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Abstract 

Both a transmission-line model and its simpler variant, a lumped-element model, can be used to predict the 

responses of a thickness-shear-mode quartz resonator sensor. Relative deviations in the parameters computed by 

the two models (shifts in resonant frequency and motional resistance) do not exceed 3% for most practical sensor 

configurations operating at the fundamental resonance. If the ratio of the load surface mechanical impedance to 

the quartz shear characteristic impedance does not exceed 0.1, the lumped-element model always predicts 

responses within 1% of those for the transmission-line model. 

Introduction 

The thickness-shear-mode (TSM) quartz resonator has become an extremely useful tool for measuring material 

properties and monitoring chemical processes. Various media in contact with the vibrating quartz surface create 

mechanical perturbations that alter the system resonance characteristics; shifts occur in the resonant frequency and 

motional resistance fiom that of the bare crystal. A key component in developing sensors based on the TSM 

resonators is to identiQ the relationship between the measurable electrical responses and the surface loading. Then 

properties of interest, such as accumulated mass, liquid density-viscosity, or film elastic modulus, can be extracted 

.and studied. 

One methodology is to treat the sensor system as an acoustic transmission line having one driven piezoelectric 

layer (the quartz crystal) and one or more surface mechanical loads consisting of lumped impedance elements or 

non-piezoelectric distributed layers [ 1-31. This treatment produces a generalized and elegant mathematical 

description of the surface-loaded resonator. In practice, it is common to investigate TSM resonator sensors using 

impedance or admittance analysis. The automatic network analyzer (ANA) acquires the appropriate spectrum and 
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the mathematical model is used to extract the sensed parameters. However, during data analysis, applying a full 

transmission-line model (TL,MJ to the resonator sensing system is often cumbersome and time consuming. A 

simpler approach is to use a lumped-element model GEM) that represents mechanical interactions by their 

equivalent electrical circuit components [4,5]. The LEM is nothing more than a reduced version of the TLM that 

assumes surface load impedances are small compared to the shear mechanical impedance of the quartz and that 

sensor operating frequencies are always near mechanical resonance. The lumped-element representation not only 

simplifies mathematical analysis but also provides an intuitive means of understanding load interactions. 

In this paper we briefly discuss the theoretical development of the transmission-line model for a TSM 

resonator sensor and the simplifying assumptions that lead to the lumpedelement model. Each model is then used 

to compute the expected responses for typical sensing applications. We are interested in the shift in the series 

resonance fiequency and the increase in resonance damping due to surface loading since these are “measurable” 

parameters in most sensor systems. Relative deviations in these two parameters establishes a quantitative means for 

determining the utility of the LEU 

TSM Resonator Transmission-Line Theory 

A TSM resonator consists of a thin disk of A T a t  quartz with metal electrodes deposited on both. Due to the 

piezoelectric properties and crystal orientation of the quartz, application of a voltage between the electrodes results 

in shear deformation of the crystal. At the natural mechanical resonances, a standing wave pattern is generated 

across the crystal thickness with displacement maxima Occurring at the faces. Electrical excitation can produce 

several resonant modes (harmonics) each with a standing wave displacement proiile. (See Figs. 3 and 7 for cross- 

sectional views of fundamental mode displacement in loaded crystal resonators.) Resonance characteristics of the 

crystal, primarily the resonant frequency (f) and quality factor (Q, are perturbed by materials that mechanically 

load the quartz surface. Extracting the mechanical properties of the load ffom e l d c a l  measurements is the 

sensing goal. 

The TSM resonator is a one-port electrical device whose piezoelectric excitation and acoustic transmission 

properties are best represented by the three-port Mason model (see Fig, 1) [l]. The electrical port in Fig. 1 is 

characterized by a 1:N’ transformer that electromechanically couples the applied voltage (at A-B in Fig. 1) to the 
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quartz shear displacement (at C-D). Shear acoustic waves propagate between the surfaces of the quartz crystal, the 

two acoustic ports in the three-port model. Impedance changes at the quartz surfaces will transmit and/or reflect 

the acoustic energy, depending on the impedance mismatch. In typical sensing applications, one swface of the 

crystal is tension-free and, thus, has a zero impedance as illustrated in Fig. 1. At the loaded sensor surface, a 

generic mechanical load impedance, Z,, is encountered. This load can be a single impedance element, a 

transmission line element such as a non-piezoelectric layer, or combinations of the two. 

Vibrational behavior of the quartz crystal and the surface load can be treated using a onedimensional 

transmission-line model and solving for the wave equation in each medium. A detailed mathematical development 

1-31. The complex electrical input impedance for the of the transmission-line theory is given by several authors 

quartz resonator described by the model in Fig. 1 is 

In Eq. (l), Z, is the acoustic impedance at C-D in Fig. 1, [the capacitance G, electrical reactance X, and 

transformer turns ratio N’ are as shown in Fig. 14 o = 271f is the oscillation frequency, IC2 is the complex 

electromechanical coupling factor for lossy quartz, a is the complex acoustic wave phase shift across the lossy 

quartz, and 4 = ZJZq where 2, is the surface load mechanical impedance and Z, = (p,pJ’ is the quartz 

characteristic impedance with ps and the quartz density and shear elastic constant. (See Table I for quartz 

parameters.) Since quartz is a low-loss material, the lossless parameters KO2 and = ohq(pdllq) ’, with h, the 

quartz thickness, often can be used in Eq. (1). 

The electrical impedance in Eq. (1) can be represented as a static capacitance C, in parallel with a motional 

impedance, L, arising from mechanical resonance. Rearranging Eq. (1) gives the motional impedance term: 

1 - j<cot(a) 

a (2tan( :) - j<) 
-1 , 

3 



which can be further reduced to 

The two terms in Eq. (3) describe the motional impedance for the unperturbed quartz resonator, Lo, and the added 

motional impedance created by the surface load, GL. 

It is more straightforward to compute and analyze the input admittance of a quartz resonator sensor instead of 

its impedance; from Eqs. (1) and (7) the admittance is given by 

where Go = C$ + C, with C, an added parasitic capacitance accounting for packaging, connection, etc. At series 

resonance the motional elements, Lo and GL, control the oscillation while the static capacitance, G', is shunted. 

This occurs at a frequency where the reactive component of the motional impedance is zero, and thus is at 

maximum. For the purpose of comparing sensor application responses, we focus on the shift (or changes) in two 

measwable parameters: the series resonant frequency, f = C O J ~ X ,  and the total motional resistance, R The shift in 

these two quantities can be extracted directly from the admittance versus frequency analysis using 

where d occurs at the maximum value of IRe(Y)l, 

and 
1 
I 1 AR= 

The superscripts L and 0 refer to the surface loaded and unperturbed resonator responses, respectively. 

The Unperturbed Resonator 

From Eq. (3), the motional impedance associated with an unperturbed resonator is given by 
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At series resonance, the imaginary part of Eq. (7) is 

transcendental equation 

zero and the resonant fiequency, as, satisfies the 

For resonator operation at frequencies near mechanical resonance, several approximations are made to 

simplify EQ. (7) into a series of lumped elements: 

0 1 2, rcR, + joL,  +- . 
jo CI 

(9) 

This expression descnis the motional impedance for the Butterworth-Van Dyke (BVD) equivalent circuit of an 

unperturbed resonator (see Fig. 2). The circuit elements for the BVD model are [4] 

and 

where eq is the quartz permittivity, A is the effective area of the electrodes on the crystal, qq is the quartz viscosity. 

and N is the harmonic resonance of the quartz, N = 1 ,3 ,5 ,  ... . The series resonant frequency is given by [l] 

, Eqs. (8) and (14) give the predicted series resonant frequencies for the full transmission-line characterization and 

the lumped-element approximation, respectively. The deviation between these frequencies (determined empirically) 

is approximately 5 ppm. Thus, the lumped-element BVD model can be used to represent the unperturbed resonator 
. 

5 



in all sensor calculations. 

The Surface Loaded Resonator 

Based on Eq. (3), the motional impedance of the quartz resonator with a surface mechanical load can be 

treated as the sum of two impedance elements: one describing the motion of the unperturbed quartz crystal and one 

describing the interaction with the load. In the previous section, we determined the unperturbed resonator can be 

represented by the simple BVD equivalent circuit with a high degree of computational precision. The loaded quartz 

resonator sensor can then be modeled using the modified BVD equivalent circuit shown in Fig. 2 [4,5]. The load 

motional impedance element in Fig. 2a is extracted from Eq. (3) and given by 

r 1-1 

In general, the real and imaginary parts of LL can be determined and the motional resistance, R2, and motional 

inductance, b, of the load can be computed as illustrated in Fig. 2b. These two lumped components represent the 

power dissipation and the energy storage, respectively, in the load, For some d a c e  mechanical loads, closed 

forms of RZ and LZ can be computed; for others, analytical extraction is not possible and they must be determined 

empirically. 

Close inspection of Eq. (15) indicates that for small d a c e  loading, the last term in brackets is much less than 

one so that 

"'-2tan(;) . . 
z, 

Then for operation near the series resonance frequency, w = a,, a = Nn, and Eq. (15) reduces to [3 J 

which is the load motional impedance for the lumped-element model. Under certain conditions-it is evident that 

Eq. (16) is valid and the TLM will reduce to the LEM. In many sensor applications, ZL is often several orders of 

magnitude smaller than 2, (Z, = [p,p$ = 8.84 x lo5 gcm-'-s-' using the values in Table I). At the same time, 

when w = a, (Am, small) and 01 = Nx, tan(d2) becomes extremely large. However, as ZL increases, IZLl/Zq aIso - 
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increases, while Am, becomes larger and tan(d2) decreases. 

Since the quantities on both sides of the inequality in Eq. (16) are coupled, it is difficult to determine 

analytically when the surface loading becomes too large to preclude use of the simpler lumpedelement model. 

Therefore, the deviations between the TLM and the LEM were determined computationally for several types of 

surface loads. Analytical expressions for ZL were substituted into Eqs. (15) for the TLM and Eq. (17) for the LEM. 

In both cases, LL was then used in Eq. (4), with Go as described by Eq. (9). All values for the unperturbed 

resonator were kept constant as listed in Table 11. The measurable parameters of interest, S and AR (same as R2 in 

Fig. 2b), were computed from Eqs. (5) and (6) as part of the admittance analysis. The final relative deviations 

between the model predictions were determined from 

and (19) I 

Mass Loading 

An ideal mass layer, shown in Fig. 3, is considered to be infinitesimally thin, yet impose a finite mass per area 

on the resonator surface. The layer must be mfticiently thin and rigid so that a shear acoustic wave traversing the 

layer- has a negligible phase shift; it moves synchronously with the crystal surface. The d a c e  mechanical 

impedance is given by 

where ps is the mass per area of the layer. When Eq. (20) is substituted into Eq. (17) for the LEN the resulting 

expression has only an imaginq compo-nent, meaning acoustic energy is stored and no power is dissipated. The 

fiequency shift produced by the ideal mass layer is 

which is equivdent to the Sauerbrey equation when N =1 [6].  
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For mass layer sensors, the deviation between the resonator response predicted by the TLM and the LEM is 

small. In Fig. 4, the admittance magnitude and phase computed using Eq. (4) is plotted for the two models near the 

fundamental resonance frequency. The resonant frequency predicted by the LEM is - 0.6% larger than that for the 

TLM, however, a large surface mass of 3 mg/cm2 is needed to create this difference. The frequency shift of both 

admittance curves is - 161 kHz from the 5 MHz series resonance of the unperturbed resonator. Fig. 5 shows the 

frequency shift as a function of increasing surface mass density for the two models along with the prediction from 

the Sauerbrey Eq. (21). Deviations between the TLM and LEM are much smaller (- 2.5% at 10 mg/cm2) than 

deviations of either model from the Sauerbrey prediction (- 19.5% at 10 mg/cm*). The larger mass densities 

represented in Fig. 5 are unrealistically high for practical quartz resonator sensors; material volume densities 

would correspond only to the heaviest of elements and compounds, or layer thicknesses would exceed the limits of 

the negligible phase delay approximation. 

Liquid Loading 

A liquid at the surface of a quartz resonator is viscouslyentrained as illustrated in Fig. 3. Onedimensional 

analysis of the fluid shear motion near the oscillating crystal surface is treated by White [7]. The resulting surface 

mechanical impedance for a Newtonian fluid is 

where p and -q are the liquid density and viscosity. For the LEM, Eq. (22) can be combined with Eq. (17), then 

reduced to give [4] 

Thus, for a Newtonian liquid, the power dissipation and energy storage components are equivalent, and both are 

proportional to (pq)'. The frequency shift produced by the liquid load is 

This expression agrees with Kanazawa and Gordon [SI. 
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Using the surface mechanical impedance for a liquid given by Eq. (23) in both the TL.M and LEM allows for 

computation of differences between the models. Fig. 6 shows plots of the frequency shift and motiorial resistance 

change in the fundamental resonance of a liquid-loaded quartz resonator. The dashed line in each plot represents a 

linear response dependence on (PTIY'; the frequency shift is computed from 32q. (24). The largest value of pq 

plotted in Fig. 6 is lo00 $.cm4.s-' (a viscosity of lo5 CP with p = 1 g/cm3), which produces a deviation between 

the TLM and LEM of only 1.3%. The deviation between models is slightly larger for AR compared to a. As 
observed for the quartz resonator with a surface mass layer, the magnitude of liquid loading required to produce 

significant deviations between the TLM and LEM is beyond the practical limitation for a sensor. 

Viscoelastic Layers 

A quartz resonator can be used as a chemical sensor by depositing a thin layer on the surface. (See Fig. 7.) If 

the layer has an affinity for a target species, it will sorb the compound from the vapor or liquid phase changing the 

resonance characteristics of the system. The oscillating quartz crystal launches a shear acoustic wave into this 

d a c e  film. In general, the film is viscoelastic and acoustically thick, so the shear wave will M e r  loss and some 

phase shift as it propagates. The chemical sensor load layer is treated as a transmission line with non-piezoelectric 

properties as shown in Fig. 8. The transmission-line structure to the left in Fig. 8 is the quartz crystal resonator 

from Fig. 1. The resonator sees a surface mechanical impedance, ZL, now consisting of the film impedance plus a 

load impedance, Z1, at the layer surface. This mechanical impedance is d e s c r i i  by the expression [9] 

Z, cosh(Ph,) + Zosinh(Phf) 
Zocosh(Phf)+Z,sinh(Phf) ' 

z, =z, 

where Z, = (pf G) ' is the film characteristic impedance, p = jo(pf/G) ' is the complex wave propagation constant, 

hf is the film thickness, pf is the film density, and G = G' + jG" is the film complex elastic modulus. 

Finite Film Only 

If the sensor viscoelastic layer is unloaded or tension-free at one surface, Z1 = 0, Eq. (25) reduces to [5]  
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This impedance cannot be decomposed into closed analytical forms for LZ and R2, so empirical evaluation is 

needed for both the TLM and LEM to compute frequency shifts and motional resistance changes. Eq. (26) contains 

four parameters (G', G", pf, and hd that can vary for chemical sensor films, each aE&g the resonator d a c e  

mechanical impedance. Some asymptotic conditions exist that simplify computations. In the limit of a thin rigid 

film, G + G', and Eq. (26) reduces to Eq. (20) for an ideal mass layer. Conversely, at the other extreme is a film 

with all viscous behavior, G + jG" = joq (Newtonian fluid); the layer appears semi-infinite, hf -+ 00, to the 

acoustic wave, and Eq. (26) reduces to Eq. (22) for liquid loading. Initial observations then assume that viscoelastic 

layers would act like mass loads, liquid loads, or some intermediate viscous load all showing close agreement 

between TLM and LEM response predictions. However, missing from Eqs. (20) and (22) are phase shifts and 

interference effects that occur when shear waves propagate in finite thickness films. Including these effects, the 

resonator response can exhibit film resonance: that condition where the shear acoustic phase shift across the film, 

Q = ohfRe[(pf/G) '1, is equal to odd multiples of d 2  [5]. Near film resonance, the d a c e  mechanical impedance 

becomes large, and signiscant uncertainties exist in Eq. (16). 

Two hypothetical films with pf = 1 gkm3 were chosen for this study: one is rigid, G' >> G ,  and one exhibits 

loss, G' = G". During model computation, the film thickness, hL is varied so that resonator response always passes 

through the first film resonance. Fig. 9 shows the model-predicted shift in the fundamental series frequency versus 

film thickness for the rigid sensor layer (G' = 10' dyne/cm2, G" = 10' dyndcm') on the crystal surface. The 

resonator exhibits a strong film resonance near hf = 5 pm, where maximum frequency shifts are - 280 kHz. Both 

the TLM and the LEM give similar results, with a maximum deviation of - 0.5% between the models at the film 

resonance peak. Since the film is essentially lossless, the motional resistance shows no significant change at any 

film thickness. As the film thickness continues to increase, additional response (film) resonances are observed near 

15 pm, 25 pm, etc. each having identical characteristics to the one shown in Fig. 9. 

Fig. 10 shows the TLM and LEM predictions for the lossy sensor film (G' = lo9 dyndcm2, G = 3 x 10' 

dyndcm'). Plotted are the fundamental series resonance frequency shift (top) and motional resistance shift 

(bottom). Film resonance is again observed near a film thickness of 16 pm in Fig. 10. The change in motional 

resistance near this resonance is quite significant (AR - 130 Mz) and the maximum deviation between the model 

predications occurs here (- 0.8%). When Ms is maximum, the prediction deviations between models are extremely 
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small, < 0.1%. Relative dif€erences between the models are greatest near the zero crossing of Ms, but this is due to 

a small denominator in Eq. (18). Expected errors in using the LEM to extract sensor parameters (such as the layer 

thickness) near film resonance would be quite small. 

Film with Liauid Overlaver 

One advantage of quartz resonators is their ability to act as chemical sensors in a liquid environment. Adytes 

sorbed from water or other fluids directly into a surface coating can be detected by the changes they create in the 

system resonance characteristics. Such a composite load is represented acoustically by a fixed thickness viscoelastic 

layer contacting the surface of the resonator with a semi-infinite liquid overlayer in contact with the opposite film 

surface. The surface mechanical impedance at the resonator surface looking into the film is given by Eq. (25) with 

Z1 now described by Eq. (22) for the liquid. Resonator responses as predicted by the TL;M and LEM are plotted in 

Fig. 11 for a lossy viscoelastic layer with G' = lo9 dyne/cm2, G = 3 x lo8 dyne/cm2, and pf = 1.5 glcm3, and a 

liquid overlay with pq = 0.01 g-cm44* (water or similar). Both the frequency shift (top plot in Fig. 11) and the 

motional resistance change (bottom) in the fundamental series resonance show the typical film resonance behavior 

as a function of film thickness. The film properties appear to dominate the resonator response such that the load 

imparted by the liquid has little influence except at the smaller thicknesses. For this composite load system, the 

agreement between the two computational models is quite good. Maximum deviation between the two models 

occurs at the peak of the AR curve in Fig. 11 and is approximately 0.8%. 

The resonant response shifts versus film thickness illustrated in Fig. 11 can also be associated with . 

electrodeposition of polymers from solution [lo]. In such a system, an electroactive polymer film is deposited 

slowly on the resonator surface and the film thickness increases with time. Early in the process, mechanical loads 

are provided by the liquid; but as the film thickness increases, the resonator exhibits a response with more 

information about the viscoelastic layer. From the results of the comparative model investigations performed here, 

it is evident that such electrochemical studies can be modeled using lumped-element equivalent circuit 

representations and parameters of the polymer film extracted from impedance analysis of the system. 

Bounds on Surface Mechanical Impedance 
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Based on results of the comparative computations between the transmission-line and lumpedelement models, 

it is useful to empirically determine the validity of Eq. (16), the prime assumption distinguishing the models. 

Using the definitions given by Eqs. (18) and (19), a maximum tolerable deviation between the models is set at 1 %. 

When this deviation limit is exceeded, it is assumed the LEM is no longer a valid representation of the TLM We 

inspect the ratio ELv Z, at this limit.. 

For mass-loaded resonators operating at the fundamental resonance, the tolerance limit is reached when p, - 5 

mg/cm2. At this mass density, a - 280 MEZ. Then from Eq. (20), the magnitude of the surface mechanical 

impedance, VL~, is 1.58 x los g.~m-~.s-'. This produces a load impedance ratio, IZL@, 0.17. For liquid-loaded 

resonators, 1% deviations occur between the models at pq - 1000 $-cm4d which gives a ratio of surface 

mechanical impedance to quartz impedance of - 0.2. From these results, a bound can be established at IZLl/Z, < 0.1 

(with a comfortable margin) where the LEM wil l  always be an adequate representation for TSM resonator sensors 

with mass and liquid loading. 

For resonators with viscoelastic layers utilized as chemical sensors, similar results are obtained. For the rigid 

layer response plotted in Fig. 9, a maximum deviation of - 0.5% between the models occurs at film resonance. 

Substituting film values from this point into Eq. (26) leads to IZLl/Zq 0.18. Since Eq. (26) scales as G', layers 

with larger modulus materials will produce larger values of ELI, and subsequently, increases in the ratio IZL~/Z, It 

is not uncommon for impedance ratios to approach 1.0 for some high modulus films, and still not produce 

deviations between the TLM and LEM that exceed 1%. In fact, the lossy layer computations plotted in Fig, 10 are 

such a case. A maximum deviation between models of 0.9% is observed near film resonance, where hf - 16 pm and 

hf, is - 90 kHz. The computed impedance ratio is IZL\/Z, = 0.85. If we set the same bound on the ratio at K,l/Z, 5 

0.1 for the viscoelastic film-coated resonators as for the mass and liquid loaded resonators, it is certain that 1% 

deviations between the TLM and LEM Will not be exceeded. However, the quantity [2.tan(d2)] in Eq. (16) is often 

much larger than one, especially for coated resonators operating near film resonance (Ams + 0), and more relaxed 

tolerances can be accepted for lZLl/ZT 

Conclusions 
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For most practical sensor applications, we have shown that a lumped4ement model can be used to accurately 

represent the dace-loaded TSM quartz resonator instead of the more complex transmission-line model. Sensor 

configurations included pure mass loading, liquid loading by a Newtonian fluid, viscoelastic thin-film loading, and 

loading by a viscoelastic film plus a semi-infinite liquid. Computations were performed using both models to 

determine relative deviations in two measurable sensor parameters: shift in the series resonant frequency, G, and 

increase in motional resistance, AR. For operation at the fundamental series resonance, relative deviations between 

the TLM and LEM for all configurations do not exceed - 3% until surface loads become extremely large and are 

no longer practical for sensor implementation. One of the simplifying assumptions allowing the TLM to reduce to 

the LEM is the load d a c e  mechanical impedance is small compared to the quartz shear impedance. It has been 

determined empirically that when the impedance ratio is < 0.1, relative deviation between the model predictions 

always will be < 1%. This quantitative value establishes a reasonable upper limit where the LEM can be used to 

rapidly analyze impedance or admittance data to understand the resonator-load interaction and extract sensor 

parameters. 
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Table I. Properties of AT-Cut Quartz 

3.982 x A2-s4.g-*an-3 perr&tivity 

2.947 x 10“ dyne/cm2 
Ils 3.5 10-~ g/cm/s viscosity 

shear elastic constant 
pa 2.651 &cm3 density 

JG? 17.74 10” I electromechanicaI coupling factor I 

Table IL Unperturbed Quartz Resonator Model Parameters 

1 (fimdamentd) 

0.033 cm 
I co I 4.2PF I 
c, 5.0 pF 
RI 10 R 
Cl 26.35 fF 
L1 38.45 mH I 



Figure Captions 

fig. 1. The transmission line representation of a piezoelectric quartz resonator with one tension-fiee =$ace and 
one loaded sugace. This schematic is based on a three-port Mason model [I]. 

Rg.  2. The modged Butternorth-Van Dyke equivalent circuit for a surface-loaded quartz resonator [4,5]. (a) A 
single motional impedance element, ZL, is used in series with elementsjhr the unperturbed resonator, and 0) the 
load impedance broken into motional inductance, L2, and resistance, Rz. 

Fg. 3. Cross-sectional view of the fundamental mode shear displacement in a quartz resonator with both mass 
and liquid loading on one sugace. The rigid mass layer moves synchronously with the crystal surface; liquids are 
viscously entrained by sur$ace motion. 

Rg. 4. The admittance magnitude andphase near the fundamental resonantfiequency of a quark? resonator with 
a 3 mg/cm2 mass layer. The solid curve is the prediction by the transmission-line model and the dashed curve is by 
the lumped-element model. 

Rg. 5. The frequency shift in the series fundamental resonance versus surface mass density for the transmission- 
line model (solid line), the lumped-element model boints), and the Sauerbrey equation (dashed line)[6]. 

Fi. 6. Ships in series resonantfrequency (top) and motional resistance (bottom) versus square root of the liquid 
density-viscosity product for the transmission-line model (solid lines) and the lumped-element model @oink$. The 
dashed lines are the response shiftsfor a linear model. 

Rg. 7. A cross-sectional view of a quartz resonator chemical sensor showing shear displacement in the quartz 
and a surface viscoelastic film. A phase shift occurs as the acoustic wave propagates in the sensing layer. 

Fi. 8. The transmission line representation of a non-piezoelectric sensing firm on the quartz resonator surface. 
The additional mechanical load, ZL can be produced by any of several materials at the film surface. 

Fig. 9. The series resonance frequency shift versus viscoelastic film thickness for the transmission-line model 
(solid line) and the lumped-element model (open circles). The resonator response exhibits a film resonance near a 
thickness of 5 pn in this rigid layer (G ' = Io8 dyne/cm2, G" = Id dyne/cm3. 

Rg.  10. The ships in series resonance frequency (top) and motional resistance @ottom) versus viscoelastic firm 
thickness for the transmission-line model (solid line) and the lumped-element model (open circles). The resonator 
response exhibits aplm resonance near I 6  pn in this lossy layer (G = I @  c$me/cm2, G" = 3 x I o 8  dyne/cm?. 

Eg. 11. The shijls in series resonance f'equency (top) and motional resistance (bottom) versus viscoelastic film 
thickness f i r  the transmission-line model (solid line) and the lumped-element model (open circles). The lossy 
viscoelastic layer is similar to that in Fig. 10 with a liquid of densityviscosity 1.5 g-cm4-s-' contacting the top 
surface. A fllm resonance occurs near 13 pm. 
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