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Abstract 

It is well known that mesh quality affects both ef- 
ficiency and accuracy of CFD solutions. Meshes 
with distorted elements make solutions both more 
difficult to compute and less accurate. We review 
a recently proposed technique for improving mesh 
quality as measured by element angle (dihedral an- 
gle in three dimensions) using a combination of 
optimization-based smoothing techniques and local 
reconnection schemes. Typical results that quan- 
tify mesh improvement for a number of application 
meshes are presented. We then examine effects of 
mesh quality as measured by the maximum angle 
in the mesh on the convergence rates of two com- 
monly used CFD solution techniques. Numerical 
experiments are performed that quantify the cost 
and benefit of using mesh optimization schemes for 
incompressible flow over a cylinder and weakly com- 
pressible flow over a cylinder. 

Keywords. Mesh Improvement. Mesh Smoothing, 
Convergence, Efficient Solution 

1 Introduction 

Finite element and finite volume techniques in 
computational fluid dynamics require that the com- 
putational domain be decomposed into simple geo- 
metric elements, typically triangles and quadrilater- 
als in two dimensions and tetrahedra and hexahedra 
in three dimensions. This decomposition can often 
be achieved automatically using available mesh gen- 
eration tools. Unfortunately, meshes generated in 
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this way can contain poorly shaped or distorted ele- 
ments, which cause numerical difficulties during the 
solution process. For example, we know that as el- 
ement angles become too large, the discretization 
error in the finite element solution increases3; and 
as angles become too small, the condition number 
of the element matrix  increase^'^. Thus, for meshes 
with highly distorted elements, the solution is both 
less accurate and more difficult to compute. 

We recently introduced a two-pronged approach 
for effectively improving the quality of triangular 
and tetrahedral meshes based on local reconnec- 
tion schemes and a new optimization-based mesh 
smoothing techniquel6p 14. In this paper we briefly 
review these mesh optimization procedures and 
present typical results for a number of application 
meshes. In the course of those numerical experi- 
ments, we identified particular combinations of tech- 
niques that resulted in the greatest improvement to 
mesh quality, and in this paper we summarize several 
recommendations offered in Freitag and Ollivier- 
Gooch". 

The goal of our current research is to quantify the 
effects of poor mesh quality on solution efficiency for 
CFD applications. In this paper, we perform a de- 
tailed examination of two test problems; incompress- 
ible and weakly compressible flow over a cylinder. 
For the first case, we analyze a number of numerical 
experiments that quantify the convergence rate of 
the solution technique for high quality meshes, show 
how this rate is adversely affected by poor element 
quality, and finally show that time required to im- 
prove the mesh is often less than the time required to 
find an accurate solution on a poor quality mesh. For 
the second test case, we start with a random mesh 
for which the solution technique does not converge 
and show that combined swapping and smoothing 
improves the mesh enough to obtain a convergent 
solution. 

The remainder of the article is organized as fol- 
lows. In Section 2, we will briefly review the mesh 
smoothing and local reconnection techniques used 
for mesh improvement. We then present results that 
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show the improvement of several application meshes 
using a combination of swapping and smoothing and 
review the recommendations for mesh improvement 
given in Freitag and Oll ivier-G~och~~.  In Section 
3, we describe the test cases and solution tech- 
niques followed by several numerical experiments 
that  quantify the effects of mesh quality on conver- 
gence behaviour. 

2 Mesh Improvement Techniques 

Much research has been done in the area of im- 
proving mesh quality through a variety of techniques 
including 

1. point insertion/deletion to  refine or coarsen a 
mesh5, 24, 26 

2. local reconnection to  change mesh topology for 
a given set of verticesl2I ”, and 

3. mesh smoothing to relocate grid points without 
changing mesh 25 

We recently introduced a two-pronged approach 
for effectively improving the quality of tetrahe- 
dral meshes based on local reconnection schemes 
and a new optimization-based mesh smoothing 
technique.14 We now briefly review these procedures. 

2.1 Mesh Smoothing 

Local mesh smoothing techniques are formulated 
in terms of the grid point to be adjusted, the free 
vertez, w ,  and that grid point’s adjacent vertices, V .  
The location of the free vertex is changed according 
to some rule or heuristic procedure based on infor- 
mation available at the adjacent grid points. Sup- 
pose x is the position of the free vertex; then the 
general form of the smoothing algorithms is given 
by 

x,,, = Smooth(x, V, lVl, conn(V)), 

where x,,, is the proposed new position of v, JVI is 
the number of adjacent vertices, and conn(V) is the 
adjacent vertex connectivity information. Ideally, 
the new location of the free vertex will improve the 
mesh according to some measure of mesh quality 
such as dihedral angle or element aspect ratio. 

To evaluate the mesh quality for the mesh ele- 
ments, let fi(x). i = 1,. . . , n ,  be the values of mesh 
quality affected by a change in x. For example, if 
we use dihedral angles as a mesh quality measure in 
a three-dimensional mesh, each tetrahedron would 

have six function values, one for each edge of the 
tetrahedron. Thus, the total number of function val- 
ues affected by a change in x would be the number 
of tetrahedra containing the vertex multiplied by 
six. Let the minimum of the function values ob- 
tained at x be called the active value, and the set 
of function values that obtain that value, the active 
set, be denoted by d(x). 

The action of the function Smooth is determined 
by the particular algorithm chosen, and in this sec- 
tion we briefly describe several different methods; 
more details can be found in Freitag et al.I6, Freitag 
and Ol l iv i e r -G~och~~ ,  and Freitag13. 

2.1.1 “Smart” Laplacian Smoothing 

The first smoothing algorithm is a variant of Lapla- 
cian smoothing that relocates the mesh grid point to 
the geometric center of the adjacent grid points only 
if the quality of the local mesh is improved accord- 
ing to some mesh quality measure. Computing xnew 
is quite inexpensive, and the total time required by 
this method is dominated by the two function evalu- 
ations needed to determine the initial quality of the 
mesh and the resulting quality of the mesh. 

2.1.2 Optimization- based Smoothing 

In Freitag et a1.I6 and Freitag and Ol l iv i e r -G~och~~ ,  
a low-cost, optimization-based alternative to Lapla- 
cian smoothing was proposed. This optimization 
technique uses function and gradient evaluations to  
find the minimum (or maximum) value that a mesh 
quality measure obtains in the solution space. The 
goal of the optimization approach is to determine the 
position x* that maximizes the composite function 

4(x) = min fa(x). 
l s r s n  

For most quality measures of interest, the functions 
fi(x) are differentiable. However, the composite 
function O(x) has discontinuous derivatives wherever 
a change occurs in the active set. 

We solve this nonsmooth optimization problem 
using an analogue of the steepest descent method 
for smooth functions. The search direction s at each 
step is computed by solving a quadratic program- 
ming problem that gives the direction of steepest 
descent from all possible convex linear combinations 
of the gradients in the active set at x. The line 
search subproblem along s is solved by predicting 
the points a t  which the set of active functions will 
change based on the first-order Taylor series approxi- 
mations of the f’(x). The distance from the current 
position to the point a t  which the active sets are 
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predicted to change gives the initial step length CY. 
Standard step acceptance and termination criteria 
are used to ensure a robust implementation. 

I t  has be shown that this technique is equiva- 
lent to generalized linear programming techniques 
by Amenta et al.' and thus the convex level set cri- 
terion can be used to determine whether there is a 
unique solution x*. Amenta et al.' describe the level 
sets for several mesh quality criteria and found that 
many of them meet the convexity requirement for 
unique solutions. 

We note that other optimization-based smooth- 
ing techniques have been developed by researchers 
in the mesh generation and computational geom- 
etry communities. These methods differ primarily 
in the optimization procedure used or in the quan- 
tity that is optimized. For example, Bank7 and 
Shephard and G e o r g e ~ ~ ~  propose similar techniques 
for triangles and tetrahedra, respectively. In these 
methods, an element shape quality measure, q( t ) ,  is 
defined based on a ratio of element area (volume) to 
side lengths (face areas). In each case, q( t )  is equal 
to one for equilateral elements and is small for dis- 
torted elements. The free vertex is moved along the 
line that connects its current position to the position 
that makes q ( t )  equal to one for the worst element 
in the local submesh. The line search in this di- 
rection is terminated when two elements have equal 
shape measure. We note that this does not neces- 
sarily guarantee that the optimal local solution has 
been found. 

All the techniques mentioned above optimize the 
mesh according to element geometry. In contrast, 
Bank and Smith' propose two smoothing techniques 
to minimize the error in finite element solutions 
computed with triangular elements with linear basis 
functions. Both methods use a damped Newton's 
method to minimize the interpolation error or the a 
posteriori error estimates for an elliptic partial dif- 
ferential equation. The quantity minimized in both 
of these cases requires the computation of approxi- 
mate second derivatives for the finite element solu- 
tion as well as the shape function q ( t )  for triangular 
elements mentioned above. 

2.1.3 Combined Approaches 

Experiments in Freitag13 and Freitag and Ollivier- 
Gooch15 showed that the most effective and efficient 
smoothing approach combined the smart Laplacian 
smoother with the optimization-based algorithm. 
Four related combination approaches which used 
Laplacian smoothing as a first step followed by 
optimization-based smoothing for the worst qual- 

ity elements were compared to results obtained with 
smart Laplacian and optimization-based smoothing 
used alone. Test meshes ,for several application ge- 
ometries in both two and three dimensions were ob- 
tained using a variety of meshing techniques ranging 
from Delaunay triangulation2& l9 to ~ c t r e e - b a s e d ~ ~ ,  
advancing fronts, and point insertion a1gorithms2l. 
In all cases, the mesh quality function used to de- 
termine the active value was the minimum sine of 
the angles (dihedral angles in three dimensions) in 
the incident elements. Because the sine function is 
small near the angles of Oo and M O O ,  this mesh qual- 
ity measure has the effect of eliminating both large 
and small angles in the mesh. Effectiveness of the 
smoothing technique was measured by examining 
the global minimum and maximum angles/dihedral 
angles in two/three dimensions. 

In those experiments we found that the 
optimization-based method yielded a greater in- 
crease in the minimum angle than the Laplacian 
smoother did. In fact the Laplacian smoother often 
failed to eliminate extrema1 angles in the mesh. The 
Laplacian smoother yields a greater number of near 
equilateral triangles and tetrahedra due to the aver- 
aging effect of the operator. The increase in compu- 
tational cost associated with the optimization-based 
smoother compared to the Laplacian smoother was 
approximately a factor of four in two dimensions 
and a factor of ten in three dimensions. For all 
but one case, the combined approaches were able 
to obtain the same minimum angle as optimization- 
based smoothing used alone at a fraction of the 
cost. In addition, the combined approaches created 
more equilateral elements than optimization-based 
smoothing used alone. We concluded that the com- 
bined techniques generally generate higher-quality 
meshes than either Laplacian or optimization-based 
smoothing used alone. The cost the combined ap- 
proaches varied depending on the number of opti- 
mization steps performed. We note that more than 
three sweeps of the mesh offer minimal improve- 
ments for the meshes and methods tested. 

All the mesh smoothing results presented in this 
paper use three to five passes of a combined ap- 
proach in which smart Laplacian smoothing is used a 
first step to improve all elements. This step followed 
by optimization-based smoothing for the worst qual- 
ity elements (those with angles less than 30 de- 
grees in 2D and 15 degrees in 3D). This combined 
approach has a computational cost of roughly two 
times the cost of smart Laplacian smoothing. The 
quality criterion used is maxmin sine. 
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2.2 Local Mesh Reconfiguration Tech- 
niques 

Local mesh reconfiguration techniques change the 
connectivity of part of a simplicial mesh to improve 
mesh quality. For triangles, these techniques are 
based on edge swapping, and for tetrahedra, these 
techniques can be divided into two classes: face 
swapping and edge swapping. 

Face swapping reconnects the tetrahedra sepa- 
rated by a single interior face. Each interior face in 
a tetrahedral mesh separates two tetrahedra made 
up of a total of five points. A large number of non- 
overlapping tetrahedral configurations are possible 
with these five points, but only two can be legally 
reconnected. These two cases are shown in Figure 1. 
On the left is a case in which either two or three 
tetrahedra can be used to fill the convex hull of a 
set of five points. Switching from two to three tetra- 
hedra requires the addition of an edge interior to the 
convex hull. On the right of the figure is a config- 
uration in which two tetrahedra can be exchanged 
for two different ones. The shaded faces in the fig- 
ure are coplanar, and swapping exchanges the diag- 
onal of the coplanar quadrilateral. The two coplanar 
faces must either be boundary faces or be backed by 
another pair of tetrahedra that can be swapped two 
for two. Otherwise, the new edge created by the two 
for two swap will not be conformal. 

Figure 1: Swappable configurations of five points in 
three dimensions 

Because each reconfigurable case has only two 
valid configurations, a quick comparison to find the 
one with the higher quality is possible. If the higher- 
quality configuration is not already present, recon- 
nection is performed to obtain it. In the case of 
configurations of equal quality, we select the two-tet 
configuration when choosing between two and three 
tet configurations, and we choose not to swap in the 
two-for-two reconfiguration case. 

Edge swapping reconfigures iV tetrahedra inci- 
dent on an edge of the mesh by removing that edge 
and replacing the original N tetrahedra by 2N - 4 

tetrahedra. The reconfiguration is performed only if 
every new tetrahedron has better quality than the 
worst of the N original tetrahedra. In principal, 
edge swapping could be used to  replace, for exam- 
ple, 12 tetrahedra with 20, but in practice we have 
found that the number of transformations that im- 
prove the mesh declines dramatically with increasing 
N .  In particular, for practical cases 7-for-10 trans- 
formations axe rare, and consequently we have not 
investigated these techniques for N > 7. Edge swap- 
ping is used in two ways: first, as a supplement to 
face swapping, and second as a separate procedure 
specifically designed to remove poor quality tetra- 
hedra. More details can be found in Freitag and 
Ol l ive r -G~och~~ .  

We use two geometric quality measures to de- 
termine whether to locally reconnect a tetrahedral 
mesh: the minmax sine of the angle criterion and 
the in-sphere criterion. The minmax sine criterion 
chooses the configuration that minimizes the max- 
imum sine of the dihedral angle of the tetrahedra 
formed by the five points in the two tets incident 
on a face. The in-sphere criterion selects the con- 
figuration in which no tetrahedron formed by four 
of the five points contains the other point in its cir- 
cumsphere. This leads to a locally Delaunay tetra- 
hedralization in the sense that there is no face in the 
mesh with incident cells violating the in-sphere cri- 
terion that are reconfigurable. For either criterion, 
however, the optimum reached by this face-swapping 
algorithm will probably be local rather than global. 
Recent work by Joe 2o describes a more advanced 
technique for improving mesh quality by local trans- 
formations. This approach notwithstanding, how- 
ever, it is not known whether the global optimum 
can be reached by a n y  series of local transforma- 
tions. 

2.3 Mesh Improvement Results 

In Freitag and Oll ivier-G~och~~,  we presented re- 
sults for mesh improvement using in-sphere and min- 
max dihedral angle face swapping and Laplacian and 
optimization-based smoothing techniques for three- 
dimensional tetrahedral meshes. For two random 
meshes and three application meshes, we showed 
that neither swapping nor smoothing were able to  
make significant improvements in mesh quality when 
used alone, The face swapping techniques fail to 
remove very small and very large angles and the 
smoothing techniques fail to improve the overall dis- 
tribution of angles because they cannot change local 
mesh connectivity. However, we showed for these 
test cases that the cumulative improvement obtained 
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Min Max % dihedral angles < % dihedral angles > 
Case Dihed Dihed 6" 12O 18" 162O 168O 174O 

T-fire boiler before 0.26O 179.63O 0.13 0.45 0.92 0.21 0.10 0.026 
T-fire boiler after 1.59O 176.59O 0.019 0.065 0.11 0.034 0.018 0.0018 
Tire incinerator before 0.66O 178.88O 0.11 0.54 1.27 0.072 0.035 0.0075 
Tire incinerator after 4.34O 174.28O 0.0045 0.014 0.10 0.0060 0.0030 0.0015 
ONERA M6 wing before 0.0066" 179.984O 0.78 1.63 2.85 0.57 0.41 0.23 
ONERA M6 wing after 0.035O 179.929O 0.28 0.79 1.69 0.25 0.13 0.048 

L 

Table 1: Mesh improvement for three application meshes 

when combining in-sphere and minmax swapping 
followed by the combined smoothing technique re- 
sults in very high quality meshes. 

Two of the application meshes were generated in 
the interior of a tangentially-fired (t-fired) industrial 
boiler and a tire incinerator, respectively. The third 
application mesh was generated around the ONERA 
M6 wing attached to a flat wall. Each mesh was 
generated using point insertion techniques combined 
with face swapping'*. 

The improvement in mesh quality achieved for 
each of the three application meshes is shown in Ta- 
ble l .  For each case we show the minimum and max- 
imum angle in the mesh before and after mesh im- 
provement as well as the percentage of angles in the 
lower and upper three 6O bins. For all three cases, 
mesh quality is improved significantly. The final 
mesh quality differs dramatically among the three 
cases, because of the initial topology and point dis- 
tribution of the meshes. For example, the M6 wing 
mesh began with a very large number of poor dihe- 
dral angles in adjacent tetrahedra. Clustering of bad 
tetrahedra was fairly common in our initial meshes, 
with the worst cells often sharing vertices, edges, or 
even faces. While smoothing improved many tetra- 
hedra, some could not be improved without making 
a neighboring cell worse. and so no improvement was 
made. 

These experiments led to several general rec- 
ommendations for the improvement of tetrahedral 
meshes which we list here. 

0 Never use the in-sphere criterion during the fi- 
nal pass of face swapping. The in-sphere cri- 
terion performs poorly in practice with respect 
to extrema1 angles. Edge swapping is a benefi- 
cial supplement to face swapping and should be 
used. 

Meshes whose connectivity has not been im- 
proved during generation should be reconnected 
using in-sphere face swapping, followed by face 
and edge swapping using the niasmin sine of 

dihedral angle criterion. For meshes that have 
initially reasonable connectivity, only the sec- 
ond pass need be performed. 

0 The local reconnection schemes should be 
followed by two passes of a combined 
Laplacian/optimization-based smoothing tech- 
nique followed by an edge swapping procedure 
to  remove the worst tetrahedra from the mesh 
and finishing with two more passes of smooth- 
ing. Quality criteria that tend to eliminate 
small angles in the mesh are more effective than 
criteria that tend to eliminate large angles. 

3 Numerical Experiments 

We now examine the effect of mesh quality on the 
convergence rates of commonly used solution tech- 
niques for incompressible and weakly compressible, 
two-dimensional flow applications. We consider two 
test cases; the first is incompressible flow in a chan- 
nel around a cylinder, and the second is weakly com- 
pressible flow over a cylinder at Mach 0.3. The so- 
lution for the first test case is obtained using linear 
finite element techniques with four point Gaussian 
quadrature. The linear systems are solved by using 
the GMRES solvers in the PETSc toolkit for scien- 
tific computation4 with a relative convergence toler- 
ance of 1-12. The solution for the second test case 
is computed using an edge-based, vertex-centered fi- 
nite volume solver for which second-order accuracy is 
attained using least-squares reconstruction. Results 
for both cases show that element quality has a sig- 
nificant effect on the convergence rate of the solution 
procedure and that the cost of the mesh optimiza- 
tion procedures described in the previous section is 
less than the cost to obtain comparable accuracy on 
poor quality meshes. 
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3.1 Case Study 1: Incompressible Flow 
Over a Cylinder 

Our first case study is incompressible flow over a 
cylinder centered in a channel. The computational 
domain is four cylinder diameters long and two wide 
with a symmetry condition imposed on the upper 
and lower surfaces. For our test problem we choose 
the radius of the cylinder to be 2 5  and the uniform 
flow to be U = 1 in the x-direction. The compu- 
tational domain is triangulated with the delaunay 
mesh generation package Triangle28. We show the 
geometry and a typical mesh with N = 800 grid 
points in Figure 2. 

Figure 2: Delaunay mesh for flow over a cylinder 
(N=800) 

Experiment 1: Convergence of GMRES. Our 
first experiment examines the effect of grid spacing 
on the convergence rate of the GMRES solvers. It 
is well known that the number of iterations for the 
ILU preconditioned Conjugate Gradient (ILUPCG) 
algorithm increases as the grid spacing, h,  decreases. 
In particular, for elliptic operators with periodic 
boundary conditions on the unit square, several au- 
thors have shown that the number of iterations re- 
quired by ILUPCG is proportional to h - f  when 
2nd order central finite differences is used on nat- 
ural ordering of grid points”. To empirically ob- 
tain the convergence behavior of GMRES on this do- 
main we ran a series of numerical experiments with 
N = 200, 400. 800, 1600, 3200. 6400, and 12800 
grid points. Each of these meshes has a minimum 
angle of approximately 30” and a maximum angle 
between 110” and 120”. We consider three differ- 
ent solvers; GSIRES with no preconditioning (GM- 
RES), GMRES with Jacobi preconditioning (GM- 
RES/Jac), and GMRES with no-fill ILU precondi- 
tioning (GMRES/ILU). All are restarted using the 
PETSc default value of 30 iterations. Table 2 gives 
the number of grid points used and the number of it- 
erations required for each of the three solution tech- 
niques. 

Table 2: Number of iterations as a function the num- 
ber of g 

1600 
3200 
6400 

d points in the mesh 
Number of Iterations 

GMRES 
199 
316 
670 
1176 
2093 
4205 
8571 

GMRES/Jac GMRES/ILU 
172 41 
217 79 
567 143 
949 218 
1571 303 
3128 690 
5605 1263 

The number of iterations for each of the solu- 
tion techniques is also given graphically in Figure 
3 as a log-log plot. It is clear that in each case 
the number of iterations is growing as a function 
of N and that ILU requires considerably fewer iter- 
ations than the other two techniques. Linear least 
squares analysis gives the slopes of these curves to 
be s = .907, .866, and .792 for GMRES, GM- 
RES/Jac, and GMRES/ILU respectively. Thus, as 
N increases, the number of iterations grows as N ” .  
We further note that the work required for each it- 
eration is dominated by a matrix/vector multiplica- 
tion which is 6 ( N )  operations for the sparse linear 
systems generated by the finite element technique. 
Therefore, the total work required to solve the sys- 
tem is approximately O(N1+”) for each of the iter- 
ative techniques. 

iterations vs N 

100 7 

10 
100 loo0 loo00 

N 

0 cGMRES ,p - GMRES/Jacobi ;;/ 
.. ’ ’/ c. GMRESALU 

Figure 3: The number of iterations as a function of 
the number of grid points in the mesh 

Experiment 2: The  effect of element quality o n  
convergence. We use the iteration counts given in 
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Figure 5: The effect of element quality on the convergence rate of the three solution techniques elements 

Figure 4: An example of perturbing an element to 
create poor quality elements 

Table 2 as a baseline to  examine the effect on the 
convergence rates of element quality as measured by 
the maximum angle. To control the maximum an- 
gle in the mesh, we start with the original meshes 
created with Triangle and insert a new grid point 
a distance E from and perpendicular to the mid- 
point of an edge of ten percent of the elements. 
The distance E is chosen to result in an element 
with the desired maximum angle. For each point 
inserted two new elements are created so that the fi- 
nal mesh has N + . lN grid points and 2N + .2N 
elements. An example this point insertion tech- 
nique is shown in Figure 4. Using this technique 
we created a series of meshes for each original mesh 
with N = 200, 400, 800, 1600, and 3200 grid 
points. Each series consists of five meshes with 
poor quality elements whose maximum angles are 
170°, 175", 178", 179": and 179.5", respectively. 

In Figure 5 we show the number of iterations re- 
quired to reach an accuracy comparable to that ob- 
tained on the original meshes verses the maximum 
angle in the mesh for each of the three solution tech- 
niques. For each iterative technique, large maximum 
angles significantly affect the convergence rate, par- 
ticularly if the maximum angle is 178" or greater. In 
fact, for the largest values of 1V and for maximum an- 
gles greater than 175" and 179", GMRES and GM- 

RES/Jac failed to converge to the desired tolerance 
in less than the maximum number of iterations al- 
lowed (10,000). GMRES/ILU performs significantly 
better and has severely degraded performance only 
when maximum angles are greater than 178O. 

For each N and a maximum angle of 170°, the 
number of iterations for GMRES is roughly tripled 
compared to GMRES on the original mesh, more 
than doubled for GMRES/Jac, and almost doubled 
for GMRES/ILU. We note that the amount of work 
required to smooth each mesh is an O ( N )  opera- 
tion, and the following question arises: "For what 
values of N and maximum angle in the mesh is the 
extra work associated with smoothing the mesh less 
than the extra work required to obtain an accurate 
solution on a poor quality mesh?". 

Experiment 3: Determination of smoothing 
benefits on solution time. We address the question 
given above by comparing computing the difference 
in solution times on the poor quality mesh and on 
an improved mesh (including the time to improve 
the mesh). For this experiment, we improve each 
mesh with three passes of the combined approach 
described in Section 2.1.3 and element quality typ- 
ically improves to greater than 15" for the mini- 
mum angles and less than 140" for the maximum 
angle. From our first and second experiments, we 
expect that the benefits of smoothing will be more 
pronounced as both N and the maximum angle in- 
crease, and we include the original meshes and their 
smoothed counterparts as well so that the maximum 
angles considered in this experiment range from 110" 
to 179.5". In Figure 6, we show the difference solu- 
tion times for the value of N which contained the 
point at which the cost of mesh optimization pro- 
cedures was less than the time required to solve the 
problem on the poor quality mesh. For GMRES, this 
N is 800, and for GR/IRES/.Jac and GMRES/ILU 
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Figure 6: The solution times for convergence of the three iterative techniques for poor quality meshes and 
the same meshes after smoothing 

this N is 1600. The time to  smooth these meshes 
was approximately 3.8 seconds for N = 800 and 7.9 
seconds for N = 1600. We note that for GMRES, 
N=800, only the original mesh has a smaller solu- 
tion time than the smoothed counterpart. For GM- 
RES/Jac the cross-over point is quite close to the 
original mesh and significant improvements are seen 
as the maximum angle in the mesh increases. For 
GMRES/ILU, the benefits are not as pronounced 
for N = 1600, but we note that for N = 3200 per- 
forming mesh smoothing resulted in a lower total 
computational cost on the original and perturbed 
meshes for all iterative techniques. 

3.2 Case Study 2: Compressible Flow 
Over a Cylinder 

Our second case study examines the effect of mesh 
quality on convergence behavior for weakly com- 
pressible flow over a cylinder at Mach 0.3. The com- 
putational domain is nine cylinder diameters long 
and three diameters wide, with a symmetry condi- 
tion imposed on the upper surface. For this exper- 
iment, we generated three meshes each beginning 
with the same random point set with point density 
falling exponentially with distance from the surface. 
This distribution corresponds to a constant stretch- 
ing ratio for structured meshes. The point set con- 
tains 2500 interior points and 190 boundary points, 
which are evenly spaced on the cylinder, inflow, out- 
flow, and upper symmetry plane and exponentially 
stretched along the lower symmetry plane. The first 
mesh, shown in Figure 7, was generated by simply 
inserting the random points into the mesh and swap- 
ping using the Delaunay criterion. The smallest an- 
gle in this mesh is 0.56' and the largest is 178.86O. 
The second tnesh (see Figure 8) was obtained by per- 

forming five passes of optimization-based smoothing 
on the vertices of the first mesh; this improves the 
extremal angles to  12.3" and 145.6O. The third mesh, 
shown in Figure 9, was obtained from the first mesh 
by performing five passes of smoothing alternating 
with passes of swapping using the Delaunay crite- 
rion; this mesh has extremal angles of 23.2O and 
131.9O. Figure 10 compares the overall angle dis- 
tribution for the three meshes. Clearly, smoothing 
alone is very successful in improving the angle dis- 
tribution, dramatically reducing the number of both 
small and large angles. When combined with swap- 
ping, the improvement is even greater. 

Flow around the cylinder was computed us- 
ing an edge-based, vertex-centered finite volume 
solver. Second-order accuracy was attained us- 
ing least-squares reconstru~t ion~~ 22i 23. Following 
reconstruction, fluxes were computed using Roe's 
flux formula and integrated for each control vol- 
ume. Time advance was performed using an ex- 
plicit multi-stage scheme with multigrid convergence 
a ~ c e l e r a t i o n ~ ~ .  In each case, the same three coarse 
meshes were used to eliminate the effects of coarse 
mesh convergence behavior on the results. Figure 11 
shows the convergence rates for each of the fine 
meshes. The random mesh fails to converge, falling 
into a limit cycle with large variations in flow param- 
eters. The smoothed mesh and the smoothed and 
swapped mesh cases both converge, with the asymp- 
totic rate being about 25% faster for the latter case. 
In both cases, the mesh optimization procedures re- 
quired less time than a single cycle of the multi- 
grid solver. In both cases, convergence is limited 
by behavior near the rear separation point on the 
cylinder, where local time step is limited by acoustic 
modes while the solution is changing due to convec- 
tive modes with a propagation speed of M = 0.01 or 
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Figure 7: Random mesh 

Figure 8: Smoothed mesh 

3.3 Summary and Conclusions 

In this paper we examined the costs and bene- 
fits of using mesh optimization procedures to im- 
prove mesh quality for computational fluid dynam- 
ics applications. We briefly reviewed several mesh 
improvement techniques and strategies for triangu- 
lar and tetrahedral meshes and presented typical re- 
sults for the improvement of application meshes. We 
then examined two CFD applications involving Aow 
over a cylinder solved with finite element and finite 
volume solution techniques. 

In both cases, we showed that mesh improvement 
is critical to the efficient solution of the application, 

Figure 9: Smoothed and swapped mesh 
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Figure 11: Convergence histories for subsonic cylin- 
der flow 
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and that the cost of mesh improvement techniques is 
less than the cost of solution time on a poor quality 
mesh. 

In future work we will extend our study of the 
ramifications of mesh quality on solution techniques 
to include more difficult three-dimensional CFD ap- 
plications and an in-depth analysis of solution accu- 
racy. 
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