Process development for electron beam joining of ceramic and glass components

PDF Version Also Available for Download.

Description

The purpose of this project is to develop and extend the electron beam joining process to applications related to Mo/Al{sub 2}O{sub 3} cermets for neutron tube fabrication, glass seals for flat panel displays, and ceramics for structural applications. The key issue is the identification of the allowable operating ranges that produce thermal conditions favorable to robust joining and sealing. High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately} 1 cm for a 10 MeV electron beam, this method provides the capability for rapid, ... continued below

Physical Description

33 p.

Creation Information

Turman, B.N.; Glass, S.J.; Yang, P.; Gerstle, F.P.; Halbleib, J.A.; Voth, T.E. et al. November 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this project is to develop and extend the electron beam joining process to applications related to Mo/Al{sub 2}O{sub 3} cermets for neutron tube fabrication, glass seals for flat panel displays, and ceramics for structural applications. The key issue is the identification of the allowable operating ranges that produce thermal conditions favorable to robust joining and sealing. High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately} 1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of heat sensitive components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. The combination of transient heating, with higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, enables a pulsed high power beam to melt a braze metal without producing excessive ceramic temperatures. The authors have demonstrated the feasibility of this process related to ceramic coupons a well as ceramic and glass tubes and cylindrical shapes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon and thermal transport analysis. The joining experiments were conducted with an RF linear accelerator at 10--13 MV. Joining experiments have provided high strength joints between alumina and alumina and between alumina and cermet joints in cylindrical geometry. These joints provided good hermetic seals.

Physical Description

33 p.

Notes

OSTI as DE98001362

Source

  • Other Information: PBD: Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98001362
  • Report No.: SAND--97-2785
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/554875 | External Link
  • Office of Scientific & Technical Information Report Number: 554875
  • Archival Resource Key: ark:/67531/metadc693580

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 14, 2016, 6:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Turman, B.N.; Glass, S.J.; Yang, P.; Gerstle, F.P.; Halbleib, J.A.; Voth, T.E. et al. Process development for electron beam joining of ceramic and glass components, report, November 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc693580/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.