Recent Progress in the Growth of Mid-Infrared Emitters by Metal-Organic Chemical Vapor Deposition

PDF Version Also Available for Download.

Description

We report on recent progress and improvements in the metal-organic chemical vapor deposition (MOCVD) growth of mid-infrared lasers and using a high speed rotating disk reactor (RDR). The devices contain AlAsSb active regions. These lasers have multi-stage, type I InAsSb/InAsP quantum well active regions. A semi-metal GaAsSb/InAs layer acts as an internal electron source for the multi-stage injection lasers and AlAsSb is an electron confinement layer. These structures are the first MOCVD multi-stage devices. Growth in an RDR was necessary to avoid the previously observed Al memory effects found in conventional horizontal reactors. A single stage, optically pumped laser yielded ... continued below

Physical Description

13 p.

Creation Information

Biefeld, R.M.; Allerman, A.A.; Kurtz, S.R. & Baucom, K.C. January 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report on recent progress and improvements in the metal-organic chemical vapor deposition (MOCVD) growth of mid-infrared lasers and using a high speed rotating disk reactor (RDR). The devices contain AlAsSb active regions. These lasers have multi-stage, type I InAsSb/InAsP quantum well active regions. A semi-metal GaAsSb/InAs layer acts as an internal electron source for the multi-stage injection lasers and AlAsSb is an electron confinement layer. These structures are the first MOCVD multi-stage devices. Growth in an RDR was necessary to avoid the previously observed Al memory effects found in conventional horizontal reactors. A single stage, optically pumped laser yielded improved power (greater than 650 mW/facet) at 80K and 3.8um. A multi-stage 3.8-3.9um laser structure operated up to T=170K. At 80K, peak power greater than 100mW and a high slope- efficiency were observed in gain guided lasers.

Physical Description

13 p.

Notes

OSTI as DE98002575

Source

  • 1997 fall meeting of the Materials Research Society, Boston, MA (United States), 1-5 Dec 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98002575
  • Report No.: SAND--97-1477C
  • Report No.: CONF-971201--
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/661741 | External Link
  • Office of Scientific & Technical Information Report Number: 620957
  • Archival Resource Key: ark:/67531/metadc692703

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 5, 2016, 7:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Biefeld, R.M.; Allerman, A.A.; Kurtz, S.R. & Baucom, K.C. Recent Progress in the Growth of Mid-Infrared Emitters by Metal-Organic Chemical Vapor Deposition, article, January 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc692703/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.