AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001
2. The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC 20402-9328
3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. Federal Register notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852-2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018-3308.

A year's subscription of this report consists of four quarterly issues.
Regulatory and Technical Reports
(Abstract Index Journal)

Compilation for
Second Quarter 1997
April - June

Date Published: October 1997

L. L. Stevenson, Project Manager

Publications Branch
Office of Information and Resources Management
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
CONTENTS

Preface ... v

Index
Tab

Main Citations and Abstracts ... 1
• Staff Reports
• Conference Proceedings
• Contractor Reports
• Grant Reports
• International Agreement Reports

Secondary Report Number Index ... 2
Personal Author Index ... 3
Subject Index .. 4
NRC Originating Organization Index (Staff Reports) 5
NRC Originating Organization Index (International Agreements) 6
NRC Contract Sponsor Index (Contractor Reports) 7
Contractor Index ... 8
International Organization Index .. 9
Licensed Facility Index ... 10
This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC’s intention to publish this compilation quarterly and to cumulate it annually. Your comments will be appreciated. Please send them to:

Publications Branch
Office of Information Resources Management
T-6 E7
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001

The main citations and abstracts in this compilation are listed in NUREG number order: NUREG-XXXX, NUREG/CP-XXXX, NUREG/CR-XXXX, and NUREG/IA-XXXX. These precede the following indexes:

Secondary Report Number Index
Personal Author Index
Subject Index
NRC Originating Organization Index (Staff Reports)
NRC Originating Organization Index (International Agreements)
NRC Contract Sponsor Index (Contractor Reports)
Contractor Index
International Organization Index
Licensed Facility Index

A detailed explanation of the entries precedes each index.

The bibliographic elements of the main citations are the following:

Staff Report

Where the entries are (1) report number, (2) report title, (3) report author, (4) organizational unit of author, (5) date report was published, (6) number of pages in the report, (7) the NRC Document Control System accession number, (8) the microfiche address (for internal NRC use).

Conference Report

Where the entries are (1) report number, (2) report title, (3) report author, (4) organization that compiled the proceedings, (5) date report was published, (6) number of pages in the report, (7) the NRC Document Control System accession number, (8) the report number of the originating organization, (9) the microfiche address (for NRC internal use).
Contractor Report

Where the entries are (1) report number, (2) report title, (3) report authors, (4) organizational unit of authors or publisher, (5) date report was published, (6) number of pages in the report, (7) the NRC Document Control System accession number, (8) the report number of the originating organization (if given), (9) the microfiche address (for NRC internal use).

Grant Report

Where the entries are (1) report number, (2) report title, (3) report authors, (4) organizational unit of authors or publisher, (5) date report was published, (6) number of pages in the report, (7) the NRC Document Control System accession number, (8) the report number of the originating organization (if given), (9) the microfiche address (for NRC internal use).

International Agreement Report

Where the entries are (1) report number, (2) report title, (3) report author, (4) organizational unit of author, (5) date report was published, (6) number of pages in the report, (7) the NRC Document Control System accession number, (8) the report number of the originating organization (if given), and (9) the microfiche address (for NRC internal use).

The following abbreviations are used to identify the document status of a report:

ADD - addendum
APP - appendix
DRFT - draft
ERR - errata
N - number
R - revision
S - supplement
V - volume

Availability of NRC Publications

Copies of NRC staff and contractor reports may be purchased either from the Government Printing Office (GPO) or from the National Technical Information Service, Springfield, Virginia 22161. To purchase documents from the GPO, send a check or money order, payable to the Superintendent of Documents, to the following address:

Superintendent of Documents
U.S. Government Printing Office
Post Office Box 37082
Washington, DC 20013-7082

You may charge any purchase to your GPO Deposit Account, MasterCard charge card, or VISA charge card by calling the GPO on (202) 512-2249 or (202) 512-2171. Non-U.S. customers must make payment in advance either by International Postal Money Order, payable to the Superintendent of Documents, or by draft on a United States or Canadian bank, payable to the Superintendent of Documents.
NRC Report Codes

The NUREG designation, NUREG-XXX, indicates that the document is a formal NRC staff-generated report. Contractor-prepared formal NRC reports carry the report code NUREG/CR-XXX. This type of identification replaces contractor-established codes such as ORNL/NUREG/TM-XXX and TREE-NUREG-XXX, as well as various other numbers that could not be correlated with NRC sponsorship or the work being reported.

In addition to the NUREG and NUREG/CR codes, NUREG/CP is used for NRC-sponsored conference proceedings NUREG/GR is used for NRC grant reports, and NUREG/IA is used for international agreement reports.

All these report codes are controlled and assigned by the staff of the Publications Branch of the NRC Office of Information Resources Management.
Main Citations and Abstracts

The report listings in this compilation are arranged by report number, where NUREG-XXXX is an NRC staff-originated report, NUREG/CP-XXXX is an NRC-sponsored conference report, NUREG/CR-XXXX is an NRC contractor-prepared report, and NUREG/IA-XXXX is an international agreement report. The bibliographic information (see Preface for details) is followed by a brief abstract of this report.

Section 208 of the Energy Reorganization Act of 1974 (PL 93-438) identifies an abnormal occurrence (AO) as an unscheduled incident or event that the Nuclear Regulatory Commission (NRC) determines to be significant from the standpoint of public health or safety. The Federal Reports Elimination and Sunset Act of 1995 (PL 104-66) requires that AOs be reported to Congress on an annual basis. This report includes those events that NRC determined to be AOs during fiscal year 1996. This report addresses eighteen AOs at NRC-licensed facilities. Two involved events at nuclear power plants, eleven involved medical brachytherapy misadministrations, and five involved radiopharmaceutical misadministrations. Eight AOs submitted by the Agreement States are included. One involved stolen radiography cameras, one involved a ruptured source, one involved release of radioactive material while being transported, one involved a lost source, two involved medical brachytherapy misadministrations, and two involved radiopharmaceutical misadministrations. Four updates of previously reported AOs are included in this report. Three “Other Events of Interest” events are being reported, and one previously reported “Other Events of Interest” event is being updated.

This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors; proceedings of conferences and workshops; as well as international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

This document is a monthly publication containing descriptions of information received and generated by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

See NUREG-0540,V19,N02 abstract.

See NUREG-0540,V19,N02 abstract.

Digests and indexes for issuances of the Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors' Decisions, and the Decisions on Petitions for Rulemaking are presented.

Legal issuances of the Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, and NRC Program Offices are presented.

See NUREG-0750,V45,N02 abstract.

See NUREG-0750,V45,N02 abstract.

This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the first quarter of 1997.

This compilation summarizes significant enforcement actions that have been resolved during the period (July - December 1996) and includes copies of Orders and Notices of Violation sent by the Nuclear Regulatory Commission to individuals with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC. The Commission believes this information may be useful to licensees in making enforcement decisions.
Main Citations and Abstracts

This compilation summarizes significant enforcement actions that have been resolved during the period (July - December 1996) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

This compilation summarizes significant enforcement actions that have been resolved during the period (July - December 1996) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to material licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

This compilation contains 47 ACRS reports submitted to the Commission, or to the Executive Director for Operations, during calendar year 1996. It also includes a report to the Congress on the NRC Safety Research Program. All reports have been made available to the public through the NRC Public Document Room, the U.S. Library of Congress, and the Internet at http://www.nrc.gov/ACRASCNW. The reports are divided into two groups: Part 1: ACRS Reports on Project Reviews, and Part 2: ACRS Reports on Generic Subjects. Part 1 contains ACRS reports by project name and by chronological order within project name. Part 2 categorizes the reports by the most appropriate generic subject area and by chronological order within subject area.

The Nuclear Regulatory Commission Information Digest (digest) provides a summary of information about the U.S. Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general information on domestic and worldwide nuclear energy. The digest published annually, is a compilation of nuclear and NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1996, with exceptions noted. Information on generating capacity and average capacity factor for operating U.S. commercial nuclear power reactors is obtained from monopoly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed.

This report supplements the final safety evaluation report (FSER) for the U.S. Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the U.S. Nuclear Regulatory Commission (NRC) staff as NUREG-1503, in July 1994 to document the NRC staff's review of the U.S. ABWR design. The U.S. ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staffs review of the changes to the U.S. ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluation, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE's application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the U.S. ABWR design.

A Task Force composed of eight U.S. Nuclear Regulatory Commission and two Agreement State program staff members developed the guidance contained in this report. The purpose of this report is to describe a systematic approach for effective management of radiation safety programs at medical facilities. This is accomplished by emphasizing the roles of institution executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and include guidance on selecting the radiation safety officer, determining adequate resources for the program, the use of contractual services such as consultants and service companies, the conduct of audits, the roles of authorized users and supervised individuals, NRC's reporting and notification requirements, and a general description of how NRC's licensing, inspection, and enforcement programs work. Appendices provide a detailed guidance specific to the guidance program and the glossary defines terms used throughout the report. The guidance contained herein does not represent new or proposed regulatory requirements and licensees will not be inspected against any portion of it. Additionally, regulatory compliance with all applicable regulations is not assured by licensees who adopt any portion of, or apply the principles described in, this report.

The U.S. Nuclear Regulatory Commission (NRC) is one of six Federal agencies participating in a pilot project to streamline financial management reporting. The goal of this pilot is to consolidate performance-related reporting into a single accountability report in accordance with the Government Management Reform Act (GMRA) of 1994. The NRC's second accountability report consolidates the information previously reported in the NRC's annual financial statement required by the Chief Financial Officers Act of 1990, as amended; the chairman's annual report to the President and the Congress, required by the Federal Managers' Financial Integrity Act of 1994; and the Chairman's semiannual report to the Congress on management decisions and final actions on Office of Inspector General (OIG) audit recommendations, required by the Inspector General Act

On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, "Circumferential Cracking of Steam Generator Tubes." GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staffs assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

The Nuclear Regulatory Commission is issuing this draft guidance document for public comment that describes current interpretations related to the process by which power reactor licensees may make certain reactor performance changes without prior NRC approval. The draft guidance reaffirms existing regulatory practice in many areas; clarifies the staff's expectations in areas where industry practice or position differs from the staff's and established practices; includes updated guidance; and provides a basis for future regulatory changes. The document includes a general discussion of regulatory policy and guidance related to reactor performance changes. Comments are requested by July 31, 1997.
lishes guidance in areas where guidance did not previously exist.

NUREG-1607: SAFETY EVALUATION REPORT RELATED TO THE DEPARTMENT OF ENERGY’S PROPOSAL FOR THE IR-RADIATION OF LEAD TEST ASSEMBLIES CONTAINING TRITIUM-PRODUCING BURNABLE ABSORBER RODS (TPBARs) INTO LEAD TEST ASSEMBLIES (LTAs) CAUSING TRANSIENTS.

NUREG/CP-0155: PROCEEDINGS OF THE OECD/CSNI SPECIALISTS MEETING ON LEAK BEFORE BREAK IN REACTOR PIPING AND VESSELS.

The sixth in a series of International Leak-Before-Break (LBB) Seminars was held at Hotel Sofitel in Lyon, France on October 9 through 11, 1995. The seminar updated international policies and supporting research on LBB. Attendees included representatives from regulatory agencies, electric utility representatives, fabricators of nuclear power plants, research organizations, and academic institutions. The objective of the seminar was to present the current state of the art in LBB methodology development, validation, and application in an international forum. With particular emphasis on industrial applications and regulatory policies, the seminar provided an opportunity to compare approaches, experiences, and codifications developed by different countries. The seminar was organized into four topic areas: Status of LBB Applications, Technical Issues in LBB, Methodology, Complementary Requirements (Leak Detection and Inspection), and LBB Assessment and Management. The seminar consisted of formal sessions where papers were presented by participants from France, Germany, Japan, Korea, Belgium, the United Kingdom, the Czech Republic, Finland, Russia, Sweden, Canada, the Netherlands, and the United States, informal LBB poster sessions were available outside the presentation hall. As a result of this seminar, better estimates of the limits to the LBB approach should follow, as well as an improvement in codifying methodologies.

NRC/CP-0200 R5V1P1: SCALE: A MODULAR CODE SYSTEM FOR PERFORMING STANDARDIZED COMPUTER ANALYSES FOR LICENSING EVALUATION.
tron-absorber tubes irradiated in BWRs to the same fluence.

Slow-strain-rate tests applied during various portions of a tensile-loading cycle are remarkably effective in decreasing fatigue life. Slow-strain-rate tests were conducted in simulated boiling water reactor (BWR) water at 288 degrees C on carbon, low-alloy, and austenitic stainless steels (SSs). These tests were performed on commercial light water reactors. One-hundred nine operational events that affected 51 reactors during 1982 and 1983 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10^-6.

These events were identified by first computer screening the 1982-83 licensee event reports from commercial light-water reactors to select events that could be precursors to core damage. Candidates underwent engineering evaluation that identified, analyzed, and documented the precursors. This report discusses the general rationale for the study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events.

The goal of the Heavy-Section Steel Irradiation Program is to provide a thorough, quantitative assessment of effects of neutron irradiation on material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and post-irradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness (K(1c)) curve shift in high-copper welds, (3) crack-arrest toughness (K(1a)) curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K(1c) and K(1a) curve shifts in low upper-shelf welds, (6) annealing effects in low upper-shelf welds, (7) irradiation effects in a commercial low upper-shelf weld, (8) microstructural analysis of irradiation effects, (9) in-service aged material evaluations, (10) correlation monitor materials, (11) special technical assistance, (12) JPDs steel examination, (13) technical assistance for JCCCNRS Working Groups 3 and 12, and (14) additional requirements for materials. This report provides an overview of the activities within each of these tasks from October 1995 Through March 1996.

This report provides recommendations on preparing the criticality safety section of an application for approval of a transportation package containing fissile material. The analytical ap-
6 Main Citations and Abstracts

proach to the evaluation is emphasized rather than the performance standards that the package must meet. Where performance standards are addressed, this report incorporates the requirements of 10 CFR Part 71.

The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimeter system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO(2) laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 CM(2) area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm(2). Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites.

As a result of an incident in which a radioactive brachytherapy treatment source was temporarily unable to be retracted, an analysis was performed on the needle applicator used during the treatment. In this report, the results of laboratory evaluations of the physical, mechanical, and metallurgical condition of the subject applicator and two additional applicators are presented. A kink formed in the subject applicator during the incident. The laboratory investigation focused on identifying characteristics which would increase the susceptibility of an applicator to forming a kink when subjected to bending loads. The results obtained during this investigation could not conclusively identify the cause of the kink. The subject applicator exhibited no unique features which would have made it particularly susceptible to forming a kink. The three applicators examined represent two methods of manufacturing. A number of characteristics inherent to the method used to manufacture the subject applicator which could lead to an increased susceptibility to the formation of a kink were observed. The use of an insertion device, such as the biopsy needle used during this incident, could also dramatically increase the likelihood of the formation of a kink if the applicator is subjected to bending loads.

An uncertainty analysis of aerosol removal by nuclear reactor steam suppression pools is described. Uncertainties considered in the analyses include uncertainties in boundary conditions dictated by accident progression, uncertainties in bubble behavior, and uncertainties in aerosol properties. Uncertainty distribution for decontamination factors, aerosol particle sizes, and the geometric standard deviation of the size distributions are developed as functions of suppression pool depth. Results of the uncertainty distribution are used to construct a simplified model of decontamination by steam suppression pools.

A series of in-pile experiments addressing the phenomenology associated with Late-Phase processes in Light Water Reactors (LWRs) has been performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The Melt Progression (MP) experiments were designed to provide information as part of the effort to develop and verify computer models for the LWR core damage during severe accidents. The MP-2 experiment is the second experiment in this series. The MP-2 experiment examines the formation and movement of ceramic molten pools that form in the disrupted regions of a reactor core. The MP-2 experiment assembled consists of three regions: (1) a rubble bed composed of enriched UO(2) and ZrO(2) that simulated the severely disrupted regions of the reactor core, (2) a composite ceramic/metallic crust which represented the blockage formed by the early phase melting, relocation, and refreezing of mostly metallic core components, and (3) an intact rod stub region that remained in place below the blockage region. The test assembly was fission heated in the central cavity of the ACRR at an average rate of ~0.2 K/s ultimately achieving a peak temperature in the molten pool of ~3400 K. As ACRR power levels were increased over time, the crust gradually remelted and reformed, penetrating into and attacking the ceramic/metallic blockage. The metallic components of the blockage region melted and relocated downward to the bottom of the intact rod stub region. The ceramic pool penetrated halfway into the blockage region at the end of the experiment. Post-experiment examination of the assembly with the associated material interactions and metallurgy are discussed in detail together with the analyses and interpretation of the results.

Results of displacement-controlled pipe fracture experiments, analyses, and material characterization efforts performed within the International Piping Integrity Research Group, IPIRG, Program Subtask 1.2 are discussed. Effects of dynamic versus quasi-static and monotonic versus cyclic loading were evaluated for ductile tearing of two materials, A106 Grade B ferritic steel and TP304 austenitic steel. Twelve through-wall-cracked pipe experiments were conducted on 6-inch diameter Schedule 120 pipe at 288 C (550 F). The results indicated dynamic loading at seismic strain rates marginally increased the load-carrying capacity of austenitic steel. The ferritic steel tested was sensitive to dynamic strain-aging, and consequently, its load-carrying capacity decreased at dynamic strain rates. Two parameters were found to affect the apparent ductile crack growth resistance during cyclic loading, load ratio (R) and incremental plastic displacement that occurs in a cycle. Cyclic (R = 0) loading had minimal effect on ductile tearing for both materials. However, fully reversed loading decreased the load-carrying capacity and toughness for both materials. The incremental plastic displacement can be as important as the load ratio; however, it is harder to quantify from design stress reports. Large plastic displacements will minimize the effect of negative load ratios.
TIVE PIPING SYSTEM UNDER COMBINED INERTIAL AND SEISMIC/DYNAMIC DISPLACEMENT-CONTROLLED STRESSES.Subtask 1.3 Final Report. SCOTT,P.; OLSON,R.; WILKOWSKI,G.; et al. Battelle Memorial Institute, Columbus Laboratories. June 1997. 558pp. 9707140064. BMI-2177. 93734-001. This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPiRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.

NUREG/CR-6233 V04: INTERNATIONAL PIPING INTEGRITY RESEARCH PROGRAM (IPiRG) PROGRAM Final Report. WILKOWSKI,G.; SCHMIDT,R.; SCOTT,P.; et al. Battelle Memorial Institute, Columbus Laboratories. June 1997. 526pp. 9707140072. BMI-2177. 93736-001. This is the final report of the International Piping Integrity Research Group (IPiRG) Program. The IPiRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-level loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPiRG program.

NUREG/CR-6331 R01: ATMOSPHERIC RELATIVE CONCENTRATIONS IN BUILDING WAKES. RAMSDELL,J.; SIMONEN,C.A. Battelle Memorial Institute, Pacific Northwest National Laboratory. May 1997. 150pp. 9706120318. PNNL-12521. 93339-152. This report documents the ARCON96 computer code developed for the U.S. Nuclear Regulatory Commission Office Of Nuclear Reactor Regulation for use in control room habitability assessments. It includes a user's guide to the code, a description of the technical basis for the code, and a programmer's guide to the code. The ARCON96 code uses hourly meteorological data and recently developed methods for estimating dispersion in the vicinity of buildings to calculate relative concentrations at control room air intakes that would be exceeded no more than five percent of the time. These concentrations are calculated for averaging periods ranging from one hour to 30 days in duration. ARCON96 is a revised version of ARCON95, which was developed for the NRC Office of Nuclear Regulatory Research. Changes in the code permit users to simulate releases from area sources as well as point sources. The method of averaging concentrations for periods longer than 2 hours has also been changed. The change in averaging procedures increases relative concentrations for these averaging periods. In general, the increase in concentrations is less than a factor of two. The increase is greatest for relatively short averaging periods, for example 0 to 8 hours and diminishes as the duration of the averaging period increases.

NUREG/CR-6361: CRITICALITY BENCHMARK GUIDE FOR LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES. LIGHTENWALTER, BOWMAN,S.M.; DEHART,M.D.; et al. Oak Ridge National Laboratory. March 1997. 358pp. 9705120283. ORNL/TM-13211. 92289-001. This report is designed as a guide for performing criticality benchmark calculations for light-water-reactor (LWR) fuel applications. The guide provides documentation of 180 criticality experiments with geometries, materials, and neutron interaction characteristics representative of transportation packages containing LWR fuel or uranium oxide pellets or powder. These experiments should benefit the U.S. Nuclear Regulatory Commission (NRC) staff and licensees in validation of computational methods used in LWR fuel storage and transportation concerns. The experiments are classified by key parameters such as enrichment, water/fuel volume, hydrogen-to-fissile ratio (H/X), and lattice pitch. Groups of experiments with common features such as separator plates, shielding walls, and soluble boron are also identified. In addition, a sample validation using these experiments and a statistical analysis of the results are provided. Recommendations for selecting suitable experiments and determination of calculational bias and uncertainty are presented as part of this benchmark guide.

NUREG/CR-6363: EFFECTS OF THERMAL AGING AND NEUTRON IRRADIATION ON THE MECHANICAL PROPERTIES OF THREE-WIRE STAINLESS STEEL WELD OVERLAY CLADDING. HAGGAG,F.M.; NANSTAD,R.K. Oak Ridge National Laboratory. May 1997. 39pp. 9705280200. ORNL/TM-13047. 93125-289. Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288 degrees C for 1605 h resulted in an appreciable decrease (15%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3 degrees C). The combined effect of aging and neutron irradiation at 288 degrees C to a fluence of 5 x 10(19) neutrons/cm^2 (> 1 MeV) was a 22% reduction in the USE and a 29 degrees C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125 degrees C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J/icu) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343 degrees C for 20,000 h each were very small and similar to those at 288 degrees C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288 degrees C will be investigated as the specimens become available in 1996 and beyond.

Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location at a given time. The inputs to PSHA are obtained from all the geosciences data and in their modeling, multiple model interpretations are often possible. This leads to disagreement among experts, which in the past has led to disagreement on the selection of ground motion for design at a given site. The Senior Seismic Hazards Analysis Committee (SUSHAC) reviewed past studies, including the Lawrence Livermore National Laboratory and the EPRI landmark PSHA studies of the 1980's and examined ways to improve on the present state-of-the-art. The Committee's most important conclusion is that differences in PSHA results are due to procedural rather than technical differences. Thus, in addition to providing a detailed documentation on state-of-the-art elements of a PSHA, this report provides a series of procedural recommendations. The role of experts is analyzed in detail. Two entities are formally defined - the Technical Integrator (TI) and the Technical Facilitator Integrator (FI) - to account for the various levels of complexity in the technical issues and different levels of efforts needed in a given study.

The experiment, though designed as a two-dimensional manner, which will have an effect on subsequent one-dimensional representation of irradiation-induced embrittlement. The experiment, though designed as a two-dimensional 1/4 scale model of a jointed rock mass with a circular tunnel in the middle. The discussion on the design of the scale model includes a description of the associated similitude theory, physical design rationale, model material development, preliminary analytical evaluation, instrumentation design and calibration, and model assembly and pretest procedures. The thrust of this discussion is intended to provide the information necessary to understand the experimental setup and to provide the background necessary to understand the experimental procedures and results includes the seismic input test procedures, test runs, and measured excitation and response time histories. The closure of the tunnel due to various levels of seismic activity is presented. A threshold level of seismic input amplitude was required before significant rock mass motion occurred. The experiment, though designed as a two-dimensional representation of a rock mass, behaved in a somewhat three-dimensional manner, which will have an effect on subsequent analytical model comparison.

In January 1974, a limited distribution report, entitled "A Slide Rule for Estimating Nuclear Criticality Information," was written by C.M. Hopper for the Oak Ridge Y-12 Plant as a tool for emergency response to nuclear criticality accidents. Because of several shortcomings of the original slide rule, work began recently to update the slide rule using modern computational tools. Volume 1 of this report describes the analyses performed in support of this updated slide-rule tool and includes a sample, nonfunctioning version of the new slide rule. Volume 2 contains the functional version of the slide rule. The new slide-rule tool provides capabilities for the continued updating of accident information during the evolution of emergency response, including victim exposure information; potential exposures to emergency reentry personnel; estimates of future radiation fields; and fission-yield estimates.

The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in setting the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to (235)U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

This report describes an experimental investigation conducted by the Center for Nuclear Waste Regulatory Analyses (CNWARA) to (i) obtain a better understanding of the seismic response of an underground opening in a highly-fractured and jointed rock mass and (ii) generate a data set that can be used to evaluate the capabilities (analytical methods) to calculate such response. This report describes the design and implementation of simulated seismic experiments and results for a 1/15 scale model of a jointed rock mass with a circular tunnel in the middle. The discussion on the design of the scale model includes a description of the associated similitude theory, physical design rationale, model material development, preliminary analytical evaluation, instrumentation design and calibration, and model assembly and pretest procedures. The thrust of this discussion is intended to provide the information necessary to understand the experimental setup and to provide the background necessary to understand the experimental procedures and results includes the seismic input test procedures, test runs, and measured excitation and response time histories. The closure of the tunnel due to various levels of seismic activity is presented. A threshold level of seismic input amplitude was required before significant rock mass motion occurred. The experiment, though designed as a two-dimensional representation of a rock mass, behaved in a somewhat three-dimensional manner, which will have an effect on subsequent analytical model comparison.

This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boi-
ing (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels.

This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of that program in August 1985 through March 1986. The program is divided into five tasks, namely (1) Assessment of Inspection Reliability, (2) Research on ISI (in-service-inspection) Technology, (3) Research on Degradation Modes and Integrity, (4) Development of Methodology and Technical Requirements for Current and Emerging Regulatory Issues, and (5) Program Management. Under Task 1, progress is reported on the preparation of and evaluation of Nondestructive evaluation (NDE) techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate burst pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Under Task 2, results are reported on closed-form solutions and finite element electromagnetic modeling of EC probe response for various probe designs and flaw characteristics. Under Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe accident conditions. In addition, crack behavior and stability are being modeled to provide guidance on test facility design, to develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and to predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the cracking and failure of tubes that have been repaired by sleeving, and with a review of literature on this subject.

This report describes potential financial tests which could be used by NRC as a basis for allowing certain financially strong nonprofit licensees, and also non-bond issuing licensees, to use self-guarantee as a mechanism for meeting NRC financial assurance requirements. The analysis focuses on three categories of licensees: colleges or universities, hospitals, and commercial firms that do not issue bonds. The report assesses the financial assurance risk of various financial tests, and also estimates the number of licensees which could qualify for self-guarantee under different financial test alternatives.
tional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801460-40). The molds are housed in separate enclosures and hinged to create a "waffle-iron" effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates' previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.
Secondary Report Number Index

This index lists, in alphabetical order, the performing organization-issued report codes for the NRC contractor and international agreement reports in this compilation. Each code is cross-referenced to the NUREG number for the report and to the 10-digit NRC Document Control System accession number.

<table>
<thead>
<tr>
<th>SECONDARY REPORT NUMBER</th>
<th>REPORT NUMBER</th>
<th>SECONDARY REPORT NUMBER</th>
<th>REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-4448-012</td>
<td>NUREG/CR-6074 V03</td>
<td>ORNL/TM-133211</td>
<td>NUREG/CR-6361</td>
</tr>
<tr>
<td>ANL-96/17</td>
<td>NUREG/CR-6511 V01</td>
<td>ORNL/TM-13322</td>
<td>NUREG/CR-6504 V01</td>
</tr>
<tr>
<td>ANL-97/9</td>
<td>NUREG/CR-4967 V22</td>
<td>ORNL/TM-13323</td>
<td>NUREG/CR-6505 V01</td>
</tr>
<tr>
<td>BMI-2177</td>
<td>NUREG/CR-6233 V02</td>
<td>ORNL/NUREGCSD2R5</td>
<td>NUREG/CR-6520 RSV1P1</td>
</tr>
<tr>
<td>BMI-2177</td>
<td>NUREG/CR-6233 V03</td>
<td>ORNL/NUREGCSD2R5</td>
<td>NUREG/CR-6520 RSV1P2</td>
</tr>
<tr>
<td>BMI-2177</td>
<td>NUREG/CR-6233 V04</td>
<td>ORNL/NUREGCSD2R5</td>
<td>NUREG/CR-6520 RSV2P1</td>
</tr>
<tr>
<td>BNL-NUREG-52516</td>
<td>NUREG/CR-6515</td>
<td>ORNL/NUREGCSD2R5</td>
<td>NUREG/CR-6520 RSV2P2</td>
</tr>
<tr>
<td>CNWRA 95-012</td>
<td>NUREG/CR-6404</td>
<td>ORNL/NUREGCSD2R5</td>
<td>NUREG/CR-6520 RSV2P3</td>
</tr>
<tr>
<td>NEA/CSNI/R(96)99</td>
<td>NUREG/CP-0158</td>
<td>PNNL-11321</td>
<td>NUREG/CR-6331 R01</td>
</tr>
<tr>
<td>ORNL-4886</td>
<td>NUREG/CR-6399</td>
<td>SANS/ME-97-7221</td>
<td>NUREG/CR-6367</td>
</tr>
<tr>
<td>ORNL/NOAC-232</td>
<td>NUREG/CR-4674 V23</td>
<td>SAND03-3931</td>
<td>NUREG/CR-6467</td>
</tr>
<tr>
<td>ORNL/TM-11568</td>
<td>NUREG/CR-5591 V07 N1</td>
<td>SAND97-0407</td>
<td>NUREG/CR-6474 V24</td>
</tr>
<tr>
<td>ORNL/TM-11536</td>
<td>NUREG/CR-6361</td>
<td>UCRL-ID-122160</td>
<td>NUREG/CR-6530</td>
</tr>
<tr>
<td>ORNL/TM-12047</td>
<td>NUREG/CR-6363</td>
<td>UCRL-ID-122160</td>
<td>NUREG/CR-6572 V01</td>
</tr>
</tbody>
</table>
Personal Author Index

This index lists the personal authors of NRC staff, contractor, and international agreement reports in alphabetical order. Each name is followed by the NUREG number and the title of the report(s) prepared by the author. If further information is needed, refer to the main citation by the NUREG number.

ALLEN, K.

APOSTOLAKIS, G.
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Main Report.
NUREG/CR-6372 V02: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Appendices.

ARREDONDO, S.A.

BAILEY, P.
NUREG/CR-6514 ANALYSIS OF POTENTIAL SELF-GUARANTEE TESTS FOR DEMONSTRATING FINANCIAL ASSURANCE BY NON-PROFIT COLLEGES, UNIVERSITIES, AND HOSPITALS AND BY BUSINESS FIRMS THAT DO NOT ISSUE BONDS.

BAKHTIARI, S.

BELLES, R.J.

BERMUDEZ, H.

BLANCHAT, T.K.
NUREG/CR-6530 DELIBERATE IGNITION OF HYDROGEN-AIR-STEAM MIXTURES IN CONDENSING STEAM ENVIRONMENTS.

BOORE, D.M.
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Main Report.
NUREG/CR-6372 V02: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Appendices.

BOURCIER, S.C.
NUREG/CR-6167: LATE-PHASE MELT PROGRESSION EXPERIMENT MP-2. Results and Analysis.

BOWMAN, S.M.
NUREG/CR-6361: CRITICALITY BENCHMARK GUIDE FOR LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES.

BROADHEAD, B.L.
NUREG/CR-6504 V01: AN UPDATED NUCLEAR CRITICALITY SLIDE RULE. Technical Basis.
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

BUDEK, R.J.
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Main Report.
NUREG/CR-6372 V02: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Appendices.

BURNS, R.E.
NUREG/CR-6535: DEVELOPMENT OF CONFORMAL RESPIRATOR MONITORING TECHNOLOGY.

CAMPBELL, V.

CAMPER, L.W.

CHEUNG, F.B.
NUREG/CR-6507: CRITICAL HEAT FLUX (CHF) PHENOMENON ON A DOWNWARD FACING CURVED SURFACE.

CHILDS, R.L.
NUREG/CR-6504 V01: AN UPDATED NUCLEAR CRITICALITY SLIDE RULE. Technical Basis.

CHOPRA, O.K.

CHOWDHURY, A.H.
NUREG/CR-6404: AN EXPERIMENTAL SCALE-MODEL STUDY OF SEISMIC RESPONSE OF AN UNDERGROUND OPENING IN JOINTED ROCK MASS.

CHUNG, H.M.

CLUFF, J.W.

CLIFF, J.S.
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Main Report.
NUREG/CR-6372 V02: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Appendices.

COLLIER, J.
NUREG/CR-6514: ANALYSIS OF POTENTIAL SELF-GUARANTEE TESTS FOR DEMONSTRATING FINANCIAL ASSURANCE BY NON-PROFIT COLLEGES, UNIVERSITIES, AND HOSPITALS AND BY BUSINESS FIRMS THAT DO NOT ISSUE BONDS.

COLLINS, D.J.

COLTEN-BRADLEY, D.
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

CONNELLY, S.R.
NUREG-1542 V02: ACCOUNTABILITY REPORT FISCAL YEAR 1996.
14 Personal Author Index

COPPERSMITH, K.
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS.Main Report.
NUREG/CR-6372 V02: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS.Appendices.

CORNELL, C.A.
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS.Main Report.
NUREG/CR-6372 V02: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS.Appendices.

CORWIN, W.R.
NUREG/CP-0155: PROCEEDINGS OF THE SEMINAR ON LEAK BEFORE BREAK IN REACTOR PIPING AND VESSELS.

DASAPPA, V.
NUREG/CR-6514: ANALYSIS OF POTENTIAL SELF-GUARANTEE TESTS FOR DEMONSTRATING FINANCIAL ASSURANCE BY NON-PROFIT COLLEGES, UNIVERSITIES, AND HOSPITALS AND BY BUSINESS FIRMS THAT DO NOT ISSUE BONDS.

DANZIGER, L.M.
NUREG/CR-6504 VO1: AN UPDATED NUCLEAR CRITICALITY SLIDE RULE. Technical Basis.

DEBORD, D.M.

DANZIGER, L.M.

DEBORD, D.M.
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

DEHART, J.D.
NUREG/CR-6361: EFFECTS OF THERMAL AGING AND NEUTRON IRRADIATION ON THE MECHANICAL PROPERTIES OF THREE-WIRE STAINLESS STEEL WELD OVERLAY CLADDING.

DIERCKX, D.R.

DOLAN, J.W.

DYER, H.R.
NUREG/CR-5661: RECOMMENDATIONS FOR PREPARING THE CRITICALITY SAFETY EVALUATION OF TRANSPORTATION PACKAGES.

FAIDY, C.
NUREG/CP-0155: PROCEEDINGS OF THE SEMINAR ON LEAK BEFORE BREAK IN REACTOR PIPING AND VESSELS.

FORESTER, J.A.

FOX, D.J.
NUREG/CR-6404: AN EXPERIMENTAL SCALE-MODEL STUDY OF SEISMIC RESPONSE OF AN UNDERGROUND OPENING IN JOINTED ROCK MASS.

FRANCINI, R.

FULLER, M.

GAVENDA, D.J.
NUREG/CR-5661 VO1: CRITICAL HEAT FLUX (CHF) PHENOMENON ON A DOWNWARD FACING CURVED SURFACE.

GILLES, P.H.
NUREG/CP-0155: PROCEEDINGS OF THE SEMINAR ON LEAK BEFORE BREAK IN REACTOR PIPING AND VESSELS.

GOLDBERG, W.
NUREG/CR-6514: ANALYSIS OF POTENTIAL SELF-GUARANTEE TESTS FOR DEMONSTRATING FINANCIAL ASSURANCE BY NON-PROFIT COLLEGES, UNIVERSITIES, AND HOSPITALS AND BY BUSINESS FIRMS THAT DO NOT ISSUE BONDS.

GRUBER, E.E.
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

HACKETT, R.O.
NUREG/CR-6361: EFFECTS OF THERMAL AGING AND NEUTRON IRRADIATION ON THE MECHANICAL PROPERTIES OF THREE-WIRE STAINLESS STEEL WELD OVERLAY CLADDING.

HENDERSON, P.
NUREG/CR-5661: CRITICALITY BENCHMARK GUIDE FOR LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES.

HOPPER, C.M.
NUREG/CR-6361: CRITICALITY BENCHMARK GUIDE FOR LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES.

HUGHES, T.H.
NUREG/CR-5661: CRITICALITY BENCHMARK GUIDE FOR LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES.

JENSEN, J.J.

JONES, J.
16 Personal Author Index

PARKS, C.V.
NUREG/CR-5661: RECOMMENDATIONS FOR PREPARING THE CRITICALITY SAFETY EVALUATION OF TRANSPORTATION PACKAGES.
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES.
Uranium Blended With Soil.

PAUL, D.
NUREG/CR-6233 V04: INTERNATIONAL PIPING INTEGRITY RESEARCH PROGRAM (IPIRG) PROGRAM.
Program Final Report.

PELCHAT, J.M.
NUREG-1556 V01: CONSOLIDATED GUIDANCE ABOUT MATERIALS LICENSES.
Program-Specific Guidance About Portable Gauge Licenses.
Final Report.

PLEUNE, T.T.
NUREG/CR-4667 V22: ENVIRONMENTALLY ASSISTED CRACKING IN LIGHT WATER REACTORS.

POWERS, D.A.
NUREG/CR-6153: A SIMPLIFIED MODEL OF DECONTAMINATION BY BWR STEAM SUPPRESSION POOLS.

RAMSDELL, J.V.
NUREG/CR-6331: R01: ATMOSPHERIC RELATIVE CONCENTRATIONS IN BUILDING WAKES.

REIL, K.O.
Results And Analysis.

RUTHER, W.E.
NUREG/CR-4667 V22: ENVIRONMENTALLY ASSISTED CRACKING IN LIGHT WATER REACTORS.

SANTIAGO, P.A.
NUREG-1556 V01: CONSOLIDATED GUIDANCE ABOUT MATERIALS LICENSES.
Program-Specific Guidance About Portable Gauge Licenses.
Final Report.

SCHLUETER, J.
NUREG-1516: MANAGEMENT OF RADIOACTIVE MATERIAL SAFETY PROGRAMS AT MEDICAL FACILITIES.
Final Report.

SCHMIDT, R.
NUREG/CR-6233 V03: CRACK STABILITY IN A REPRESENTATIVE PIPING SYSTEM UNDER COMBINED INERTIAL AND SEISMIC/DYNAMIC DISPLACEMENT-CONTROLLED STRESSES.
Subtask 1.3 Final Report.
NUREG/CR-6233 V04: INTERNATIONAL PIPING INTEGRITY RESEARCH PROGRAM (IPIRG) PROGRAM.
Program Final Report.

SCHMIDT, R.C.
Results And Analysis.

SCHRINER, H.K.
A Status Report.

SCOTT, P.
NUREG/CR-6233 V03: CRACK STABILITY IN A REPRESENTATIVE PIPING SYSTEM UNDER COMBINED INERTIAL AND SEISMIC/DYNAMIC DISPLACEMENT-CONTROLLED STRESSES.
Subtask 1.3 Final Report.
NUREG/CR-6233 V04: INTERNATIONAL PIPING INTEGRITY RESEARCH PROGRAM (IPIRG) PROGRAM.
Program Final Report.

SHACK, W.J.
NUREG/CR-4667 V22: ENVIRONMENTALLY ASSISTED CRACKING IN LIGHT WATER REACTORS.
NUREG/CR-6511 V01: STEAM GENERATOR TUBE INTEGRITY PROGRAM.

SHONKA, J.J.
NUREG/CR-6335: DEVELOPMENT OF CONFORMAL RESPIRATOR MONITORING TECHNOLOGY.

SIMONEN, C.A.
NUREG/CR-6331 R01: ATMOSPHERIC RELATIVE CONCENTRATIONS IN BUILDING WAKES.

SOPPET, W.K.
NUREG/CR-4667 V22: ENVIRONMENTALLY ASSISTED CRACKING IN LIGHT WATER REACTORS.

STAMPS, D.W.
NUREG/CR-6530: DELIBERATE IGNITION OF HYDROGEN-AIR-STEAM MIXTURES IN CONDENSING STEAM ENVIRONMENTS.

STOLLER, R.E.
NUREG/CR-6399: RESULTS OF CHARPY V-NOTCH IMPACT TESTING OF STRUCTURAL STEEL SPECIMENS IRRADIATED AT 30 DEGREES C TO 1 X 10(16) NEUTRONS/CM(2) IN A COMMERCIAL REACTOR CAVITY.

STRAIN, R.V.
NUREG/CR-4667 V22: ENVIRONMENTALLY ASSISTED CRACKING IN LIGHT WATER REACTORS.

STOLLER, R.E.
NUREG/CR-6399: RESULTS OF CHARPY V-NOTCH IMPACT TESTING OF STRUCTURAL STEEL SPECIMENS IRRADIATED AT 30 DEGREES C TO 1 X 10(16) NEUTRONS/CM(2) IN A COMMERCIAL REACTOR CAVITY.

STRUNKMEYER, R.
NUREG-0857 V17 N01: NRC TLD DIRECT RADIATION MONITORING NETWORK.

SU, T.M.
NUREG-1603 DRFT: INDIVIDUAL PLANT EXAMINATION DATABASE.
User's Guide.

SUKALAC, T.R.
NUREG/CR-6535: DEVELOPMENT OF CONFORMAL RESPIRATOR MONITORING TECHNOLOGY.

SULLIVAN, T.M.
NUREG/CR-6515: BLT-EC (BREACH, LEACH, AND TRANSPORT-EQUIVALENT REPURIFIED URANIUM CHEMISTRY) DATA INPUT GUIDE.
A Computer Model For Simulating Release And Coupled Geochemical Transport Of Contaminants From A Subsurface Disposal Facility.

TANG, J.S.
NUREG/CR-6504 V01: AN UPDATED NUCLEAR CRITICALITY SLIDE RULE.
Technical Basis.

TINGLE, W.
NUREG/CR-1556 V01: CONSOLIDATED GUIDANCE ABOUT MATERIALS LICENSES.
Program-Specific Guidance About Portable Gauge Licenses.
Final Report.

TORAN, L.E.
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES.
Uranium Blended With Soil.

VACCAN, P.C.
NUREG-1556 V01: CONSOLIDATED GUIDANCE ABOUT MATERIALS LICENSES.
Program-Specific Guidance About Portable Gauge Licenses.
Final Report.

VIETH, P.
NUREG/CR-6233 V02: STABILITY OF CRACKED PIPE UNDER SEISMIC/DYNAMIC DISPLACEMENT-CONTROLLED STRESSES.
Subtask 1.2 Final Report.

WALKER, S.
NUREG-1610: CONTROLLING THE ATOM.
The Beginnings Of Nuclear Regulation, 1940-1962.

WALSH, W.
NUREG/CR-6535: DEVELOPMENT OF CONFORMAL RESPIRATOR MONITORING TECHNOLOGY.

WHITEHEAD, D.W.
A Status Report.

WHITTEN, J.E.
NUREG-1556 V01: CONSOLIDATED GUIDANCE ABOUT MATERIALS LICENSES.
Program-Specific Guidance About Portable Gauge Licenses.
Final Report.

WILKOWSKI, G.
NUREG/CR-6233 V02: STABILITY OF CRACKED PIPE UNDER SEISMIC/DYNAMIC DISPLACEMENT-CONTROLLED STRESSES.
Subtask 1.2 Final Report.
NUREG/CR-6233 V03: CRACK STABILITY IN A REPRESENTATIVE PIPING SYSTEM UNDER COMBINED INERTIAL AND SEISMIC/DY- NAMIC DISPLACEMENT-CONTROLLED STRESSES. Subtask 1.3 Final Report.

WOODS, S.
Subject Index

This index was developed from keywords and word strings in titles and abstracts. During this development period, there will be some redundancy, which will be removed later when a reasonable thesaurus has been developed through experience. Suggestions for improvements are welcome.

10 CFR 50
NUREG-1606 DRFT FC: PROPOSED REGULATORY GUIDANCE RELATED TO IMPLEMENTATION OF 10 CFR 50.50 (CHANGES, TESTS, OR EXPERIMENTS). Draft Report For Comment.

ACRS Report

Abnormal Occurrence
NUREG-0090 V19: REPORT TO CONGRESS ON ABNORMAL OCCURRENCES. Fiscal Year 1996.

Accident Sequence Precursor

Accountability Report
NUREG-1542 V02: ACCOUNTABILITY REPORT FISCAL YEAR 1996.

Advanced Boiling Water Reactor
NUREG-1503 Sol: FINAL SAFETY EVALUATION REPORT RELATED TO THE CERTIFICATION OF THE ADVANCED BOILING WATER REACTOR DESIGN. Supplement No. 1. Docket No. 52-001. (General Electric Nuclear Energy)

Atmospheric Dispersion
NUREG/CR-6331 R01: ATMOSPHERIC RELATIVE CONCENTRATIONS IN BUILDING WAKES.

Atom

BLT-EC

BWR
NUREG/CR-6153: A SIMPLIFIED MODEL OF DECONTAMINATION BY BWR STEAM SUPPRESSION POOLS.

Benchmark
NUREG/CR-6361: CRITICALITY BENCHMARK GUIDE FOR LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES.

Bolting Water Reactor
NUREG/CR-6153: A SIMPLIFIED MODEL OF DECONTAMINATION BY BWR STEAM SUPPRESSION POOLS.

Boron Dilution

Brachytherapy

Building Wake
NUREG/CR-8331 R01: ATMOSPHERIC RELATIVE CONCENTRATIONS IN BUILDING WAKES.

Charpy V-Notch
NUREG/CR-8399: RESULTS OF CHARPY V-NOTCH IMPACT TESTING OF STRUCTURAL STEEL SPECIMENS IRRADIATED AT 30 DEGREES C TO 1 X 10(16) NEUTRONS/ CM(2) IN A COMMERCIAL REACTOR CAVITY.

Circumferential Cracking
NUREG-1604: CIRCUMFERENTIAL CRACKING OF STEAM GENERATOR TUBES.

Consolidated Guidance

Contaminant

Contaminated Object
NUREG-1608 DRFT FC: CATEGORIZING AND TRANSPORTING LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS. Draft Report For Comment.

Contamination Survey
NUREG/CR-6037: MEASUREMENT OF RESIDUAL RADIOACTIVE SURFACE CONTAMINATION BY 2-D LASER HEATED TLD.

Control Room Habitability
NUREG/CR-6331 R01: ATMOSPHERIC RELATIVE CONCENTRATIONS IN BUILDING WAKES.

Core Damage

Corrosion Fatigue

Crack Stability
NUREG/CR-6233 V02: CRACK STABILITY IN A REPRESENTATIVE PIPING SYSTEM UNDER COMBINED INERTIAL AND SEISMIC/DYNAMIC DISPLACEMENT-CONTROLLED STRESSES. Subtask 1.3 Final Report.

Cracked Pipe

Criticality Safety
NUREG/CR-0200 R5V1P1: SCALE: A MODULAR CODE SYSTEM FOR PERFORMING STANDARDIZED COMPUTER ANALYSES FOR LICENSING EVALUATION. Control Modules C4, 06.
NUREG/CR-0200 R5V1P2: SCALE: A MODULAR CODE SYSTEM FOR PERFORMING STANDARDIZED COMPUTER ANALYSES FOR LICENSING EVALUATION. Control Modules S1 - H1.
Subject Index 21

Low-Level Waste
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

Low-Specific Activity Material
NUREG-1608 DRFT FC: CATEGORIZING AND TRANSPORTING LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS. Draft Rept For Comment.

Lower Head Integrity
NUREG/CR-6507: CRITICAL HEAT FLUX (CHF) PHENOMENON ON A DOWNSWING FACING CURVED SURFACE.

Materials Licenses

Medical Facility

Melt Progression
NUREG/CR-6167: LATE-PHASE MELT PROGRESSION EXPERIMENT MP-2. Results And Analysis.

Molten Pool
NUREG/CR-6167: LATE-PHASE MELT PROGRESSION EXPERIMENT MP-2. Results And Analysis.

Needle Applicator

Nuclear Criticality
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

Nuclear Regulation

PRA

Performance Measure
NUREG-1542 V02: ACCOUNTABILITY REPORT FISCAL YEAR 1996.

Piping Integrity

Piping System
NUREG/CR-6233 V03: CRACK STABILITY IN A REPRESENTATIVE PIPING SYSTEM UNDER COMBINED INERTIAL AND SEISMIC/DYNAMIC DISPLACEMENT-CONTROLLED STRESSES. Subtask 1.3 Final Report.

Plastic Scintillator
NUREG/CR-6535: DEVELOPMENT OF CONFORMAL RESPIRATOR MONITORING TECHNOLOGY.

Portable Gauge

Probabilistic Risk Assessment
NUREG-1602 DRFT FC: THE USE OF PRA IN RISK-INFORMED APPLICATIONS. Draft Rept For Comment.

Probabilistic Seismic Hazard Analysis
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Appendices.
Surtsey Test Facility
NUREG/CR-6530: DELIBERATE IGNITION OF HYDROGEN-AIR-STEAM MIXTURES IN CONDENSING STEAM ENVIRONMENTS.

TLD
NUREG/CR-6537: MEASUREMENT OF RESIDUAL RADIOACTIVE SURFACE CONTAMINATION BY 2-D LASER HEATED TLD.

Thermal Aging
NUREG/CR-6965: EFFECTS OF THERMAL AGING AND NEUTRON IRRADIATION ON THE MECHANICAL PROPERTIES OF THREE-WIRE STAINLESS STEEL WELD Overlay CLADDING.

Thermal-Hydraulic

Thermoluminescent Dosimeter

Title List

Transportation
NUREG-1608 DRFT FC: CATEGORIZING AND TRANSPORTING LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS. Draft Report For Comment.

Transportation Package
NUREG/CR-6561: RECOMMENDATIONS FOR PREPARING THE CRITICALITY SAFETY EVALUATION OF TRANSPORTATION PACKAGES.

Tube
NUREG-1604: CIRCUMFERENTIAL CRACKING OF STEAM GENERATOR TUBES.

Underground Disposal

Uranium
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

Weld Overlay
NUREG/CR-6963: EFFECTS OF THERMAL AGING AND NEUTRON IRRADIATION ON THE MECHANICAL PROPERTIES OF THREE-WIRE STAINLESS STEEL WELD Overlay CLADDING.
NRC Originating Organization Index (Staff Reports)

This index lists those NRC organizations that have published staff reports. The index is arranged alphabetically by major NRC organizations (e.g., program offices) and then by subsections of these (e.g., divisions, branches) where appropriate. Each entry is followed by a NUREG number and title of the report(s). If further information is needed, refer to the main citation by NUREG number.

ADVISORY COMMITTEE(S)
ACRS - ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

OFFICE OF EXECUTIVE DIRECTOR FOR OPERATIONS (EDO)
REGION 1 (POST 870415)

OF f OF ENFORCEMENT (POST 870415)

EDO - OFFICE OF THE CONTROLLER (PRE 820418 & POST 890205)
OFFICE OF THE CONTROLLER (POST 890205)
NUREG-1542 V02: ACCOUNTABILITY REPORT FISCAL YEAR 1996. DIVISION OF BUDGET & ANALYSIS (POST 890205)

EDO - OFFICE FOR ANALYSIS & EVALUATION OF OPERATIONAL DATA
OFFICE FOR ANALYSIS & EVALUATION OF OPERATIONAL DATA, DIRECTOR
NUREG-0290 V19: REPORT TO CONGRESS ON ABNORMAL OCCURRENCES Fiscal Year 1996.

EDO - OFFICE OF INFORMATION RESOURCES MANAGEMENT & ARM
OFFICE OF INFORMATION RESOURCES MANAGEMENT (POST 890205)
NUREG-0750 V44 N02: INDEXES TO NUCLEAR REGULATORY COMMISSION ISSUANCES, February 1997, Pages 95-263.
NUREG-0750 V45 N02: NUCLEAR REGULATORY COMMISSION ISSUANCES FOR FEBRUARY 1997, Pages 49-93.
NUREG-0750 V45 N03: NUCLEAR REGULATORY COMMISSION ISSUANCES FOR MARCH 1997, Pages 265-353.
NUREG-0750 V45 N04: NUCLEAR REGULATORY COMMISSION ISSUANCES FOR APRIL 1997, Pages 255-353.

EDO - OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS
OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS
NUREG-1608 DRFT FC: CATEGORIZING AND TRANSPORTING LOW SPECIFIC ACTIVITY MATERIAL AND SURFACE CONTAMINATED OBJECTS, Draft Rept For Comment.
DIVISION OF INDUSTRIAL & MEDICAL NUCLEAR SAFETY (POST 870729)
PERFORMANCE ASSESSMENT & HYDROLOGY BRANCH (NMSS 940405)
NUREG-940405 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES, Uranium Blended With Soil.

U.S. NUCLEAR REGULATORY COMMISSION
OFFICE OF THE SECRETARY OF THE COMMISSION

EDO - OFFICE OF NUCLEAR REGULATORY RESEARCH (POST 820405)
OFFICE OF NUCLEAR REGULATORY RESEARCH (POST 820405)
DIVISION OF SYSTEMS TECHNOLOGY (POST 941217)
NUREG-1602 DRFT FC: THE USE OF PRA IN RISK-INFORMED APPLICATIONS. Draft Rept For Comment.

EDO - OFFICE OF NUCLEAR REACTOR REGULATION (POST 800428)
OFFICE OF NUCLEAR REACTOR REGULATION (POST 841601)
NUREG-1527: SAFETY EVALUATION REPORT RELATED TO THE RENEWAL OF THE OPERATING LICENSE FOR THE RESEARCH REACTOR AT NORTH CAROLINA STATE UNIVERSITY, NUREG-1804: CIRCUMFERENTIAL CRACKING OF STEAM GENERATOR TUBES.
NUREG-1506 DRFT FC: PROPOSED REGULATORY GUIDANCE RELATED TO IMPLEMENTATION OF 10 CFR 50.59 (CHANGES, TESTS, OR EXPERIMENTS), Draft Rept For Comment.
NUREG-1607: SAFETY EVALUATION REPORT RELATED TO THE DEPARTMENT OF ENERGY’S PROPOSAL FOR THE IRRADIATION OF LEAD TEST ASSEMBLIES CONTAINING TRITIUM-PRODUCING BURNABLE ABSORBER RODS IN COMMERCIAL LIGHT-WATER REACTORS.
NRC Originating Organization Index (International Agreements)

This index lists those NRC organizations that have published international agreement reports. The index is arranged alphabetically by major NRC organizations (e.g., program offices) and then by subsections of these (e.g., divisions, branches) where appropriate. Each entry is followed by a NUREG number and title of the report(s). If further information is needed, refer to the main citation by NUREG number.

There were no NUREG/IA reports published this quarter.
This index lists the NRC organizations that sponsored the contractor reports listed in this compilation. It is arranged alphabetically by major NRC organization (e.g., program office) and then by subsections of these (e.g., divisions) where appropriate. The sponsor organization is followed by the NUREG/CR number and title of the report(s) prepared by that organization. If further information is needed, refer to the main citation by the NUREG/CR number.
Contractor Index

This index lists, in alphabetical order, the contractors that prepared the NUREG/CR reports listed in this compilation. Listed below each contractor are the NUREG/CR numbers and titles of their reports. If further information is needed, refer to the main citation by the NUREG/CR number.

ARGONNE NATIONAL LABORATORY

BATTelle MEMORIAL INSTITUTE, COLUMBUS LABORATORIES
NUREG/CR-6363: EFFECTS OF THERMAL AGING AND NEUTRON IRRADIATION ON LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES.
NUREG/CR-6361: CRITICALITY BENCHMARK GUIDE FOR LIGHT-WATER-REACTOR FUEL IN TRANSPORTATION AND STORAGE PACKAGES.

BROOKHaven NATIONAL LABORATORY
NUREG/CR-6399: RESULTS OF CHARPY V-NOTCH IMPACT TESTING OF STRUCTURAL STEEL SPECIMENS IRRADIATED AT 30 GEARS TO 1 X 10(16) NEUTRONS/CM2 IN A COMMERCIAL REACTOR ACTIVITY.
NUREG/CR-6505 V01: THE POTENTIAL FOR CRITICALITY FOLLOWING DISPOSAL OF URANIUM AT LOW-LEVEL WASTE FACILITIES. Uranium Blended With Soil.

CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES

ECODYNAMICS RESEARCH ASSOCIATES, INC.

EVANsville, UNIV. OF, EVANSVILLE, IN
NUREG/CR-6531 R01: ATMOSPHERIC RELATIVE CONCENTRATIONS IN BUILDING WAKES.

FRAMATOME
NUREG/CP-0155: PROCEEDINGS OF THE SEMINAR ON LEAK BEFORE BREAK IN REACTOR PIPING AND VESSELS.

FRANCE
NUREG/CP-0155: PROCEEDINGS OF THE SEMINAR ON LEAK BEFORE BREAK IN REACTOR PIPING AND VESSELS.

ICF, INC.
NUREG/CR-6514: ANALYSIS OF POTENTIAL SELF-GUARANTEE TESTS FOR DEMONSTRATING FINANCIAL ASSURANCE BY NON-PROFIT COLLEGES, UNIVERSITIES, AND HOSPITALS AND BY BUSINESS FIRMS THAT DO NOT ISSUE BONDS.

ILLINOIS, STATE OF

KEITHLEY INSTRUMENTS, INC.
NUREG/CR-6037: MEASUREMENT OF RESIDUAL RADIOACTIVE SURFACE CONTAMINATION BY 2-D LASER HEATED TLD.

LAWRENCE LIVERMORE NATIONAL LABORATORY
NUREG/CR-6372 V01: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Main Report.
NUREG/CR-6372 V02: RECOMMENDATIONS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS: GUIDANCE ON UNCERTAINTY AND USE OF EXPERTS. Appendices.

NORTH CAROLINA, STATE OF

OAK RIDGE NATIONAL LABORATORY
NUREG/CR-0200 R5V1P1: SCALE: A MODULAR CODE SYSTEM FOR PERFORMING STANDARDIZED COMPUTER ANALYSES FOR LICENSING EVALUATION. Control Modules 04, 06, 10.
NUREG/CR-0200 R5V1P2: SCALE: A MODULAR CODE SYSTEM FOR PERFORMING STANDARDIZED COMPUTER ANALYSES FOR LICENSING EVALUATION. Control Modules 11 - 17.

ORGANIZATION FOR ECONOMIC COOPERATION & DEVELOPMENT

PENNSYLVANIA STATE UNIV., UNIVERSITY PARK, PA

KEITHLEY INSTRUMENTS, INC.
NUREG/CR-6037: MEASUREMENT OF RESIDUAL RADIOACTIVE SURFACE CONTAMINATION BY 2-D LASER HEATED TLD.
SANDIA NATIONAL LABORATORIES
NUREG/CR-6153: A SIMPLIFIED MODEL OF DECONTAMINATION BY BWR STEAM SUPPRESION POOLS.
NUREG/CR-6167: LATE-PHASE MELT PROGRESSION EXPERIMENT MP-2. Results And Analysis.
NUREG/CR-6590: DELIBERATE IGNITION OF HYDROGEN-AIR-STEAM MIXTURES IN CONDENSING STEAM ENVIRONMENTS.

SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY SCIENCE APPLICATIONS,

NUREG/CR-6167: LATE-PHASE MELT PROGRESSION EXPERIMENT MP-2. Results And Analysis.

SOUTHWEST RESEARCH INSTITUTE

TRANSPORTATION, DEPT. OF
NUREG-1608 DRFT FC: CATEGORIZING AND TRANSPORTING LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS. Draft Rep. For Comment.
International Organization Index

This index lists, in alphabetical order, the countries and performing organizations that prepared the NUREG/IA reports listed in this compilation. Listed below each country and performing organization are the NUREG/IA numbers and titles of their reports. If further information is needed, refer to the main citation by the NUREG/IA number.

There were no NUREG/IA reports published this quarter.
Licensed Facility Index

This index lists the facilities that were the subject of NRC staff or contractor reports. The facility names are arranged in alphabetical order. They are preceded by their Docket number and followed by the report number. If further information is needed, refer to the main citation by the NUREG number.

<table>
<thead>
<tr>
<th>Project 52-301</th>
<th>DOE Tritium Project</th>
<th>NUREG-1607</th>
</tr>
</thead>
<tbody>
<tr>
<td>52-301</td>
<td>GE Advanced BWR Design, General Electric Co., NUREG-1508 S01</td>
<td>50-267 North Carolina State Univ. PULSTAR Reactor NUREG-1572</td>
</tr>
<tr>
<td>2. TITLE AND SUBTITLE</td>
<td>Regulatory and Technical Reports (Abstract Index Journal) Compilation for Second Quarter 1997 April - June</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3. DATE REPORT PUBLISHED</td>
<td>MONTH</td>
<td>YEAR</td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>1997</td>
</tr>
<tr>
<td>4. FIN OR GRANT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. AUTHOR(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. TYPE OF REPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. PERIOD COVERED (Inclusive Dates)</td>
<td>April - June 1997</td>
<td></td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION - NAME AND ADDRESS</td>
<td>Publications Branch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Office of Information Resources Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.S. Nuclear Regulatory Commission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20555-0001</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING ORGANIZATION - NAME AND ADDRESS</td>
<td>Same as 8, above.</td>
<td></td>
</tr>
<tr>
<td>10. SUPPLEMENTARY NOTES</td>
<td>L. L. Stevenson, Project Manager</td>
<td></td>
</tr>
<tr>
<td>11. ABSTRACT (200 words or less)</td>
<td>This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors; proceedings of conferences and workshops; as well as international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.</td>
<td></td>
</tr>
<tr>
<td>12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)</td>
<td>compilation, abstract index</td>
<td></td>
</tr>
<tr>
<td>13. AVAILABILITY STATEMENT</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>14. SECURITY CLASSIFICATION (This Page)</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>15. NUMBER OF PAGES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. PRICE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>