Sandia hypervelocity gun technology for validating EOS at extreme pressures and temperatures

PDF Version Also Available for Download.

Description

At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization. These phase changes are not easily attainable at typical light-gas gun velocities of 8km/s. Development of well-controlled shock loading capabilities is the first step necessary to improve the understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher ... continued below

Physical Description

11 p.

Creation Information

Chhabildas, L.C.; Furnish, M.D.; Brannon, R.M. & Reinhart, W.D. February 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization. These phase changes are not easily attainable at typical light-gas gun velocities of 8km/s. Development of well-controlled shock loading capabilities is the first step necessary to improve the understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained using two-stage light-gas gun loading techniques are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of aluminum impacted by an aluminum flier, and shock-induced vaporization phenomena in fully vaporized zinc at impact velocities of 10 km/s. These experiments also define the maximum stress limit i.e., 200 GPa to which lithium-fluoride windows can be utilized as a laser velocity interferometer window.

Physical Description

11 p.

Notes

OSTI as DE98004129

Source

  • JOWOG-37 meeting, Los Alamos, NM (United States), 2-5 Feb 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98004129
  • Report No.: SAND--97-3094C
  • Report No.: CONF-980218--
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/634110 | External Link
  • Office of Scientific & Technical Information Report Number: 634110
  • Archival Resource Key: ark:/67531/metadc693541

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 14, 2016, 8:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chhabildas, L.C.; Furnish, M.D.; Brannon, R.M. & Reinhart, W.D. Sandia hypervelocity gun technology for validating EOS at extreme pressures and temperatures, report, February 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc693541/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.