
<td>97.6</td>
</tr>
<tr>
<td>230 63</td>
<td>0.0</td>
<td>97.6</td>
</tr>
<tr>
<td>Pan <63</td>
<td>2.4</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh Size (microns)</th>
<th>% Retained, Per Sieve</th>
<th>%Retained, Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 600</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>45 335</td>
<td>9.2</td>
<td>9.9</td>
</tr>
<tr>
<td>80 180</td>
<td>76.6</td>
<td>86.5</td>
</tr>
<tr>
<td>140 106</td>
<td>11.5</td>
<td>98.0</td>
</tr>
<tr>
<td>200 75</td>
<td>0.6</td>
<td>99.6</td>
</tr>
<tr>
<td>230 63</td>
<td>0.0</td>
<td>99.6</td>
</tr>
<tr>
<td>Pan <63</td>
<td>1.4</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh Size (microns)</th>
<th>% Retained, Per Sieve</th>
<th>%Retained, Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 600</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>40 425</td>
<td>9.2</td>
<td>10.9</td>
</tr>
<tr>
<td>50 300</td>
<td>20.9</td>
<td>31.8</td>
</tr>
<tr>
<td>70 212</td>
<td>26.5</td>
<td>58.3</td>
</tr>
<tr>
<td>100 150</td>
<td>24.7</td>
<td>83.0</td>
</tr>
<tr>
<td>140 106</td>
<td>12.1</td>
<td>95.1</td>
</tr>
<tr>
<td>200 75</td>
<td>1.7</td>
<td>96.8</td>
</tr>
<tr>
<td>270 53</td>
<td>3.1</td>
<td>99.9</td>
</tr>
<tr>
<td>Pan <53</td>
<td>0.1</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table III. Particle size distribution of the four sands used in unsaturated flow studies reported in Fig. 26.
MEASURING WELL

Fig. 25. Combination resistive-layer barrier over a conductive layer barrier. Clay-barrier (resistive layer barrier) needs only to protect to approximately 10^{-4} cm/sec. Conductive-layer barrier of diatomaceous earth readily transports percolating water around waste.

APPLICATION

The three procedures described in the Introduction may be used singularly or in combination to protect disposal units from percolating water. The principles apply equally to above-ground or below-ground disposal. For example, a combination of covers 1. and 2., described in the Introduction, could be ideal for a stabilized, shallow land burial facility, whether it is above or below ground; e.g., the subsurface disposal could be in below-ground vaults, and the above-ground disposal units could be earthmounded concrete bunkers. A combination of a resistive layer over a conductive layer in a concrete bunker or above-ground application is shown in Fig. 27. The resistive (clay) layer is the primary barrier. The small amount of water passing through the clay layer will be diverted around the concrete bunker by the conductive layer. This cover over the concrete bunker can, in theory, be 100% effective, shielding the bunker from exposure to flowing water. This would result in a film of stagnant alkaline water at the gravel/concrete interface.

The presence of this high pH, stagnant water would tend to protect the concrete from degradation over a long period.

The bioengineering concept could be advantageous for either a tumulus or shallow land burial unit that would be likely to exhibit subsidence. If desired, and after subsidence has ceased, a combination of covers 1. and 2. could be constructed with geological materials to give extremely long-term isolation without further maintenance. Another possible application of a combination of covers 1. and 2. described in the Introduction is shown in Fig. 28. Here, high-level waste is emplaced in a tunnel excavated in rock. If a fracture were present in the rock, and fracture flow occurred, the combination of a resistive layer and a conductive layer could provide excellent isolation of the waste from flowing water. Figure 29 depicts an application where only very low flow rates need be protected against (essentially, dropwise fracture flow). Here, the system could be simplified so that only a conductive layer with a capillary break is necessary.
Fig 26. Unsaturated flow characteristics of four sands. Soil water tension at various flow rates, measured in mini-soil beam shown in Fig. 21. Tension vs. horizontal distance from discharge point. Results suggest that at rates of about 10^3 cm/sec or less, water would remain under tension at any beam length. Slope of beam is 1:5.
Fig. 27. Resistive-layer barrier overlaying a conductive-layer barrier as might be used with an earth-mounded concrete bunker. Resistive (clay) layer is primary barrier to water passage downward. Conductive layer (diatomaceous earth) scavenges and conducts any water percolating through clay layer around concrete structure to drains. Diatomaceous/gravel interface is capillary break. Concrete is exposed only to a stagnant, alkaline film of water, greatly retarding degradation of concrete over time. Only geological materials already over 1 million years old are used in construction, other than concrete, so life of cover will far exceed that of concrete, even though this cover system can be expected to significantly increase structural life of concrete.

Fig. 28. Artist’s concept of resistive and conductive layer barriers to protect high-level waste from water flowing through rock fracture. Resistive (clay) layer diverts almost all fracture flow water. Conductive layer (very fine sand or diatomaceous earth) scavenges small quantities of water that pass through clay layer. Conductive layer transports scavenged water, under tension, around waste.

Fig. 29. Simplified case of Fig. 28. If fracture flow is slow conductive layer transports all water around waste; clay layer is then not needed.
REFERENCES

