Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model

PDF Version Also Available for Download.

Description

A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage ... continued below

Physical Description

72 p.

Creation Information

Krakowski, R.A. August 24, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage can be large, with the formation of benefit-to-cost ratios as a means of assessment being limited by uncertainties associated with relating given climatic responses to greenhouse warming to aggregate damage cost, as well as uncertainties associated with procedures used for multi-generation discounting of both abatement and damage costs. In view of uncertainties associated with both supply-side and demand-side approaches, as well as the estimation of greenhouse-warming responses per se, a combination of solutions seems prudent. Key findings are: (a) the relative insensitivity of the benefit-to-cost ratio adopted in this study to supply-side versus demand-side approaches to abating atmospheric carbon-dioxide emissions; (b) the extreme sensitivity of damage costs, abatement costs, and the related benefit-to-cost ratios to the combination of discounting procedure and the (time) concavity of the function used to relate global temperature rise to damage costs; and (c) no matter the discounting procedure and/or functional relationship between average temperature rise and a damage cost, a goal of increased per-capita gross world product at minimum damage suggests action now rather than delay.

Physical Description

72 p.

Notes

OSTI as DE98001505

Source

  • Other Information: PBD: 24 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98001505
  • Report No.: LA-UR--97-3581
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/562570 | External Link
  • Office of Scientific & Technical Information Report Number: 562570
  • Archival Resource Key: ark:/67531/metadc693148

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 24, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 20, 2016, 4:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krakowski, R.A. Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model, report, August 24, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc693148/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.