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Abstract. This article is concerned with the dynamical properties of solu- 
tions of the time-dependent Ginzburg-Landau (TDGL) equations of supercon- 
ductivity. It is shown that the TDGL equations define a dynamical process 
when the applied magnetic field varies with time, and a dynamical system 
when the applied magnetic field is stationary. The dynamical system describes 
the large-time asymptotic behavior: Every solution of the TDGL equations is 
attracted to a set of stationary solutions, which are .divergence free. These 
results are obtained in the ''4 = -w(V A)" gauge, which reduces to the 
standard %qj = -V - A" gauge if w = 1 and to the zero-electric potential gauge 
if w = 0; the treatment captures both in a unified framework. This gauge 
forces the London gauge, V - A = 0, for any stationary solution of the TDGL 
equations. 
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1 Introduction 

In this article. we are concerned with the dynamical properties of solutions of 
the time-dependent Giuzbwg-Laudau (TDGLj equations of superconductivity. 
While the emphasis is on the formal mathematical aspects of the equations, 
we make every effort to comply with the physical nature of the problem. We 
make no simplifications €or the convenience of mathematics, and our rigorous 
treatment is motivated by known facts from physics. We show that the TDGL 
equations define a dynamical process when the applied magnetic field varies 
with time, and a dynamical system when the applied magnetic field is station- 
ary. We work consistently in the “4 = -w(V - A)” gauge introduced in El] 
and 121 and deduce by logical ar,ouments the ramifications for the zero-electric 
potential gauge 4 = 0. The ‘‘4 = -w(V - A)” gauge enables us to rigorously 
establish the large-time asymptotic behavior and make the connection with 
solutions of the time-independent CL equations of superconductivity. 

1.1 Ginzburg-Landau Model of Superconductivity 

In the Ginzburg-Landau theory of phase transitions [3], the state of a super- 
conducting material near the critical temperature is described by a complex- 
valued order parameter  $, a real vector-valued vector potential A, and, when 
the system changes with time, a real-valued scalar potential 4. The latter is 
a diagnostic variable; $ and A are prognostic variables, whose evolution is 
governed by a system of coupled differential equations, 

-+ 3A Vd = -V x V x A +  J,+V x H ,  at 
(1.2) 

where J,, the supercurrent density, is a nonlinear function of 4 and A,  
1 J ,  = J,($, A) = - (?,b-V$ - $V$l’) - l?,b12A = -Re [$l‘ ( i V  + A )  $1 . 

The order parameter can be thought of as the wave function of the center-of- 
mass motion of the “superelectrons” (Cooper pairs), whose density is n, = 17C,l2 
and whose flux is J,. 

2 t K  
(1-3) 

The system of Eqs. (1.1)-(1.3)1 henceforth referred to as the “TDGL equa- 
tions,” must be satisfied everywhere in Q, the region occupied by the super- 
conducting material, and at all times t > 0. We assume that is a bounded 



domain in R“ with a boundary i3R of class C’,’. That is, r? is an open and 
connected set whose boundary dQ is a compact ( n  - 1)-manifold described 
by Lipschitz-continuously differentiable charts. We consider two- and three- 
dimensional problems (n = 2 and n = 3. respectively). The vector potential 
A takes its values in R”. The vector N represents the (externally) applied 
magnetic field, which is a given function of space and time; like A, it takes its 
values in R”. 

The parameters in the TDGL equations are 7. a (dimensionless) friction 
coefficient: and n. the (dimensionless) Ginzburg-Landau parameter. The for- 
mer measures the temporal, the latter the spatial rate of change of the order 
parameter relative to the vector potential. As usual, V = grad, V x  = curl, 
V .  G div, and V2 = V - V 3 A; i is the imaginary unit, and a superscript * 
denotes complex conjugation. Sometimes, we use the symbol dt to denote the 
partial derivative a/&. 

The boundary conditions associated with the TDGL equations are 

and n x ( V x A - H ) = O  ondf2, (1.4) 

where n is the local outer unit normal to df2. They must be satisfied a t  all 
times t > 0. The function y is Lipschitz continuous on do, and y(5) 2 0 for 
E an. 

The vector E = -atA - Vd is the electric field and B = V x A the 
magnetic induction. Therefore, Eq. (1.2) is Ampke’s law, V x B = J ,  where 
the total current J is the sum of a ynorma13 current J ,  = E ,  the supercurrent 
J, ,  and the transport current J t  = V x W. The normal current obeys Ohm’s 
law J ,  = unE: the “normal conductivity” coefficient a,, is equal to one in 
the adopted system of units. The difference M = B - H is known as the 
magnetization. The trivial solution (7i, = 0, B = H ,  E = 0) represents the 
noma1  state, where all superconducting properties have been lost. 

The T D G L  equations generalize the original GL equations to the time- 
dependent case. The GL equations themselves embody in a most simple way 
the macroscopic quantummechanical nature of the superconducting state. The 
generalization, first proposed by SCHMID [4], was analyzed by GOR’KOV and 
ELIASHBERG [5] in the context of the microscopic Bardeen-Cooper-Schrieffer 
(BCS) theory of superconductivity. Although the validity of the TDGL equa- 
tions seems to  be limited to a narrow range of temperatures near the critical 
temperature, T,, the equations are being used extensively and successfully in 
large-scale numerical simulations to study vortex dynamics in type-I1 super- 
conductors at Argonne National Laboratory [6, 7, 81. We refer the reader to 
the physics literature [9, 10, 111 for further details. 



1.2 Previous Work 

The TDGL equations have been the object of several recent mathematical 
studies. ELLIOTT and T.-\vvc, I !12! , .  proved the existence and uniqueness of 
solutions of the TDGL equations in two-dimensional domains under some 
complicated mathematical boundary conditions, using a time-discretization 
procedure. Their article was followed by another article by TAYG [13], who 
applied the same methods to the TDGL equations with fixed total magnetic 
flux. DU [ I l l .  using a finite-element approach. established the existence and 
uniqueness of weak solutions in two- and three-dimensional domains under the 
assumption that the order parameter is initially bounded in L-(n>. The same 
results were obtained independently and at about the same time by CHEN, 
HOFFMANN, and LUNG [15], who used the Leray-Schauder fixed-point theo- 
rem. Du adopted the zero-electric potential gauge (6  = 0), Chen, Hoffma& 
and Liang the ''4 = -V . A" gauge for their analysis. 

In [16], LUNG and TANG considered the dynamics of the TDGL equations 
in bounded domains in R3, assuming the London gauge, V - A = 0, at  all 
times. They claimed to prove the existence of a dynamical system, but failed 
to verify the continuous dependence of the solution operator on the initial 
data. Therefore, it is not evident that the solution operator actually defines 
a dynamicd system. Moreover, the limiting relation displayed in the proof 
of [16, Theorem 6.11 does not follow from [17, Theorem 4.3.41, as claimed by 
the authors. 

Finally, TANG and WANG in their recent article [ZS] observed that the 
TDGL equations have the same type of nonlinearity as the Navier-Stokes equa- 
tions for an incompressible fluid. They adapted the methods developed for the 
Navier-Stokes equations to prove the existence of strong solutions in two and 
three dimensions, with no boundedness assumption on the initial data, and 
the existence of weak solutions in two dimensions. However, they too failed to 
verify the continuous dependence of the solution operator on the initial data. 

1.3 Outline of Present Work 

In the present article, we continue work begun in [l] and [2]. As noted by 
T A K ~ ~ :  [2], the natural gauge for the study of the dynamical properties of 
the TDGL equations is the uq$ = -V A" gauge. In this gauge, the TDGL 
equations generate a dynamical system, and every stationary solution satisfies 
the  London gauge, V - A = 0. A generalization of this gauge was introduced 
by FLECKINGER-PELL~ and KAPER in [l]. The generalization replaces the 



standard “4 = -V * A” gauge by the ”0 = -u(V - A)” gauge. where i~ is 
any nonnegative number. This gauge captures the standard ab = -V - A’ 
gauge and the zero-electric potential gauge in a unified framework. Applying 
the methods developed by TAKAC in [2], we are able to establish rigorously 
the existence of a dynamical process for the TDGL equations if the applied 
magnetic field is time dependent, and the existence of a dynamical system if 
it is time independent. In the latter case. we prove that every stationary solu- 
tion of the TDGL equations satisfies the London gauge. This result indicates 
how the  stationary solutions of the TDGL equations can be connected to  the 
solutions of the time-independent GL equations. 

Following is an outline of the article. 

Section 2 contains preliminary material. In Section 2.1 we derive some 
auxiliary identities from the TDGL equations; in Section 2.2 we introduce the 
‘‘4 = -w(V . A)” gauge. Unless mentioned otherwise, all further arguments 
refer to the TDGL equations in this gauge. In Section 2.3 we give various 
estimates that follow from an energy-type functional. 

Section 3 defines the abstract initial-value problem for the TDGL equa- 
tions. Section 3.1 presents the notation. In Section 3.2 we introduce the 
applied vector potential to homogenize the boundary conditions and in Sec- 
tion 3.3 give the abstract initial-value problem. In Section 3.4 we prove a 
regularity result involving the applied vector potential, which eventually d e  
termines the regularity of a mild solution of the abstract initial-value problem. 

Section 4 contains our results in three theorems, each with a corollary. 
Theorem 1 (Section 4.1) gives an existence and uniqueness result, Theorem 2 
(Section 1.2) a regularity result. Both theorems hold when the applied mag- 
netic field varies with time. A corollary of Theorem 2 is the existence of a 
dynamical process. Specializing to the case of a time-independent magnetic 
field, we obtain a dynamical system whose properties are 5ven in Theorem 13 
(Section 4.3). 

The proofs of the theorems are given in Section 5.  

2 Preliminaries 

In this section we establish several auxiliary identities, which follow from the 
TDGL equations (1.1)-(1,4). We also introduce the gauge choice and define 
an energy-type functional for the TDGL equations. 



2.1 Auxiliary Identities 

The TDGL model of superconductivity is basically a system of semilinear 
parabolic equations. This is most, easily seen if, in Eqs. ( 1 . 2 )  aD-c! (2.21. OEP 

uses the identities 

1 2i 2 i 
K. K 2  K K 

- (-V + A )  $ = -4$ - - (Ow) - A - L$(V - A )  - (L1,41’ (2.1) 

and 
- G x V x A = 1-4 - G(l7.A).  (2.2) 

Many of the methods developed for such systems are indeed applicable to the 
TDGL equations. But, as we will see in the following analysis, the TDGL 
equations have several distinct features that make them mathematically inter- 
esting in their own right and different from, say, the Navier-Stokes equations. 

The curl of a gradient &shes, so the TDGL equations do not change if we 
replace H by H‘ = W + VCP, for any (sdficiently smooth) real scalar-valued 
function CP of position and time. If @ = 0 on dS1, we also have TZ x N = n x W’ 
on aR, so the boundary conditions do not change either. In particular, if 
we take CP at any time as the (unique) solution of the Dirichlet problem for 
Poisson’s equation A@ = -V - W, we have V - H‘ = 0 at all times. Hence, 
there is no loss of generality if, from now on, we assume that the applied 
magnetic field W is divergence free, 

V - H = O  i n n .  (2.3) 

The quantity n, = 
is governed by the 

]+I2 corresponds to the supereiectron density. Its evolution 
equation 

+ 2  (1 - /+I2 (2.4) 

or, equivalently, 

Clearly, if the inequality 
later times. Note that the scalar potential # does not figure in Eq. (2.4). 

,< 1 is satisfied on R at t = 0, it is satisfied at all 

The divergence of a curl vanishes, so Eq. (1.2) implies the identity 



An expression €or 0- J ,  is easily obtained by taking the divergence of Eq. (1.3). 

(2.7) 

From this expression and Eq. (1.1) we obtain the more interesting expression 

(2.5) 

An immediate consequence of the definition (1.3) of J ,  and the first boundary 
condition in Eq. (1.4) is that n e J ,  = 0 on 80. 

By assumption, i3R is locally the level surface (or curve) of a C'*l-function 
: R" -+ R Hence, the unit normal vector is given by n = IV@I-lQ@, 

where V@ is nonvanishing and Lipschitz continuous near every point of dR. 
Consequently, n - (V x n) = 0. According to the second boudary condition in 
Eq. (1.4), V x A - W and n are colinear on 69. Therefore, it must be the 
case that n . V  x (V x A -W) = 0 on dfl- 

When we combine the two identities n-J, = 0 and n - V  x (V x A - H )  = 0 
with Eq. (1.2)? we see that n - (&A + V$) = 0 on X2. Therefore, any solution 
of the TDGL equations is such that 

n -  ( g + V b )  = O  and n . J , = O  o n a 0 .  (2-9) 

These identities express the physical fact that the electric field and the super- 
current are always tangential to the surface of the superconductor. 

2.2 Gauge Choice 

The TDGL equations are invariant under the gauge transformation 

Gx : ($, A, 4) )--+ (+ei? A + vx, 4 - a,x) - (2.10) 

The gauge x can be any (sufficiently smooth) real scalar-valued function of 
position and time. For the present investigation we adopt the "4 = -o(V- A)" 
gauge introduced in [l]. This gauge is determined by taking x G xw(z,t)  as 
the (unique) solution of the boundary-value problem 

(8, - w A ) x  = (b + w(V - A )  in R x (O,m), 

w ( n  - Ox) = - w ( n  - A )  on dR x (0, a), 

(2.11) 

(2.12) 



subject to a suitable initial condition, y(.:O) = xo in n. Here. .,J is a real 
nonnegative parameter. In this gauge we have, at all times t > O? the identities 

4 + ~ 3 ( V - A ) = 0  infl ,  w ( n - A ) = O  ondo .  (2.13) 

The gauge choice fixes the potential q in terms of the order parameter j, and 
the vector potential A. The differential equations (1.1) and (1.2) reduce to 

- -C x ‘T x A fd‘V(T7.A) + J ,  f G x H in Q x ( 0 , x ) .  (2.15) 
i3A 
at 
- -  

where J ,  is again given by Eq. (1-3), and the boundary conditions (1.4) to 

7~ - V+ + ?.IC, = 0, on dfi x ( 0 , ~ ) .  
(2.16) 

The boundary-value problem (2.14)-(2.16) is strongly parabolic for w > 0. It 
becomes degenerate for w = 0. 

w( n - A) = 0, n x ( V  x A - 23)  = 0 

The scalar potential 4 does not figure in the evolution equation (2.4), so 
the gauge choice does not affect the observation that I + l  5 1 on Q at all times 
t > 0 if the inequality is satisfied at t = 0. (Cf. the “maximum modulus 
principle” in Section 4.1, Theorem 1.) 

The auxiliary identity (2.6) and the expression (2.8) involve 4. In the 
‘‘4 = -u(V - A)” gauge, Eq. (2.6) assumes the form 

(at - uA) (V - A) = V - J, ,  

where 

Finally, the identities (3.9) reduce to 

n - V ( V - A ) = O  and n - J , = O  ondR.  

(2.17) 

(2.18) 

(2.19) 

Unless mentioned otherwise, all further arguments refer to the TDGL equa- 
tions in the “6 = -w(V - A)” gauge. 

2.3 Energy-Type Functionals 

Consider the functional E, f E,[$, A], 
2 

E,[$, A] = n r c  [ 1 ( kV + A) $ 1  + f (1 - + 2 4 V  - A)2 



(‘3.20) 

If .1c, and A satisfy Eqs. (2.14)-(2.16), then the time derivative of E, is 

(C x A - N ) d z .  i3H 
(2.21) 

If atH = 0 (stationary applied magnetic field), the expression in the right 
member is negative semidefinite, E, is a Liapunov functional. and E,(t) <_ 
E,(O) for all t 2 0. In general, the applied magnetic field is not stationary, 
and E, is not necessarily bounded by a constant. However, as the following 
lemma shows, Ew(t) can still be estimated in terms of the quantity P( t ) ,  

P ( t )  = /t o n  (/ ~ & W ( Z , S > ~ ~  dz)l” ds. (2.22) 

Lemma 1 If E, E E,(t) ezists and is f inite,  and P ( T )  < co for  some T > 0, 
then 

(2.23) 

Proof. It follows from Eq. (2.21) and the Cauchy-Schwarz inequality that 

d P  112 8H dE, dt 5 f! (1 n a t  1-1’ dr) (1 10 x A - H/’dr )  5 2--(E,(t))’/2. dt 

(2.24) 
Hence, dE;/’/dt 5 dP/dt. Upon integration. we obtain 

(2.25) 

To obtain the inequality (2.23), we use Eq. (2.21) again, this time including 
the first integral, and apply the estimate (2.25), 

+ W ’ I V ( V . A ) ~ ~  d t  

d P  d P  L 2- dt (E&))’/’ L 2 x  ((Ew(0))’I2 + P ( t ) )  

The inequality (2.23) follows upon integration. I 

(2.26) 



L (3  + V 2 , M 2 t )  ( (Ew(o))1 /2  + P ( t ) ) 2 .  t E ( O J ) ,  
whenever the t e r m s  in the  inequality are well defined. 

(2.27) 

Proof. 
inequality (2.23), we obtain 

Using the elementary inequality :ai‘ 5 .(la - h i2  I ‘  I ibi’) and the 

where 

The remaining terms in the left member of the inequality (2.27) have already 
been estimated by ((Ew(0))1/2 + P ( t ) ) 2  in Lemma 1, inequality (2.23). I 

The additional term ~ u ( V - A ) ~  in the functional E, has no basis in physics. 
Indeed, E, is not an energy functional, unless w = 0. If w = 0, E, reduces to 
the Ginzburg- Landau free-energy functional, 

&[$,,A] = 1 + A) $I2 + f (1 - 1 ~ 5 1 ~ ) ~  + 10 x A - HI2] da: n n  

(2.28) 

The gauge restriction (2.13) reduces to 4 = 0 in n, and the Euler equations 
and natural boundary conditions associated with Eo are 

- V x V x A +  J , +  V x N = 0 in R, 

(2.29) 

(2.30) 
i 

n -  (:V+A) + +r-$ = 0 and n x (V x A -  N) = 0 on 842. (2.31) 

This is the time-independent Ginzburg-Landau model. A manuscript docu- 
menting the relationship between this and the TDGL model is in preparation. 



3 Functional Formulation 

In this section, we formulate the TDGL equations as an abstract evolution 
equation in a Hilbert spacil.. The kmnuia;icjn requires a reducriou. oi tile 
boundary conditions to homogeneous form, which is accomplished by the in- 
troduction of an applied vector potential. 

3.1 Notation 

The symbol C denotes a generic positive constant, not necessarily the same 
at different instances. All Banach spaces are real; the (real) dual of a Banach 
space X is denoted by X'. 

LP(sZ), for 1 5 p 5 00, is the usual Lebesgue space, with norm 11 - llLp; 
(- , e )  is the inner product in L2(R). Wm,2(IR2), for nonnegative integer m, is 
the usual Sobolev space, with norm 11 1 1 ~ ~ ~ ;  Wmf2(IR) is a Hilbert space for 
the inner product (. , -)m,Z, 

(u,u),,Z = C (aau.aav) 
l 4 l m  

for u,u E w ~ - ~ ( Q ) .  

Fractional Sobolev spaces Ws-2(R), with noninteger s, are defined by interpo- 
lation [19, Chapter VII]. 

CY(Q), for v 2 0, v = m + X with 0 5 X < 1. is the space of m times 
continuously differentiable functions on n. whose mth order derivatives satisfy 
a H6lder condition with exponent X if Y is not an integer: the norm 11 - Ilp is 
defined in the usual way. 

The definitions extend to spaces of vector-valued functions in the standard 
way, with the caveat that the inner product in [L.'(n)]* is defined by (z1,u) = 
Jn u - 21, where - indicates the scalar product in R". Complex-valued functions 
are interpreted as vector-valued functions with two real components. 

Functions that vary in space and time, like the order parameter and the 
vector potential, are considered as mappings from the time domain, which is a 
subinterval of R+, into spaces of complex- or vector-valued functions defined 
in f2. Let X = ( X ,  11 - Ilx) be a Banach space of functions defined in IR. Then 
functions of space and time defined on fl x (0, T ) ,  for T > 0, may be considered 
as elements of LP(O, T ;  X ) ,  for 1 5 p 5 00, or W"*2(0, T ;  X ) ,  for nonnegative 
integer m, or C"(O,T;X), for v 2 0, v = m + X with 0 5 X < 1. Detailed 
definitions can be found, for example, in [17]. 



Obviously. function spaces of ordered pairs (d ,  A). where w : Q i R2 and 
A : fl + R" (n = 2,s) play an important role in the study of the TDGL 
equations. We therefore adopt the following special notation: X = [X(SZ)]' x 
[X(R)]" for any Banach space X(R) of real-valued functions defined in n. 
Here, [X@)j2 and [X(S>)]" are the underlying Banach spaces for the order 
parameter w and the vector potential A, respectively. A suitable framework 
for the functional analysis of the TDGL equations is the Cartesian product 

wI+a.2 - - p p a . 2  ( e)]' x [W"".'( Q)]" .  

This space is densely and continuously imbedded in W'*2 r: L" if < CY < 1. 

3.2 Reduction t o  Homogeneous Form 

We first reduce the boundary conditions in the TDGL equations to homoge- 
neous form. Assume W f [L'((n)]". Let AH be a minimizer of the convex 
quadratic form J, = J,[A], 

J,[A] = J n [w(V - A)' + IC7 x A - HI'] ds, (3.1) 

on the domain 

D(J,) = D(d1') = { A  E [W'92((n)]" : w(n - A )  = 0 on aO}. 

Lemma 3 The functional J ,  has a unique minimizer AH on D(J,,) i f w  > 0 ,  
and this minimizer has the property V - AH = 0 in Q. The functional Jo has 
a unique minimizer AH on the closed linear subspace 

Proof. Assumew > 0. Then J,[A] --f ca as I1Allw1.2 -+ so; see [21. Chapter 1: 
Eq. (5.45)]. Also, J, is strictly convex and continuous. Standard methods of 
the calculus of variations yield the existence of a unique minimizer. This 
minimizer, AH, is necessarily divergence free. Otherwise, we could replace it 
by AH + V@ without changing the term V x A - W and, by taking GJ as the 
solution of the Neumann problem for Poisson's equation A@ = -V - AH in O, 
reduce the value of the functional to J,[AH + V@] = Jn 10 x AH - HI2 dz, 
which is strictly less than J,[AH]. The case w = 0 is similar. I 



The lemma shows that the property V AH = 0 in R is a consequence of 
= 0. we impose the fact that AH minimizes the functional J ,  if i~ > 0. If 

the condition AH = 0. In either case, AH is uniquely determined. and 

We refer to this minimizer AH as the applied vector potential. It is the solution 
of the strongly elliptic boundary-value problem 

u l ( n - A ~ ) = O  and T Z X ( V X A H - H ) = O  ondf t .  (3.4) 

Lemma4 I fW E [L2((n)]", then AH E D ( J , ) .  The mapping W H AH 
is t ime  independent and continuous f r o m  [We*2(sZ)]" to [W1fe72((n)]", f o r  0 5 
e l  1. 

Proof. The continuity of the mapping H ++ AH follows from the re,darity 
results in GEORGESCU [20]. I 

We now introduce the reduced vector potential A', 

A' = A - AH. 

In terms of u5 and A', the TDGL equations assume the form 

i3A' -+VxVxA ' - ( r lV (V .A ' )=F i n R x ( 0 , s c ) .  at 

(3-5) 

(3.6) 

(3.7) 

n.Vib+fy.ll' = 0. w(n-A') = 0. n x (V x A') = 0 on 8J-l x ( O , c c ) ,  (3.8) 

where 9 and F are nonlinear functions of t and u, 

2i i 
7 7 "  n 

$9 = y(t.21) - - [-- (V+) - (A' + A H )  - - ( 1  - ~ K ~ w ) + ( V  - A') 

(3.10) 

(The explicit dependence on t is through the applied vector potential AH.) 
The boundary-value problem (3.6)-(3.8) must be supplemented by appropriate 

1 F F ( t ,  u)  = - ($V$ - $V$*) - l+12(A' + AH) - - 2irc at 



initial conditions on 11, and A'. If the initial conditions for the TDGL equations 
are of the type IL, = &,A = A0 on fl x (0). then 

?b = $0 and A'= A0 - AH(O) on fl x (0). (3.1 1) 

In the next section we show how the evolution of the solution (4,A') of 
Eqs. (3.6)-(3.5) is connected with the dynamics of a vector u in the Hilbert 
space L'. 

3.3 Functional Formulation of the TDGL Equations 

Let the vector u : R+ -, L2 represent the pair ($,A'), 

and let A be the linear selfadjoint operator in L2 associated with the quadratic 
form Qw &,[u], 

If no confusion is possible, we use the same symbol A for the restrictions A+ 
and A* of A to the respective linear subspaces [L2(fl)I2 3 [L2(fl)I2 x (0) (for 
w) and (L2(n)ln E (0) x [L2(fl)]" (for A )  of L2.  

Now, consider the initial-value problem 

- du + Au = .F( t :u( t ) )  for t > 0: u(0)  = 110, (:3.14) 
dt 

in L2,  where F( t ,u )  = ( y , F ) ,  with y and F given by Eqs. (3.9) and (3.10), 
and uo = ($0, Ao - AH(O)). 

With $ < CY < 1 and u o  E W1+ay2, we say that u is a mild solution of 
~ Wl+&,2 is Eq. (3.14) on the interval (O,T), for some T > 0, if u : (0,T) 

continuous and 
t 

u( t )  = e-Atuo + 1 eLA('-')3(s, u ( s ) )  ds for 0 5 t 5 T (3.15) 



in L'. A mild solution of the initial-value problem (13-14) defines a weak solu- 
tion (y. A') of the boundary-value problem (3 .6 ) - (3 .3 ) .  which in turn defines 
a weak solution ( w ,  A) of the TDGL equations, provided AH is sufficiently 
regular. 

Given any f = (cp,F) E L2: the equation d u  = f in L2 is equivalent with 
the system of uncoupled boundary-value problems 

1 
qx- - y l r  = ; in I!. n . T-t* + :/w = 0 on a(?: (:3.16) 

CxG.xA'-c;.G(C+A') = F in fl, U.*(n-A') = 0, n x ( V x A ' )  = 0 on i3Q. 
(13.17) 

(More precisely, the system of Eqs. (3.16), (3.17) holds in the dual space 
D(Q,)' of D(Q,) with respect to the canonically extended inner product ( e ,  .) 
in [L2((n)]".) Boundary-value problems of this type have been studied by 
GEORGESCU [20]. Applying his results, we see that D(d) is a closed linear 
subspace of W2*2. Since A is positive definite on L2. its fractional powers dB 
are well defined for all B E R; they are unbounded for 6 > 0. Interpolation 
theory shows that D(d8) is a closed linear subspace of WZ8l2 for 0 < 0 < 1. 

3.4 Smoothing of the AppIied Vector Potential 

The term a r A ~  in Eq. (3.10) introduces an integral J'k(t) in Eq. (3.15), 

(3.18) 

where 3 ~ ( t )  c - ( L2( f2) ln  
of this integral determines the regularity of the solution u of Eq. (3.14). 

(0) x [L'(!2)]"  c L' for t E (0 ,T) .  The regularity 

Lemma 3 If W E W1.L(O.T; [L2(!2)jn). then & ( t )  E D(d('+*)/') f o r  0 5 
Q < 1, f o r  every t E (O.T), and , 7 ~  E Cp(O:T;[W'fQ*2(!2)]n) for 0 5 ,8 < 
1 T( 1 - 0). 

Proof. Assume that 0 5 Q < 1 and 0 5 p < $(l - a). The proof of the 
lemma uses the inequalities 

lpp12e-A' l l L 2  5 C S - ~ / ~  for 0 < s 5 T ,  (3.19) 



where the positive constants C do not depend on s [IT, Theorem 1.4.31. 

Because 8tH E L'(0. T ;  [L'( f l )]") ,  it follows immediately from Lemma 4 
that & A H  E L2(0 ,  T ;  [W1t2(L?)]n). Standard arguments then lead to the con- 

:$$-: -.-<.: zinuity t2f ZH : ([I, Tj  - (fijj",; cf. ti:, Pruoi oi Theorem 3.3.4;. .iiso. 
d 1 / 2 d t A H  E L2(0 ,  T; [L2(h) ]" )  and 

t i 3 A H  
A(l'a)I?JH(t) = / p / 2 e - " ( t - S ) / J ' / '  -(s) d.5 

0 at 
in [L'((n)]". Applying the estimate (3.19). we obtain 

1/2 

(3.22) 

SO &(t) E Z)(d("")/'), a closed subspace of [W1+a*2(f2)]n, for every t E (0, T). 

- - t (1-a) /2  ( I t  IA1l2 -(s)ll12 a A H  ds) , 
(1 - cr)1/2 0 dt 

To prove the H6lder continuity of ,&: we take 0 < t < t' < T and use 
the following identity in [L2((n)]". which follows immediately from the defini- 
tion (3.18). 

( JH ( t') - JH ( t ) ) 

- - Aa/2 [it' e-,t(t'--J)A1/2 dAH (s) ds - 1' e-A(t-S)A'/2 at 
= Jl(t. t ' )  t &(t: t'). (:3.23) 

where 
Jl(t, t') = J t ' - l  A a / 2 e - A s A I / 2  (t' - .) ds. 

0 at 

--A(t'--t) - 1) I' A a/2e- -A(  t - S )  d 1 / 2  -(s) ds. 
at ~2(t,t') = (e 

We estimate the [L2(R)]"-norms of &(t,  t') and &(t,  t') as in (3.22), making 
use of the inequalities (3.19) and (3.20), 



Here, the positive constants C depend only on A. CY. and 3. The statement of 
the lemma follows. I 

4 Results 

In this section we present our results in three theorems, each with a corollary. 
The proofs are deferred until Section 5.  Unless indicated otherwise, we assume 
that the data entering the equations satisfy the following hypotheses: 

(Hl) R C R“ (n = 2 or 3) is bounded, with dlZ of class CIJ. (That is, 
a R  is a compact (n - 1)-manifold described by Lipschitz-continuously 
differentiable charts.) 

(H2) 7 : dR --f R is Lipschitz continuous, with 7(5) 3 0 for all z E df2. 

(H3) r ~ .  T ,  a. 3 E R are constants. such that 0 5 j3 < m, 0 5 T < cc, 
< Q < 1, and 0 5 3 < f (1  ,. -a). 

The applied vector potential AH is defined by Eqs. (3 .3) .  (3.4). 

4.1 Existence and Uniqueness 

Our first theorem gives the existence and uniqueness of a mild solution of the 
initial-value problem (3.14). 

Theorem 1 Let the initial data (?,bo, Ao) be such that uo = (?bo, A;) G ($0,  A0 

-AH(O)) is in D(d(*+Q)/2). Then the initial-value problem (3.14) has a unique 



mild solution u = ( tb, A') G (g: A - AH),  such that u E C( 0. T ;  W1-tu." ).  The 
order parameter u* of this solution satisfies the "maximum modulus principle, - 

ld~(z~t) l  L max{ 1, Ild~ll~-(n,} for all (z. t )  E x (0.T). (4.1) 

Also, ( tb: A )  E W'*'(O, T ;  L2)  and V . A E L'(0, T ;  [tV-1:2(fl)]n). 

The proof of Theorem 1 is given in Section 5 .  i .  

Observe that the theorem states that ( w .  -4') E C;O. T :  W-17Q.';. To obtain 
a comparable result for ( d ,  A) ,  we need the continuity -AH in time. which. by 
Lemma 1, is controlled by the continuity of N in time. In the hypothesis 
(H4), we have imposed a minimum condition on N. If the hypothesis (H4) 
is strengthened to W E C(0, T ;  [Wa*'(Q)]"), then (@> A)  E C(0, T ;  W'f"2J. 

Theorem 1 defines a solution map So : D(A('+a)/2) + C(0, T; W1+a*2), 

U ( t )  = uo E D(d (l+a"", t E (0,T).  (4.2) 

The properties of SO are considered in more detail in the following section. 

Theorem 1 implies the existence and uniqueness of a weak solution of the 
TDGL equations. 

Corollary 1 T h e  pair (d ,  A)  obtained in Theorem 1 is a weak sohtion ofthe 
boundary-value problem (3.6)-(3.8); Eqs. (3.6) and (:3.7) are satisfied in the 
L 2 ( Q x ( 0 .  T))-sense, Eq. (3.8) in the sense oftraces in Lx(O. T :  tiia-1/2*2(an)). 

4.2 Regularity 

The following theorem improves the continuous dependence of the solution u 
on the initial data uo. Let the map Sp : D(d('f0')/2) - C'(0. T :  W"*) be 
defined by the identity 

tP'u(t) = Sp(t)uo, uo E D(d('+a')12 >, t E (0,737 (1.3) 

for suitable exponents Q, a', p, and p'. 

Theorem 2 Assume that f < CY' 5 Q < 1, 0 5 ,B < $(l - a), and p' = 
@+$(a-a'). Then the mapping Sp defined in Eq, (4.3) is uniformly Lipschitz 
continuous on bounded subsets of D(d('+"')/2). 



The proof of Theorem 2 is given in Section 5.3. 

Theorem 2 implies the existence of a dynamical process for the TDGL 
equations, even when the applied magnetic field is time dependent. 

Corollary 2 T h e  mild solutions u ( t )  ( 0  < t < T )  of Eq. (3.14) obtained 
in Theorem 1 generate a dynamical process {U(t. .s)  : 0 < s 5 t < T }  on 
D(A( '+-) /~) .  so u ( t )  = I-(t..s)ul.s) f o r  all o < 3 5 t < T .  Moreover. f o r  
0 < s < t < T .  each L-( t . . s )  : D ( A ( 1 + a 1 / 2 )  - D(A(1Ta) /2 j  maps bounded sets 
irito relatively compact sets. 

Observe that the theorem states a regularity result for (+, A'). To obtain a 
comparable result for ($, A) ,  we need sufficient regularity of AH. The regular- 
ity of AH is, by Lemma 4, controlled by the regularity of H. In the hypothesis 
(H4), we have imposed minimum regularity on N. If the hypothesis (H4) is 
strengthened to W E Cp(O, T ;  [W"*2(R)]"), then ($, A) E Cp(O, T ;  W'f"*2). 

4.3 Large-Time Asymptotic Behavior 

Next, we investigate the asymptotic behavior of the mild solution u(t)  E 
D(A('+a)/2) of Eq. (3.14) as t -+ co. We restrict ourselves to the case of 
a stationary applied magnetic field W. 

If drH = 0. the hypothesis (H4) reduces to H E [WQ7'(Q)ln, the quantity 
P defined in Eq. (2.22) is zero. and the inequality (2.23) simplifies to 

5 &(O). t E (0 ,T) -  (4.4) 
The dynamical process {b ' ( t , s )  : 0 < s 5 t < T }  on D ( d ( 1 + a ) / 2 )  introduced in 
Corollary 2 is defined for every T > 0 (see Lemma 1) and becomes a dynamical 
system,  

S = {S ( t )  : t 2 0) on D(d('+a)/2) ,  (4.5) 

where 
S(t - s )  = U ( t , S ) ,  t 2 s 2 0. (4.6) 

The set {S(t)uo : t 3 0) is called the (forward) orbit of uo E D(d('+a)/2)  
under S. We denote the set of all limit points (as t 4 00) of the orbit of uo 
by w(u0) and call it the omega-limit set of uo. 



The following theorem shows that the functional E, is a Liapunov func -  
tional for the dynamical system S in the following sense (cf. [22, Chap- 
ter VII, Definition 4.11): (i) E, : D(A(1+a)/2)  + R is continuous, and (ii) 
if uo E D(A(1+a) /2)  is such that E,[S(t)vnl = EWTzl,-,l for some t > 0. then un 
is a stationary point for 3'. 

- -  

Theorem 3 T h e  dynamical sys tem S defined in Eq. (4.5) has the following 
properties: 

( i )  E, is a Liapunov funct ional  ~ O T  S. 

(iii) T h e  omega-limit se t  of each uo E D(A('+")/') is a nonempty compact 
connected set  of divergence- free equilibria. 

The proof of Theorem 3 is given in Section 5.3. 

Property (iii) of Theorem 3 says, in effect, that every element of any omega- 
limit set is a solution of the stationary GL equations (2.29)-(2.31) in the 
London gauge, V - A = 0 in S l ,  that satisfies the condition n - A = 0 on 
the boundary It will be seen in the proof of Theorem 3 (iii) that, for the 
degenerate case w = 0 (hence, q5 = 0), we cannot conclude that the equilibrium 
solutions are divergence free. For the TDGL equations, the gauge "4 = -u(V- 
A)" and the condition V - A = 0 together imply the identity 4 = 0. 

A n  attractor of the dynamical system S is the omega-limit set of one of its 
open neighbors. .4n attractor is called a global attractor if it attracts all its 
open bounded neighbors. 

.An immediate consequence of Theorem 3 is given in the following corollary; 
see [.2, Chapter VII, Theorem 4.11. 

Corollary 3 Let  A be the global attractor and E the set of all stationary points 
of S .  I f  I is discrete, then  A is the union of E and the heteroclinic orbits 
between points of E. 

5 Proofs 

In this section we give the proofs of the theorems presented in the previous 
section. We begin by recalling some general properties of the fractional powers 



of the operator A defined in Eq. (:3.1:3): cf. !17]. 

The fractional powers Ad of the second-order elliptic differential opera- 
tor A defined in Eqs. (3.16) and (3.17) are well defined for all real 8. They 
are iinbounsfeci fw 8 > i). TLe dwmaiu F(A'j is a cioseci iinear subspace 01' 

w 2 8 , 2  for 0 < 8 < 1; hence, CB(O:T;D(A'))  is a closed linear subspace of 
P ( 0 .  T :  W2'.') €or this range of values of 8. Furthermore. for < 8 5 r! 
(and n = 2 or 13). the  traces of V7u. -4. and V A -4 belong to the spaces 

isfy the  boundary conditions specified in Eqs. (:3.16) and (3.17)- Similarly. 
the applied vector potential AH and its curl C x - 4 ~  satisfy the boundary 
conditions (3.1) if W f [ W 6 - 1 3 2 ( f 2 ) ] n .  

- 
[I.[/'# -? ./-.- r, '( 3~ ) ] 2 n .  I ~ t - 9 -  I i'' -*-(afl)]n. " and [l.t-'-'ji".'( &? )Iz. respectively. and sat- 

5.1 Proof of Theorem 1 

Proof. ( i )  Local ezistence and uniqueness. The proof is based on the contrac- 
tion mapping principle applied to Eq. (3.15) in the space C(0,T; W'ca*2) for 
T sufficiently small positive. The choice of the target space W1ca*2 is justified 
because W x f a v 2  is continuously imbedded in WlS2 n L" €or $ < CY < 1. 

It suffices to  prove that F(s,-)  is locally Lipschitz for each s E (O,T), 
where T may depend on the Lipschitz constant. Each term in 3 is estimated 
separately. For example. €or any two elements ul = (titi, Ai)  and 212 = ($2, Ai)  
of W1+av2, we have 

5 Cll~l  - ~211W1+a.2, 

where C is a positive constant that depends only on the norms of u1 and u1 
in W'faq2.  Similar estimates hold for the other terms in 3. 

Let BR be the ball of radius R centered at the origin in W*+a*2. Then, for 
any pair ul ,  7-42 E BR, 

(5.1) 

where the Lipschitz constant C depends on R, but not on 5. The remainder 
of the proof is standard; see [17, Theorem 3.3.31. 

(ii) Global esistence. The maximum modulus principle (4.1) is a conse- 
quence of the maximum principle applied to Eq. (2.5). (Note that every con- 
stant A4 with M 2 1 is a supersolution of Eq. (2.5).) 



The functional E,(t) defined in Eq. (2.20) is bounded on every interval 
(0 ,T) .  by Lemma 1, so 

cf. [fzl, Chapter I. Eq. (5 .35) ] .  Also, AH E L"(0,T: [W1*z(f2)]n), because of 
the hypothesis (H4). Hence. u = (rb. A') E L"(0. T :  W ' y ' ) .  

It follows from Lemma 2. inequality { L ~ Y ) .  that  I, ti*. A )  c ~C-'.'jo. T :  L'! 
and C . A E L' (0 .  T :  jLP2(n)]"j. PVe also have -AH E CI;'*'(O. T :  [ L 2 ( f l ) 1 7 L ' : .  
again because of the hypothesis (H4). Therefore. u 3 Gt-'.'(O. T :  L'j. 

We improve this regularity result by taking advantage of the smoothing 
action of the semigroup e-dt. This smoothing action has already been demon- 
strated on the term &AH in Section 3.3. We first treat A' and use the result to 
improve the regularity of $. Each term in F needs to be estimated separately. 
For example, 

ll!b=v+IlL2 I ll+llL-ll@l~w~~~ I Cll.IIIw1.2. 

Here, C = max{ 1 , ~ ~ & ~ ~ ~ - } ,  which is independent of d~. Similar estimates hold 
for the other terms in F ,  so F E L"(0.T; [L2(R)]"). Therefore, 

(t H 1' e-d(t-")F(s) ds E C(0, T ;  [Wl*-'((n)]"), ) 
so A' E C(0, T :  [W1+a*z(R)]"). 

Next, we improve the regularity of tu. Again, each term in 9 needs to be 
estimated separately. For example, 

where 

and 

(To obtain the last estimate, we used the Sobolev imbedding theorem.) Sim- 
ilar estimates hold for the other terms in 9, so 'p E L"(0,T; [L2(R)I2) and, 
therefore, $ E C(0,T; [W*+a*2((sz)]2)). It follows that u E C(0,T;  W1+ap2), as 
claimed. I 



5.2 Proof of Theorem 3 

Proof. We use Eq. (3.15) to prove the reslari ty of the solution u of the 
initial-valw prob!em (3.14). 

Let BR be the ball of radius R centered at the origin in W1’a*2. Let u1 
and u2 satisfy Eq. (3.15) with initial data ulo and u?o. respectively, in BR. 
Define u = U I  - u? and co = u10 - uzo. Combinin,% the inequality (5.li with 
Eq. (3.1.5). we obtain 



5.3 Proof of Theorem 3 

Proof. (i) The continuity of the functional E, follows from the continuous 
imbeddins of W1Ca,2 i n to  W'72 n L". 

Let uo = (zb, A - AH) E D(A(l'")I?) be such that Ew[S(t)uo] = E,[uO] for 
some t > 0. From the inequality (4.4). we obtain immediately the identities 
& A  = 0 and dJG(G . A )  = 0 in n x (0. t ) .  The first identity implies tha t  
& ( G .  A) = 0 in 0 :< ( O ?  t ) .  From this and the second identity we deduce Lhat 
dJC.A = c in 0 x (0. t ) ,  where c is a real constant. LVe conclude from Eq. ! 2.17; 
that J ,  = 0. .Also. the inequality (4.4) implies ate = irzcw in EL2(Q x (0. L ) ) l 2 .  
so Eq. (2.15) reduces to cIw(' = 0 in R x (0, t ) .  bVe claim that c = 0. 

Suppose c # 0. Then it must be the case that w = 0 in R x (0 , t ) .  Equa- 
tions (2.15)-(2.16) reduce to the boundary-value problem (3.3)-(3.4) for AH. 
Therefore, A = AH and A' = 0 in 0 x (0, t ) ,  so c = WV - AH = 0, and we 
have a contradiction. 

The identity &,b = 0 in SZ x ( O , t ) ,  together with the identity & ( V . A )  = 0 
established above, implies that S(t')uo = uo for all t' E (0, t ) .  

We have proved that E, is a Liapunov functional for S. 

(ii) An immediate consequence of Corollary 2. 

(iii) It follows from (ii) that the omega-limit set of each uo E D(d(1+a) /2)  
is nonempty and compact. We prove by contradiction that w(u0) is connected. 
Suppose w(u0) is not connected. Then w(u0) = K1 U K2, where K1 and K2 
are compact and disjoint. Hence, there exist two disjoint open neighborhoods 
N1 and N2 of K1 and K2, respectively, in D(d('+a)/2) and t o  2 0, such that 
S(t)u, E rV, U N2 for all t >, to. But {S(t)uo : t 2 t o } ,  being the image of the 
interval [to,  oc), is connected, so we have a contradiction. 

The proof that the omega-limit set of uo consists of equilibrium points only 
is standard; cf. 122, Chapter VII, Proof of Theorem 4.11. 

If w = ( $ , A  - AH) E w(uo),  then E,[S(t)w] = E,[w] €or all t > 0: and 
the same argument as in (i) above leads to the conclusion that w ( V  A)  = 0 
i n n .  a 
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