MPDATA: A positive definite solver for geophysical flows

PDF Version Also Available for Download.

Description

This article is a review of MPDATA, a class of methods for the numerical simulation of advection based on the sign-preserving properties of upstream differencing. MPDATA was designed originally as an inexpensive alternative to flux-limited schemes for evaluating the transport of nonnegative thermodynamic variables (such as liquid water or water vapour) in atmospheric models. During the last decade, MPDATA has evolved from a simple advection scheme to a general approach for integrating the conservation laws of geophysical fluids on micro-to-planetary scales. The purpose of this paper is to summarize the basic concepts leading to a family of MPDATA schemes, review ... continued below

Physical Description

30 p.

Creation Information

Smolarkiewicz, P.K. & Margolin, L.G. March 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This article is a review of MPDATA, a class of methods for the numerical simulation of advection based on the sign-preserving properties of upstream differencing. MPDATA was designed originally as an inexpensive alternative to flux-limited schemes for evaluating the transport of nonnegative thermodynamic variables (such as liquid water or water vapour) in atmospheric models. During the last decade, MPDATA has evolved from a simple advection scheme to a general approach for integrating the conservation laws of geophysical fluids on micro-to-planetary scales. The purpose of this paper is to summarize the basic concepts leading to a family of MPDATA schemes, review the existing MPDATA options, as well as to demonstrate the efficacy of the approach using diverse examples of complex geophysical flows.

Physical Description

30 p.

Notes

OSTI as DE97003119

Source

  • AICHE/ASME national heat transfer conference: current developments in numerical simulation of heat and mass transfer, Baltimore, MD (United States), 10-12 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97003119
  • Report No.: LA-UR--96-4885
  • Report No.: CONF-970824--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 501510
  • Archival Resource Key: ark:/67531/metadc693421

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 29, 2016, 4:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Smolarkiewicz, P.K. & Margolin, L.G. MPDATA: A positive definite solver for geophysical flows, article, March 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc693421/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.