Extraction of hydrogenous material from cemented wasteforms by supercritical fluid carbonation

PDF Version Also Available for Download.

Description

We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous and/or radioactive waste requiring transport and long-term storage. The standard practice at LANL for the stabilization of radioactive salts and residues is to mix them with portland cement, which may include additives to enhance immobilization. Many of these wasteforms do not qualify for transportation or underground disposition, however, because they do not meet Department of Energy regulations for free liquids, decay heat, and/or head-space gases. The present treatment method alters the bulk properties of a cemented wasteform by ... continued below

Physical Description

4 p.

Creation Information

Rubin, J.B.; Carey, J.W. & Taylor, C.M.V. November 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous and/or radioactive waste requiring transport and long-term storage. The standard practice at LANL for the stabilization of radioactive salts and residues is to mix them with portland cement, which may include additives to enhance immobilization. Many of these wasteforms do not qualify for transportation or underground disposition, however, because they do not meet Department of Energy regulations for free liquids, decay heat, and/or head-space gases. The present treatment method alters the bulk properties of a cemented wasteform by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced levels of free liquids and organic compounds, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories.

Physical Description

4 p.

Notes

INIS; OSTI as DE97009134

Source

  • 1997 American Nuclear Society (ANS) winter meeting, Albuquerque, NM (United States), 16-20 Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97009134
  • Report No.: LA-UR--97-2371
  • Report No.: CONF-971125--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 630867
  • Archival Resource Key: ark:/67531/metadc693385

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 5, 2016, 6:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rubin, J.B.; Carey, J.W. & Taylor, C.M.V. Extraction of hydrogenous material from cemented wasteforms by supercritical fluid carbonation, article, November 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc693385/: accessed April 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.