Chaperonin polymers in archaea: The cytoskeleton of prokaryotes?

PDF Version Also Available for Download.

Description

Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 ... continued below

Physical Description

15 p.

Creation Information

Trent, J.D.; Kagawa, H.K. & Zaluzec, N.J. July 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.

Physical Description

15 p.

Notes

OSTI as DE97007876

Source

  • Other Information: PBD: [1997]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97007876
  • Report No.: ANL/CMB/PP--88274
  • Grant Number: W-31109-ENG-38
  • DOI: 10.2172/505321 | External Link
  • Office of Scientific & Technical Information Report Number: 505321
  • Archival Resource Key: ark:/67531/metadc693608

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Dec. 15, 2015, 11:53 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Trent, J.D.; Kagawa, H.K. & Zaluzec, N.J. Chaperonin polymers in archaea: The cytoskeleton of prokaryotes?, report, July 1, 1997; Illinois. (digital.library.unt.edu/ark:/67531/metadc693608/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.