Control of plasma poloidal shape and position in the DIII-D tokamak

PDF Version Also Available for Download.

Description

Historically, tokamak control design has been a combination of theory driving an initial control design and empirical tuning of controllers to achieve satisfactory performance. This approach was in line with the focus of past experiments on simply obtaining sufficient control to study many of the basic physics issues of plasma behavior. However, in recent years existing experimental devices have required increasingly accurate control. New tokamaks such as ITER or the eventual fusion power plant must achieve and confine burning fusion plasmas, placing unprecedented demands on regulation of plasma shape and position, heat flux, and burn characteristics. Control designs for such ... continued below

Physical Description

7 p.

Creation Information

Walker, M.L.; Humphreys, D.A. & Ferron, J.R. November 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • General Atomic Company
    Publisher Info: General Atomics, San Diego, CA (United States)
    Place of Publication: San Diego, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Historically, tokamak control design has been a combination of theory driving an initial control design and empirical tuning of controllers to achieve satisfactory performance. This approach was in line with the focus of past experiments on simply obtaining sufficient control to study many of the basic physics issues of plasma behavior. However, in recent years existing experimental devices have required increasingly accurate control. New tokamaks such as ITER or the eventual fusion power plant must achieve and confine burning fusion plasmas, placing unprecedented demands on regulation of plasma shape and position, heat flux, and burn characteristics. Control designs for such tokamaks must also function well during initial device operation with minimal empirical optimization required. All of these design requirements imply a heavy reliance on plasma modeling and simulation. Thus, plasma control design has begun to use increasingly modern and sophisticated control design methods. This paper describes some of the history of plasma control for the DIII-D tokamak as well as the recent effort to implement modern controllers. This effort improves the control so that one may obtain better physics experiments and simultaneously develop the technology for designing controllers for next-generation tokamaks.

Physical Description

7 p.

Notes

INIS; OSTI as DE98001836

Source

  • 36. IEEE conference on decision and control, San Diego, CA (United States), 10-12 Dec 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98001836
  • Report No.: GA--A22684
  • Report No.: CONF-971216--
  • Grant Number: AC03-89ER51114
  • Office of Scientific & Technical Information Report Number: 564210
  • Archival Resource Key: ark:/67531/metadc692567

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 18, 2016, 5:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Walker, M.L.; Humphreys, D.A. & Ferron, J.R. Control of plasma poloidal shape and position in the DIII-D tokamak, article, November 1, 1997; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc692567/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.