Results of DIII-D operation with new enabling technologies

PDF Version Also Available for Download.

Description

Recent experiments on DIII-D have been carried out to understand and explore optimized tokamak operating modes by exploiting control of the plasma current and pressure profiles using new RF current drive and divertor technology. DIII-D emphasizes plasma shape and divertor experiments using a digital plasma control system and extensive diagnostics to develop improved understanding and control of transport barriers in high performance plasmas. The emphasis of the program is to extend the duration of high performance operating modes beyond the plasma current relaxation time by using ICRF and ECH current drive. Engineering features of the new RF systems being developed ... continued below

Physical Description

15 p.

Creation Information

Simonen, T.C. March 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent experiments on DIII-D have been carried out to understand and explore optimized tokamak operating modes by exploiting control of the plasma current and pressure profiles using new RF current drive and divertor technology. DIII-D emphasizes plasma shape and divertor experiments using a digital plasma control system and extensive diagnostics to develop improved understanding and control of transport barriers in high performance plasmas. The emphasis of the program is to extend the duration of high performance operating modes beyond the plasma current relaxation time by using ICRF and ECH current drive. Engineering features of the new RF systems being developed for these experiments as well as new divertor results are described. DIII-D employs multi-element ICRF antennas for fast-wave electron heating and on-axis current drive and is beginning 110 GHz ECH experiments with MW-level gyrotrons for off-axis current drive. DIII-D employs active cryogenic divertor neutral particle pumping for plasma density and plasma pressure profile control. A divertor modification is now being implemented on DIII-D to pump higher triangularity plasmas and to better baffle neutral backflow from the recycling divertor region.

Physical Description

15 p.

Notes

INIS; OSTI as DE97007892

Source

  • ISFNT-4: 4th international symposium on fusion nuclear technology, Tokyo (Japan), 6-11 Apr 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97007892
  • Report No.: GA--A22560
  • Report No.: CONF-970404--8
  • Grant Number: AC03-89ER51114;AC05-96OR22464;W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 515998
  • Archival Resource Key: ark:/67531/metadc693426

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Aug. 1, 2016, 6:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Simonen, T.C. Results of DIII-D operation with new enabling technologies, article, March 1, 1997; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc693426/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.