Quantum-beamsstrahlung laser collider

PDF Version Also Available for Download.

Description

An e{sup +}e{sup {minus}} linear collider at energies beyond a TeV runs into a problem of severe beamsstrahlung, characterized by {Upsilon} on the order of unity (and beyond). In the regime of extremely high {Upsilon} the beamsstrahlung may be largely suppressed due to the quantum effect. In the design of an e{sup +}e{sup {minus}} collider there are two ways to satisfy the collider physics constraints. One is to decrease the number of particles per bunch (and thus to increase the repetition rate) and the other is to decrease the longitudinal bunch length. The former approach can limit {Upsilon}, while the ... continued below

Physical Description

13 p.

Creation Information

Tajima, T.; Chattopadyay, S. & Xie, M. November 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An e{sup +}e{sup {minus}} linear collider at energies beyond a TeV runs into a problem of severe beamsstrahlung, characterized by {Upsilon} on the order of unity (and beyond). In the regime of extremely high {Upsilon} the beamsstrahlung may be largely suppressed due to the quantum effect. In the design of an e{sup +}e{sup {minus}} collider there are two ways to satisfy the collider physics constraints. One is to decrease the number of particles per bunch (and thus to increase the repetition rate) and the other is to decrease the longitudinal bunch length. The former approach can limit {Upsilon}, while the latter boosts it. (It may be useful to reevaluate the future collider parameters in view of this.) The laser wakefield driver for a collider in comparison with the microwave driver naturally offers a very short bunch length, which is appropriate for the latter collider option. The authors show that this choice of collider design with a short bunch length and high {Upsilon} has advantages and provide sample design parameters at 5 TeV. Such sample design parameters challenge them in a number of fronts, such as the preservation of high quality bunches, efficient high repetition rate lasers, etc. The collision point physics simulated by the CAIN code shows a surprisingly well preserved luminosity spectrum.

Physical Description

13 p.

Notes

INIS; OSTI as DE98001979

Source

  • Other Information: PBD: Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98001979
  • Report No.: DOE/ER/54346--803
  • Report No.: IFSR--803
  • Grant Number: FG03-96ER54346
  • DOI: 10.2172/564317 | External Link
  • Office of Scientific & Technical Information Report Number: 564317
  • Archival Resource Key: ark:/67531/metadc692655

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Aug. 10, 2016, 2:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tajima, T.; Chattopadyay, S. & Xie, M. Quantum-beamsstrahlung laser collider, report, November 1, 1997; Austin, Texas. (digital.library.unt.edu/ark:/67531/metadc692655/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.