
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-227

Computational Experience with a Dense Column Feature
for Interior-Point Methods

by

Marc Wenzel,* Joseph Czyzyk,t and Stephen Wright

Mathematics and Computer Science Division

Technical Memorandum No. 227

August 1997

kS

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-
109-Eng-38.

*On Leave from the Institut fu? angewandte Mathematik, Am Hubland, 97074 Wiirzburg, Germany

t{czyzyk,nright}@mcs. an1 .gov.
[mnenzel@mathematik.uni-nuerzburg.de].

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employm, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spc-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not neassarily state or
reflect those of the United States Government or any agency thereof.

Contents

Abstract

1 Introduction

2 State of the Art

3 Linear Algebra

4 Computational Experience

5 Conclusions

Acknowledgments

References

...
111

3

4

10

13

13

Computational Experience with a Dense Column Feature
for Interior-Point Methods

by

Marc Wenzel, Joseph Czyzyk, and Stephen Wright

Abstract
Most software that implements interior-point methods for linear programming formulates the

linear algebra at each iteration as a system of normal equations. This approach can be extremely
inefficient when the constraint matrix has dense columns, because the density of the normal
equations matrix is much greater than the constraint matrix and the system is expensive to solve.
In this report we describe a more efficient approach for this case, that involves handling the
dense columns by using a Schur-complement method and conjugate gradient iteration. We report
numerical results with the code PCx, into which our technique now has been incorporated.

1 Introduction

Primal-dual interior-point methods solve the linear programming problem

mincTz subject to Aa: = b , z 2 0

by applying Newton-like methods to the optimality conditions for this constrained problem, also known
as the Karush-Kuhn-Tucker (KKT) conditions (see Wright [13]). At each interior-point iteration, a
large block-structured sparse linear system with the matrix

O A O
(A T 0 s x 0 I)

is solved in order to obtain a search direction, where S and X are diagonal matrices whose positive
diagonal elements are simply the components of the vectors a: and s at the current iteration. Block
elimination leads to a smaller system, known as the augmented system, whose coefficient matrix is

where D = S-1/2X1/2 is also positive diagonal. A further step of block elimination yields the normal
equa-tion form, in which the coefficient matrix is

In general, the matrix D and hence ADZAT vary from one iteration to the next. Factorization of this
matrix is the dominant computational operation in most interior-point codes, and this operation must
be performed efficiently if the code is to be effective. Since the matrix AD2AT is positive definite, of
smaller dimension and (usually) sparse, highly developed software for sparse Cholesky factorization
can be applied to the system, and ordering heuristics can be used to reduce any fill-in that may occur
during the factorization process.

In some real-world problems, however, the constraint matrix A contains one or more dense columns.
(Linear programs arising in stochastic programming often have this property, for example.) In these
cases, the normal equations matrix AD2AT will generally be dense, even if the vast majority of

1

columns in A contains just a few nonzero elements. Then is very costly to factor or even to store the
matrix A D ~ A ~ .

Various strategies have been proposed to alleviate the problems caused by dense columns. These
include

0 Splitting of the dense columns;

0 Sherman-Morrison-Woodbury update (SMW), also known as the Schur complement approach;

Application of a preconditioned conjugate gradient method (pcg) to the normal equations.

In this report, we focus on the latter two methods. After reporting the state of the art, concerning
dense-column features, and presenting the splitting technique in Section 2, we briefly summarize the
underlying linear algebra in Section 3. The main part of the paper, Section 4, contains details of our
scheme to implement a dense-column-feature combining SMW and pcg that defeats the numerical
difficulties reported in Section 2. Numerical results are provided to clarify the advantages as well as
the limitations of the method proposed. Finally, we point to some interesting questions that remain
unresolved.

2 State of the Art

The normal equations (2) offers several advantages over the augmented system form (1):

0 The normal equations have smaller dimension.

0 All pivot orderings for factoring a positive definite matrix are stable, so we are free to use one
of the highly developed sparse matrix ordering heuristics to reduce the amount of fill-in that
occurs during the factorization.

0 The ordering and allocation of data structures need to be performed just once, prior to the first
iteration.

By contrast, pivot ordering in the augmented system needs to take account of issues of numerical
stability, so it typically needs to be recomputed a number of times during execution of the algorithm.
Fourer and Mehrotra 141 use a sparse Bunch-Parlett solver but do not explicitly account for the special
block structure of the augmented system (the presence of a zero block in the upper left and a diagonal
matrix in the lower right), ils would be necessary to implement a method with comparable efficiency
to the normal equation approach. Software for the augmented system approach is, at the time of
writing, not widely available.

In [4],the authors compared their implementation of Mehrotra’s algorithm with a realization of
the normal equations approach with minimum degree ordering. In their experiments, the augmented
system was slower by an average factor of 1.4, with no clear trend as the problem size increases.
However, their normal equations code did not include special handling of problems with dense columns
in the constraint matrix A , so the results were skewed by such problems as f i t lp, f it2p, i srae l and
seba in which the unmodified normal-equations approach is quite inefficient. When these problems are
omitted from consideration, a few problems still remain for which the Cholesky factors are relatively
dense, even though none of the columns of the matrix A are particularly dense, and the augmented
system approach is superior on these examples. Still, the average ratio of CPU time for augmented
systems to CPU time for the normal equation approach is around 1.6 over all problems without dense
columns in A.

2

The splitting technique is described by Vanderbei [ll]. Each dense column ai is split into a number
of columns a i , . . . ,a:' with lower density, such that cjLl ai = ai and aiaiT = 0 for r # s. The
variable zi corresponding to ai is split accordingly, and extra constraints are introduced to ensure
that the replications of 23 have the same value at the solution. Even if the outer product aiaT is
completely dense, the contribution CrLl(aj)Ta; to the modified matrix is only block diagonal. To
be specific, when ai is split to ki columns of approximately equal density, then ki blocks of size $m2

appear. Hence, the outer product Cjfl(ai)Tai will be approximately 1/ki as dense as aTai.

Each splitting results in the introduction of a new variable and a new constraint via a linking
matrix (see Vanderbei [ll]) to the problem, resulting in a transformed problem with coefficient matrix
A E R m x A , where m := m + C(ki - 1) and f i := R + C(ki - 1). In the most crucial LPs one wants
to reduce the density by a factor of 100 to 1000; hence, as in the f it-class with > 20 dense columns,
the problem size increases dramatically, making this method inefficient on large problems.

For the two alternative approaches-SMW and pcg-computational results have already been
reported by other researchers. In Gill et al. [5], the authors use a pure pcg with a sparse matrix as
preconditioner. They point out that an excellent preconditioner is needed to keep the number of pcg
iterations at a reasonable level. This goal is important because each conjugate gradient iteration is
about as expensive as a simplex step.

Adler et al. [l] rely on a similar method, but report difficulties in generating a direction precise
enough for computing an accurate primal solution at termination. They use an exact factorization of
the full matrix in the last iteration to accomplish this.

Choi, Monma, and Shanno [2] prefer the Sherman-Morrison-Woodbury update, yielding a direct
method in place of the iterative conjugate gradient approach. They resort to iterative refinement when
solving the equations during the last stages of the IPM to defeat the numerical instability incorporated
in the SMW approach.

k .

k

Lustig, Marsten, and Shanno [7] use Schur complements, but report problems of ill conditioning.
They try to combat this by factoring A,D:AT + T I , where T = ~ m a x D z and E is a small multiple
of the machine precision. Though making heavy use of iterative refinement, which was more time
consuming than factoring a denser matrix, they failed to achieve more than one digit of accuracy
on the p i lo t j a test problem. In the final version of their code OB1, they used a default setting of
OFF for the "no dense columns removed" option. Subsequently [8], the authors introduced a switch
option that uses Schur complements as the default technique, and switches to the more expensive pcg
strategy whenever the spread of the diagonal elements of the factorization is larger than

3 Linear Algebra

The SMW formula for updating the inverse of a matrix A E RnX" after a rank-k update UVT is as
follows:

(A + UVT)-' = A-' - A-lU[I + V*A-'U]-IVTA-'.

This formula assumes that both A and I + VTA-lU are nonsingular. Since we usually have k << R,
the latter matrix usually has small dimensions. In fact, it is the Schur complement of A in the matrix

Hence, the SMW approach is sometimes also referred to as the Schur complemeni approach.
When the approach is applied to interior-point methods, a labeling routine is used to identify the

dense columns of A . Subject to some reordering of the columns (which we ignore for simplicity),

3

the matrix is partitioned as A = [A,, Ad], where A, contains the columns of A that are flagged as
sparse and Ad consists of the dense columns. The diagonal matrix D from (1) and (2) is partitioned
accordingly into D, and Dd. The product in (2) can now be written as

We use nd to denote the number of columns in Ad and n, as the number of columns in A,.

matrix (2). We assume that a Cholesky factorization is available for the sparse part as fpllows:
We wish to factor the matrix AD2AT in order to solve linear equation systems with the coefficient

where L is lower triangular, and P is a permutation matrix usually chosen to reduce the density of L.
Let L = PTL, and let W be the solution of the system

iw = Ad.

(Note that W can be obtained at the cost of nd forward substitutions with the factor L and some trivial
permutation operations.) The SMW formula can now be applied to obtain the inverse of AD2AT as
follows:

The overall procedure for solving linear systems with the coefficient matrix (2) is organized as follows:

0 Calculate and store W = L-'Ad.

0 Form the nd x nd matrix Dd2 + @W and compute its (dense) Cholesky factorization LdLz.

Apply the formula (3) to solve the system AD2ATy = T as follows:

- a forward solve to obtain y1 = iw1r;
- multiplication y2 = W T y l ;
- forward and back substitution with Ed to obtain y3 from LdLzY3 = y2;

- multiplication with W to obtain y4 = y1 + WTy3;
- back substitution with LT to obtain y = i - T y 4 .

This reorganization of the SMW formula has, in contrast to the straightforward implementation
with taking W as a solution of i L T W = AdDd, the advantage of saving one backward solve with iT.
However, we need the ability to perform forward and backward solves with the i factor independently,
rather than having to perform both operations jointly.

4 Computational Experience

Our implementation of the dense column handling strategy was based on the beta-2.0 release (October
1996) of PCx [3], a primal-dual interior-point code that implements Mehrotra's [9] predictor-corrector

4

algorithm for linear programming. (The modifications were subsequently incorporated into release
1.0 of PCx, dated March 1997.) The sparse Cholesky routine is from the code of Ng and Peyton [lo],
release 0.4 (May 1995), which implements a multiple minimum degree ordering strategy. A small
modification to the Cholesky algorithm is needed to handle small pivots: If a pivot is identified as
being too small (or negative), it is replaced by which has the effect of inserting a zero component
into the solution vector at the appropriate location. This modification is well established for interior-
point codes in various contexts; see Wright [12] for a theoretical investigation. We report results on a
Sun SPARCstation 20 running SunOS 4.1.4.

In the current NETLIB set only eight problems contain dense columns. We consider five of these
problems to be large and the others to be small. Even though it is not usually necessary to extract
dense columns for the small examples, since their runtimes are so short in any case, we note that
algorithms for solving instances of stochastic linear programming may make multiple calls to LP
solvers, so even a small savings in runtime can be significant in these cases.

Figures 1 and 2 show all problems from the NETLIB collection having dense columns. The constraint
matrices are plotted on the left-hand side, while the right-hand side shows the first few columns of A ,
ordered by the number of nonzeros (vertical axis) and plotting the number of nonzeros in each column
(horizontal axis). Note the logarithmic scale on the vertical axis.

Our experience showed that the SMW approach described above was often numerically unstable.
We explain this fact as follows: Because of the structural role which the dense columns play in the
real-world models defining the linear programs, some of them are aImost always included in an optimal
basis. Hence, the matrix AsD:A'f may approach singularity near the solution, and W = L - l A d may
have only a few digits of accuracy in its smallest elements. Even these digits may be lost in forming
DT2 + WTW, and so the solutions calculated by SMW are often inaccurate. Lustig, Marsten, and
Shanno [8] state a example in three dimensions where A, D:AT approaches rank deficiency as the
interior-point method approaches the optimum.

The numerical experience shows that the residual b - AD2ATa: of the normal equations that we
are solving tends to increase during the last stages of the interior-point algorithm. Whenever this
occurs, the infeasibility of the iterates increases dramatically, causing the interior-point method to
break down.

Hence, we use a pcg algorithm (see Golub and Van Loan [6 , algorithm 10.3.1, p. 5291) to refine
the solutions. The sparse part A,D:AT is used as a preconditioner; no additional work is needed
to compute it since its Cholesky factorization is known already. The pcg technique achieved the
desired level of accuracy in the search directions quite well. However, in cases in which the diagonal
modification technique was used to replace small pivots, the pcg method often failed. This result is not
surprising; the preconditioner is essentially singular in this case, and the large-element substitution
technique ensures that the corresponding components of the pcg modifications are fixed at zero, so
no improvement in these components can occur.

5

ceria3d

0 2000 4000
nz = 38780

cplexl

Qnnn loo0Ph .\

\ .

0 2000 4000
nz = 10947

fit1 P

500

0 500 1000 1500
nz = 9868

fit2p

2000 O r Z z J

0 5000 10000
nz = 50284

z x 2 z .

I O 2 .

m m m m m 3c

10'
0 5 10

1 o4

lo3- x

10';

IO' .

1 oo
m * x t m * x m m

0 5 10

1 o4

103 .\
-x*

10'-

10' .

10 20 30
1 oOo

Figure 1: Problems from NETLIB with dense columns (I)

6

klein2

0 200 400
nz = 5062
klein3

0 500 1000
nz = 13101

israel

0 100 200 300
nz = 2443

seba
0

200

400
200 400 600 800

nz = 41 02

1 o3

1 o2

1 ° ' U 1 oo 0 50 100

1037

50 100
1 oo

0

I o3

1 o2

10'

I"

0 20 40 60

I o3

1 o2

10'

0
1 oo

20 40 60

Figure 2: Problems from NETLIB with dense columns (11)

7

Our combined SMW-pcg approach can be outlined as follows:

0 Flag all columns with column density greater t.han p as dense, where p depends on the number
of rows m in the (preprocessed) A as follows:

1.0 for m 5 500

0.1
0.05 for m > 2000.

for 500 < m 5 1000
for 1000 < m 5 2000

0 Perform a modified Cholesky-factorization of A,D:AT and set the flag dopcg to f a l s e if small
diagonals are present

Apply the SMW formula as described above to solve the linear system.

0 If this solution does not yield a sufficiently small relative residual for the normal equations, and
dopcg is true, then enter the pcg routine.

Exit pcg when either the relative residual has decreased sufficiently or the number of pcg iter-
ations exceeds 10 . n d . In the latter case, restore the original solution obtained from the SMW
formula if the relative residual has not been improved by the pcg procedure.

A similar technique is used by the LIPSOL code of Zhang [14, 151.
The pcg procedure need not be used only in conjunction with SMW. It can be used in place of

iterative refinement to improve the accuracy of the solutions even when dense columns are absent.
In this case, the preconditioner is simply the computed factorization of ADZAT and the maximum
number of pcg iterations is 10. In general, pcg yields better results than iterative refinement for the
same number (or fewer) of improvement iterations.

Table 1 shows the effect of extracting dense columns, when we choose p not by the strategy above
but rather manually, to achieve maximum efficiency. We tabulate the dimensions of the problem, the
number of dense columns, the densities of AAT (which is the same as the density of AD2AT) and
ASAT, and the densities of the Cholesky factors of these matrices. Note that we could not obtain
a solution of the full AD2AT system for the problem f it2p in a reasonable amount of time, so the
corresponding entry of the table is missing.

We stress that only the klein problems were sensitive to the choice of the threshold parameter p;
in all other instances there is sharp distinction between the dense and sparse columns. (In the problem
israel , there is a relatively dense squared window of 27 columns, but extraction of this window only
halves the density and more than doubles the CPU time when compared with the situation displayed
above.)

It is important to remark, in the context of Section 2, that all feasible problems could be solved to
the desired accuracy (a relative error of lo-* in primal infeasibility, dual infeasibility, and duality gap).
Furthermore, there is no change in the number of interior-point iterations needed, by comparison with
the case in which no dense columns are extracted. Note that PCx terminates with optimal status for
f i t l p , f i t2p, israel , and seba, with infeasible status for ceria3d and cplexi, and with unknown
status for klein2 and klein3. For reference we mention that f i t l p , f it2p, israel , and seba are
feasible problems, while the other four are infeasible problems.

A remark is in order concerning the problems klein2 and klein3, which are infeasible but for
which PCx terminates with status “unknown”. We extracted as many columns as possible, with the
result that the preconditioner is so poor that pcg does not make any progress and is aborted after l O n d
iterations. This behavior happens only in the last stages of the interior-point algorithm. According
to our explanation above, we observe that when extracting only few columns, pcg converges in both

8

Table 1: Computational results: Maximum efficiency

number of columns
number of rows
number of dense columns
density of AAT
density of A,AT
density, Cholesky factor of AAT
density, Cholesky factor of A,AT
solution time using A [SI
solution time using A , [SI
% reduction in comD-time

ceria3d cplexl fitlp fit2p klein3
4400 5224 1677 13525 1082
3576 3005 627 3000 994

4 1 24 25 88
0.154 0.251 1.000 1.000 0.564

0.0105 0.0019 0.0016 0.0003 0.0010
0.247 0.252 1.000 1.000 0.679

0.0113 0.0020 0.0016 0.0003 0.0010
3273 494 250 ? 480
28.6 1.9 6.9 51.6 373

99.1% 99.6% 97.2% -100% 22.3%

israel seba klein2
number of columns 316 901 531
number of rows 174 448 477
number of dense columns 15 14 54
density of AAT 0.735 0.510 0.610
density of A,AT 0.131 0.007 0.002
density, Cholesky factor of AAT 0.753 0.533 0.699
density, Cholesky factor of A,AT 0.0074 0.133 0.002

solution time using A , [s] 2.4 1.8 105
solution time using A [s] 4.7 27 55

problems in a moderate number of iterations. In the problems kle in2 and k le in3 the relatively high
computation time (when compared with the number of nonzeros in the remaining matrix) is due to
the bad performance of pcg and the large number of iterations allowed. The number of interior-point
iterations needed by the algorithm coincides with the case of unmodified A.

When we used the heuristic outlined above to choose p , the results of Table 2 were obtained.
Four of the problems were solved with a similar level of efficiency to the best possible level, but the
remaining one-klein3-showed a degradation in efficiency even when compared with the case in
which no dense columns are extracted. The slower performance was caused by the need for up to 65
pcg iterations at each step. Still, this problem converged in a reasonable time, as did the others.

Table 2: Computational results for the default strategy

number of columns
number of rows
number of dense columns
density, AAT
density, A,AF
density, Cholesky factor of AAT
density, Cholesky factor of A,Az
solution-time using A [SI
solution-time using A, [SI
% reduction in comp-time

ceria3d cplexl fitlp fit2p klein3
4400 5224 1677 13525 1082
3576 3005 627 3000 994

4 1 22 25 17
0.154 0.251 1.000 1.000 0.564

0.0105 0.0019 0.0423 0.0003 0.4451
0.247 0.252 1.000 1.000 0.679

0.0113 0.0020 0.0423 0.0003 0.597
3273 494 250 ? 480
28.6 1.9 9.7 51.6 686

99.1% 99.6% 96.1% -100% -42.9%

9

Figure 3 shows the efficiency of the pcg refinement process. Each plot shows the number of pcg
iterations (vertical axis) needed to converge to a relative accuracy of lo-* in the residual, versus
the interior-point iteration counter (horizontal axis). By comparing the number of dense columns
extracted (stated in the head of each plot) with the number of pcg-iterations, one can see that both
correlate nicely at some problems, but on others pcg took much more iterations than 72d (the number
of columns extracted). In the absence of rounding errors nd iterations are enough to correct the
rank-nd perturbation of the Sherman-Morrison-Woodbury formula. For the large problems (upper
half of the figure) we provide the data for the same settings as we took for Table 2. (We omit cplexi,
which terminates after 3 ipm iterations without needing any pcg refinement.) For the small problems,
we used the specifications of Table 1. For klein2, we provided in addition the results for extracting
only 23 columns, where convergence of the refinement process still could be achieved. As for the case
of extracting 54 columns, we stopped pcg after 540 iterations] according to the heuristic described
above.

Figure 4 presents some representative plots of the relative residual in the progress of the precon-
ditioned conjugate gradient method. In the head of each plot we list the iteration number of the
interior-point method and, after the slash, the total number of interior-point iterations needed to
solve the problem. In addition, the number of columns extracted may serve as a clue to the efficiency
of the refinement procedure. While the horizontal axes give the number of the pcg-iteration, the log-

of the solution 2. The predictor arithmically vertical axes represent the relative residual
step is plotted as a continuous line, while the corrector step is plotted as a dashed line. Yet again, we
used the default strategy as described in Table 2. While israel, f i t i p , and f i t2p show excellent
behavior, the infeasible problem klein2 and its close relative klein3 typically show an increase in
the residual before eventually bringing it below the goal of lo-’.

Figures 3 and 4, along with additional data not presented here, indicate that it is more difficult
to solve for the corrector search direction than for the predictor search direction. This result suggests
that the optimal number of corrections in higher-order predictor-corrector methods is one, as many
authors have previously noted.

b-ADZATxIL
1 1 ~ 1 1

5 Conclusions

We conclude by pointing to some theoretical and practical aspects that require further attention.
Additional processing can be applied to the reduced matrix A, to ensure that structural nonsin-

gularity is not present (for example, to eliminate empty rows).
The determination of density threshold p can be improved by making it more adaptive. For

instance, we could look for a sizeable gap in the density profile, as plotted in the graphs of Figures 1
and 2. We could also try a strategy based on trying different values of the threshold and evaluating
their effect on the densities of A,AT and of the Cholesky factor of this matrix. Some estimate of the
cost per iteration associated with each value could then be made, and possibly adjusted after a few
steps when some information on the required number of pcg iterations is gathered, and the “best”
value of p could be chosen accordingly.

A thorough analysis of the numerical effects of extracting dense columns has yet to be performed,
to our knowledge. As we mentioned] it is quite conceivable that AD2AT could be approaching a
well-conditioned limit while its reduced form A, D: AT approaches an ill-conditioned limit, making
the SMW solution procedure potentially unstable.

14-

12 .

IO.

ceria3d -- 4 d cols extr
X

0

X

4 : L _ ~ X181181QBQ

0 5 10 15
2

fit2p -- 25 d cols extr
60- X

50

40.

30.

0

0
o x
X

201 0 IXT
10 x

7 6 18 20 22

seba -- 14 d cols extr
X 181 - 14 14.5 15 15.5 16

klein2 -- 23 d cols extr
200 r

0
0 10 20 30

fitlp -- 22 d cols extr
25 -

X

20.
0

181

3 2 23 24 25

klein3 -- 17 d cols extr
8Or

40. x% -
XXX

- 0 0 , ,
0
0 10 20 30

israel -- 15 d cols extr

0 5L 21 22 23 24 25

klein2 - 54 d cols extr
600 -
500.

400. X

300.

-
0

X 0

200. 00

X a
1001 0

l o 0 L 0 0 10 20 30
-

30
0-
0 10 20

Figure 3: The number of pcg-iterations in each ipm-step (predictor [o] and corrector [x])

11

fitlp IPM-it 24/25 (22 extr)
1 o - ~ I

t
lo4:

1 0 - ~ I

lo4.

1 o - ~ .

lo4.

1 o-'
0 5 10 15 20

fit2p IPM-it 19/21 (25 extr)
lo4 1 I

1 o4
lob

1 o - ~
1 o-8
1 o-'

t

10-10-
0 10 20 30 40

klein3 IPM-it 22/28 (1 7 extr)
I

I - - -

1 o-' f
0 20

I
I

c -

-..I

40

israel IPM-it 24/25 (15 extr)
lo2 r I

10" .

0 5 10 15 20

fitlp IPM-it 25/25 (22 extr)
IO0 -

::::> .

1

\
\

-

10 20 30
1 0-lOo

1 o-2

1 0"

1 o-6

1 o-8

fit2p IPM-it 20/21 (25 extr)

L
20 40 60

klein3 IPM-it 28/28 (17 extr)
r - - ,

lo-2 -

\ r &.-L-.-' 8
1 10-4 .q \ \

'.
1

20 40 60
1 o-l0 -

israel IPM-it 25/25 (15 extr)
io5 tj I

::5:>: 1 o-'O

5 10 15 20
1 0-150

Figure 4: The relative residual of the solution, as decreased by pcg: predictor step=continuous line,
corrector step=dashed line.

12

Acknowledgments

The first author is grateful to Florian Jarre for his advice and support, and to Argonne National
Laboratory for supporting his visit during the fall of 1996.

References

[l] Ilan Adler, Narenda Karmakar, Mauricio G. C. Resende, and Gerald0 Veiga. An implementation
of Karmakar’s algorithm for linear programming. Madhematical Programming, pages 297-335,
1989. Errata in Mathematical Programming 50:415, 1991.

[2] Chan Choi, Clyde L. Monma, and David L. Shanno. Further development of a primal-dual
interior point method. ORSA Journal on Computing, 2(4):304-311, Fall 1990.

[3] Joseph Czyzyk, Sanjay Mehrotra, and Stephen J. Wright. PCx User Guide. Optimization Tech-
nology Center, Argonne National Laboratory and Northwestern University, Mathematics and
Computer Science Division, Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL
60439, October 1996.

[4] Robert Fourer and Sanjay Mehrotra. Solving symmetric indefinite systems in an interior-point
method for linear programming. Mathematical Programming, 62:15-39, 1993.

[5] Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Margaret H. Wright. On
projected Newton methods for linear programming and equivalence to Karmarkar’s projective
method. Mathematical Programming, 36:183-209, 1986.

[6] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, 2nd edition, 1989.

[7] Irvin J . Lustig, Roy E. Marsten, and David F. Shanno. Computational experience with a primal-
dual interior point method for linear programming. Linear Algebra and Its Applicataons, 152:191-
222,1991.

[8] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. On implementing Mehrotra’s predictor-
SIAM Journal on Optimization, corrector interior point method for linear programming.

2(3) ~435-449, August 1992.

[9] Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal
on Opta’mization, 2(4):575-601, November 1992.

SIAM Journal on Scientific Computing, 14:1034-1056, 1993.
[lo] E. Ng and B. W. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor computers.

[ll] Robert J. Vanderbei. Splitting dense columns in sparse linear systems. Linear Algebra and Ids
Applications, 152:107-117, 1991.

[12] Stephen Wright. Modified Cholesky factorizations in interior-point algorithms for linear program-
ming. Preprint ANL/MCS-P600-0596, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, May 1996.

December 1996.
1131 Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM Publications, Philadelphia, PA,

1141 Yin Zhang. User’s Guide t o LIPSOL. Department of Mathematics and Statistics, University of
Maryland, Baltimore County, Baltimore, Maryland 21228-5398, U.S.A., version 0.3 edition, July
1995. Documentation for the package LIPSOL.

13

[15] Yin Zhang. Solving large-scale linear programs by interior-point methods under the MATLAB
enviroment. Technical Report TR96-01, Department of Mathematics and Statistics, University
of Maryland, Baltimore County, Baltimore, Maryland 21228-5398, U.S.A., February 1996. Doc-
umentation for the package LIPSOL.

14

