Direct chemical oxidation: applications to demilitarization and decontamination

PDF Version Also Available for Download.

Description

The applicability of using aqueous solutions of sodium peroxydisulfate in the destruction of mustard gas surrogates has been demonstrated. This technique, known as Direct Chemical Oxidation (DCO), resulted in oxidative destruction of these surrogates, and a refinement was added to prevent the formation of slow-to-oxidize intermediates. Specifically, it was shown that `one-armed mustard` gas could be hydrolyzed to thiodiethanol and free chloride ion, and this species could then be partially oxidized to either the sulfoxide or sulfone depending on oxidant stoichiometry. Hydrolysis was accomplished on a mild basic solution at ambient temperature over a number of hours; oxidation was carried ... continued below

Physical Description

7 p.

Creation Information

Cooper, J.F.; Balazs, B. & Lewis, P. April 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The applicability of using aqueous solutions of sodium peroxydisulfate in the destruction of mustard gas surrogates has been demonstrated. This technique, known as Direct Chemical Oxidation (DCO), resulted in oxidative destruction of these surrogates, and a refinement was added to prevent the formation of slow-to-oxidize intermediates. Specifically, it was shown that `one-armed mustard` gas could be hydrolyzed to thiodiethanol and free chloride ion, and this species could then be partially oxidized to either the sulfoxide or sulfone depending on oxidant stoichiometry. Hydrolysis was accomplished on a mild basic solution at ambient temperature over a number of hours; oxidation was carried out at 90{degrees}C using peroxydisulfate solutions, Partial oxidation of thiodiethanol in the presence of chloride under basic conditions resulted in a a substantially pure mixture of the corresponding sulfone and sulfoxide, with no formation of chlorine gas. Analogous experiments in acid solutions produced a more complex mix of products and some oxidant was consumed in the evolution of chlorine. Complete destruction of the surrogates (to ppm level of detection) was achieved in either acid or base solution with less than a 7-fold excess of oxidant.

Physical Description

7 p.

Notes

OSTI as DE98057725

Other: FDE: PDF; PL:

Source

  • Other Information: PBD: 1 Apr 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98057725
  • Report No.: UCRL-ID--130293
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/641118 | External Link
  • Office of Scientific & Technical Information Report Number: 641118
  • Archival Resource Key: ark:/67531/metadc693542

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 6, 2017, 6:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cooper, J.F.; Balazs, B. & Lewis, P. Direct chemical oxidation: applications to demilitarization and decontamination, report, April 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc693542/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.