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First-principles total energies of periodic vicinals are used to estimate barriers for

Pt-adatom di@sion along straight andkinked steps on Pt(lll), andaroundacor-

ner where straight steps intersect. In all cases studied, hopping difision has a

lower barrier than concerted substitution. In con.ict with simulations of dendritic

Pt island connation on Pt(lll), hopping from a corner site to a step whose riser is a

(111)-micro facet is predicted to be more facile than to one whose riser is a (100).

I) Introduction -

By allowing us to follow at the atomic level how the outer layer of a sample

evolves in time, e.g., during epitaxy, high-resolution microscopy offers a glimpse of

the energy landscape in which surface atoms migrate. The idea that controlling sur-

face evolution requires learning what conditions make certain mass-transport pro-

cesses facile and others slow underlines the importance of the clues that scanning

probes thereby afford.

Deriving hard knowledge from a sequence of micrographs is, however, a chal-

lenging task. Matter-transport on the complicated landscape of an imperfect surface

involves many different energy barriers. Thus, it is generally unclear that one’s abil-

ity to simulate micrographs using a limited set of semi-empirical barriers -- and
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until recentlythis was the only way to derive knowledge from scanning-probe data -

- wit-rants the inference that barriers “that work” correspond to nature in an obvious

way.
.

An additional worry, when reactive surfaces are under study, is that data from

apparently well-characterized samples may be governed by contaminant effects. 1

The reason is that gas species from the ambient tend to adsorb at defects, such as

island edges, where their effects are likely to be particularly large. When this is the

case, 1 it is unclear what inferences to draw from agreement of simulations with

experiment.2’3

Studies by Stumpf and Scheffler,4 by rnyselfs and by Bogicevic, et al.6 point a

way out of the problem. Density Functional methods7)8 can now be routinely

applied to periodic systems with unit cells encompassing tens to hundreds of atoms.

Thus, to the accuracy inherent in Density Functional Theory (DFT),7-10using peri-

odic model “defective” surfaces, one can compute energetic barriers to surface atom

displacement near steps, kinks and vacancies, and predict surface morphological

changes instead of fitting to them. In complicated cases, where Monte Carlo simula-

tion based on a limited set of barriers is unavoidable, DFT results can be used to

constrain the choice of barriers.

Ref. 5, on downward self-diffusion at steps on Pt(l 11), illustrates how educa-

tional DFT results can be. The small (20 meV) reflection barrier calculated there for

a Pt atom at a (100)-microfacet step, an “A-type” step in the standard jargon, is

11 that triangular pyramids bounded by A-typeinconsistent with the observations

steps grow on the clean

layer-by-layer epitaxy by

surface up to -450K, and that O pre-coverage restores

reducing the A-step reflection barrier.
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The worrisome inability of DFI’ to account for these observations had a surpris-

ing denouement, when Kalff, et al. reported, independently, that the surface mor-

phologies of Ref. 11 had been strongly affected by adsorption of CO from the
.

vacuum system ambient. 1 Consistent with DZT ener-getics, the Pt islands that grow

in the absence of step-bound CO are bounded by (111)- rather than (100)-microfac-

eted steps.1*12 -

Among the conclusions one may draw from this surprise is that modem D~

calculations are sufficiently realistic and reliable that they can and should be used to

critique experiment. Though IWI”s systematic error level remains a quantitative

question,’ the day is past when one could dismiss the possibility out-of-hand that a

gross disagreement between experiment and lst-principles theory might reflect a

systematic experimental problem.

In what follows, therefore, I extend consideration of the energy landscape expe-

rienced by Pt atoms near steps on Pt(111) to edge-running and comer-rounding bar-

riers. These barriers make

islands, and must be part

Ft(ll 1) s?mple.

For example, Hohage,

the difference between compact, fractal and dendritic 13

of an effort to simulate the morphology of a growing

et al. attribute the occurrence and orientation of dendritic

islands on Pt(111) between 150 and 250K to the difference in barriers experienced.
by a Pt adatom moving from an island comer to an adjacent (100)- or (11l)-micro-

faceted edge. 14On the basis of simple geometry, they argue that the adatom should

move more readily to the (100)-type step, and show via a Monte Carlo simulation

that this assumption produces dendritic islands of similar character to those

observed experimentally.
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Nonetheless, the DFT results reported below predict just the reverse anisotropy,

in qualitative agreement with earlier, semi-empirical calculations of Ref. 2 and of

Brtme, et al.15Thus we must explain a disagreement between theory and the appar-

ent implications of experiment, once again.

Making it difilcult to ascribe Ref. 14’s results to surface contamination, new

experiments show that -epitaxy under “extremely clean conditions” produces similar

dendritic islands, with same orientation. 16This result underlines the importance of

15 that Pt atoms approaching an islandconsidering ideas such as Brune, et al.’s,

might be preferentially guided to (100)-microfaceted edges without ever attaching

to the corner. In this scenario, the corner-to-edge barrier anisotropy is irrelevant.

To obtain DFT barriers, I compute total energies of representative periodic Pt

vicinal surfaces, with Pt adatoms placed in appropriate locations. Pt(854), for exam-

ple, has (100)-microfaceted steps (henceforth referred to as “A-type”), interrupted

by a kink every fourth atom and separated by (111)-terraces 4 atomic rows wide

(see Fig. 1). Pt(874) similarly represents kinked (111)-microfaceted (henceforth “B-

type”) steps, and a 2x1 “reconstruction” of Pt(432) is convenient for the study of

diffusion around the 120” comers where the two types of step meet..

These vicinals involve a substantial number of inequivalent atoms per surface

unit cell. That their energies can now be calculated routinely testifies to the enor-
.

mous power of modem parallel computers and the sophisticated Vienna Ab hzitio

Simulation Package (VASP),17-19which I have employed.

The computed barrier energies summarized in Tables 1-3 embody several

significant results beyond the barrier anisotropy just discussed:

1) In all cases considered, i.e., for straight and kinked A- and B-type steps

and around corners between them, diffusion by concerted substitution (CS), in
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which a step-edge atom emerges onto the terrace and is simultaneously repIaced by

the initial adatom, is considerably less facile than by ordinary adatom hopping.

Within the Local Density Approximation (LDA),1° the CS barriers are 0.3 to 0.4 eV
.

higher than those for hopping.

2) Hopping barrier energies mainly reflect local geometry, i.e., the arrange-

ment of the adatorn’s nearest neighbors along its diffhsion path. Thus, hopping from

a comer to an adjacent step-edge site costs close to the same energy whether the

comer represents a kir&, as on Pt(854) or Pt(874), or the intersection of A ‘

B-type step, as on Pt(432). .

3) For the same reason, but perhaps more surprisingly, barriers

an A-anaa

to diffusion

along straight steps and around corners are also not very different, ranging between

0.8 and 1.0 eV. This result reflects an “early barrier” for an adatom moving around a

comer, experienced as it moves parallel to the step-bottom where it is initially

bound.

4) The computed barriers are roughly twice as large as the semi-empirical

results of Refs. 2 and 15.

The remainder of this article is organized as follows: In Sec. II, I provide rel-
.

evant details of the numerical calculations. Sec. III is devoted to presentation and

explanation of the resulting diffusion barriers. In Sec. IV I compare to experiment,
.

where possible, and to earlier calculations based on semi-empirical force laws.

Finally, in-See. V I discuss directions for further study.

II) Numerical methods -

The DFT results reported here were obtained using the efficient and accurate

total-energy and rnolecuku-dynamics package, VASP (Vienna ab-initio simulation
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package), 17-19its corresponding ultrasoft-pseudopotential data-base,22 and either

the local exchange-correlation potential of Ceperley and Alder,23 or the Perdew-

.Wang ‘91 Generalized Gradient Approximation (GGA).8 Although plane-wave cal-

culations for d-electron metals typically require unwieldy basis sets, use of an ultra-

soft pseudopotential assures convergence of total energy differences with modest

basis-cutoffs, specificfiy, 14 Ry for Pt. To accelerate electronic relaxation, I use the

Fermi-level smearing approach of Methfessel and Paxton, with a width = 0.2 eV.24

As noted above, I estimate diffusion barriers by comparing total energies of

periodic vicinal thin slabs whose geometries correspond to the beginning and end of

a diffusion step, and the transition, or saddle point between them. I set the slab lat-

tice parameter to the optimal bulk LDA or GGA value, namely 3.91 or 3.99 ~

(experiment = 3.92 ~). To locate transition geometries I use J6nsson’s “nudged

elastic band” (NEB) scheme,25 typically placing four slab replicas between the ini-

tial and final configurations and determining the barrier energy via a spline fit.26

The barrier energies quoted are numerically accurate to -20 meV.

The following subsections provide specifics of the vicinal slab calculations

that represent diffusion along the bottoms of A) straight steps and B) kinked steps,

and C) around the 120° corners where A- and B-type steps intersect.

A) Diffusion along unkinked A- and B-steps - To estimate diffusion barriers for

straight A- and B-type steps, I compare total energies of 3x1 arrangements of Pt

adatoms on 20-layer Pt(322) and 18-layer Pt(221 ) slabs (see Figs. 2a and b), in each

case fixing the lower five atomic layers in their bulk DIW positions, and relaxing all

the rest. The (322) and (21 1) slabs have rectangular primitive unit cells, whose

reflection symmetry is conveniently unaffected by adding 3x1 arrangements of ada-
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toms along the step bottoms. Their (111)-terraces are 5 and 4 atomic rows across,

sufficiently wide that step-to-step interaction effects are small. The same applies to

the separation of the adatoms in the assumed 3x1 adsorption geometry.
.

I relax electronic densities till the total energy is converged to -5x10-6 eV/

atom and geometries till the forces on unconstrained atoms are below -0.03 eV/~.

Because the bonding of Pt is dominated by d-electrons, which occupy relatively flat

bands, and aiming for 20 meV accuracy in difi%sionbarriers, the Surface Brillouin

Zone sample I have used, comprised of 16 equally spaced k-vectors, is conserva-

tive.

For the sake of a consistency check (see Sec. IIID), I also report step-bottom

adsorption energies on a Pt(l 11)-3 x 4~3 supercell slab whose surface is a periodic

array of stripes. As Fig. 2C makes plain, the valleys on such a surface are bounded

on one side by an A-type step and on the other by a B-step.4 Thus Pt binding ener-

gies at A- and. B-type steps can be subtracted with optimal error cancellation. The

energies reported below for the stripe-islands correspond to a slab whose stripe-

islands and the valleys between them are both four atomic rows across. The slab is

five layers thick in the valley regions. The stripes thus represent half a sixth layer. In
.

these calculations I sample the Brillouin zone with 8 equally spaced k’s.

B) Diffusion at kinked A- and B-type steps - To study diffusion around kinks, I

compute total ene;gies of the Pt(854) and (874) surfaces, which are illustrated in

Figs. 1 and “3. Pt(854) is comprised of terraces four atomic rows wide between A-

type steps that have a kink every fourth atom (see Figs. 1). Pt(874) also has terraces

4 atom rows across between steps kinked every fourth atom (see Figs. 3). On this

crystal plane, however, the kinked steps are B-type.

To limit quantum size effects, I represent the (854) and (874) surfaces of Pt
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by 61 and 64 layer slabs whose thicknesses are roughly equal to that of a 5-layer

Pt(lll) fdm. In each case I fix the positions of the lower 24 atomic layers at their

bulk DFT positions and allow the remainder to relax. Force and energy tolerances
.
are as in the straight-step calculations.

As a check on the convergence of the calculated energies with the size of the

surface Brillouin zone. sample, I compare Pt(874) results corresponding to 4 and 16

k-vector samples. The results agree to -20 meV, implying that the 16-k sample

gives a sufficiently accurate picture.

C) Diffusion at the intersection of an A- and a B-type step - For diffusion near

intersections of A- and B-type steps, I calculate the energetic of hypothetical 2x 1

reconstructions of Pt(432), as illustrated in Figs. 4. Displacing atoms “a” in the

unreconstructed geometry of Fig. 4a to the right, I arrive at the geometry of Fig. 4b,

where they are now located on the A-step side of comer site, y. Moving them far-

ther, or substituting them for corner-atoms “B,” as in Fig. 4c, I can estimate the

energetic of corner rounding by either site-to-site hopping or concerted substitu-

tional diffusion. The results reported correspond to 52 atomic layer 2x1-(432) slabs

whose thickness is roughly that of four (111)-layers. The lower eight 2-atom layers
.

are fixed at bulk DFT relative positions and the rest relaxed. Here as in the other

cases studied, I use a full SBZ sample of 16 equally spaced k’s.
.

III) Computed diffusion barriers -

In tie following subsections I present and discuss the calculated energetic of

self-diffusion along the bottoms of A) straight and B) kinked steps on Pt(111) and

C) around the 120° comers where A- and B-type steps intersect on the same sur-

face. In subsection D) I show that, to within a reasonable level of accuracy, the

results presented are in accord with the principle of detailed balance. Because LDA
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hopping barriers are several tenths of an eV lower than CS barriers (cf. Table 1), the

discussion focuses on hopping.

A) Diffusionalongunkinked A- and B-steps - Calculated and measured edge-run-
.
ning barriers (see Table 2) are roughly two and a half times larger thim the self-dif-

fision barrier on Pt(l 11), “whichequals 0.29 eV in both the LDA and the GGA. At

fist glance this difference may seem surprising, since the number of an adatom’s

near neighbors diminishes by only one as it displaces aIong a step bottom to the bar-

rier geometry -- just as on a perfect (111) terrace. A more serious look at bond

lengths, however, shows that coordination loss in displacement to the step-bottom

barrier geometry is considerably greater than in diffusion ona(111) terrace.

Specifically (see Table 4), ona(111) surface the cost of displacing an adatom

from its initial fcc 3-fold hollow to a bridge is that of replacing three longer bonds

by two shorter ones (shorter by 2%). In contrast, in the barrier geomet~es for diffu-

sion along A- and B-type steps, the adatom’s initial five bonds are replaced by two

short ones and two long ones. At an A-step, after elimination of one bond to a step-

edge atom, one other shortens by 4%, one is replaced by bond that is 69Z0longer and

two others remain of roughly the same length. At a B step, beyond eliminating one
.

short bond, displacement

and replacing two others

(111) terrace, the “barrier

because the loss of one

to the barrier means shortening two bonds by 7% each,

with bonds longer by 8910and

to displacement along a step

rather strong bond is poorly

4910.Thus, compared to a

bottom is relatively large

compensated, overall, by

strengthening of the remainder.4

B) Diffusion along kinked steps - Usually, hopping from an edge-site into a kink

will take place in two steps (cf. Figs. 1 and 3). First the adatom will move from the

edge, where it has five neighbors, to a comer site where, having lost contact with an
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upper terrace atom, it has just four. Then, barring a return to the edge, it will dis-

place into the kink where it has six neighbors and is tightly bound.

At a kinked B-step, according to the present calculations, displacement from
.

the 5- to the 4-fold site is only weakly affected by the reduced coordination of the

final state. Within the LDA(GGA), the barrier is 0.89(0.74) eV, as against

0.90(0 .77)eV for hopping along the straight B-type step. This suggests that the B-

edge-to-comer barrier is largely determined locally.4 In other words, it occurs

“early” enough that the absence of a next-nearest step-edge neighbor in the barrier

geometry is of little consequence.

The bond-length comparison in Table 5 supports this picture. The shortest

adatom bond lengths for B-edge-to-corner diffusion on Pt(874) are within O.01~ of

the corresponding lengths at the barrier for diffusion along the straight B-step of

Pt(221). The next-longer bonds, to step-bottom atoms Bl and B2 in Fig. 3b, are also

relatively close in length, 2.71 and 2.79& to the corresponding bond lengths, 2.76

and 2.76& in the barrier geometry on Pt(221).

That the adatom’s bonds to BI and B2 are of diflerent lengths reflects the

kink-related asymmetry of the energy landscape near the diffusion barrier. That
.

these lengths are not ve~ different means the asymmetry is weak.

In the A-edge-to-corner barrier configuration on Pt(854), the lengths of the

two shortest bond~ between adatom and its substrate neighbors are also close to

what is found for diffusion along the corresponding straight edge (see Table 5) --

and as for the B-step case, the lengths of next longer bonds, ~Tl=2.66~ and

~T2=2.92~ (see Fig. lb) bracket the corresponding straight-edge barrier bond

lengths, 2.73 and 2.73 & However, given that bond strength is quite sensitive to

bond length, the 0.26~ difference between ~Tl and ~T2 signals a not-so-weak
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asymmetry of the near-kink energy landscape, and a significant effect on diffusion.

It is therefore not a surprise that the barrier to displacing from the 5- to the 4-

fold site is not identical to the diffusion barrier along the straight A-type step, but

more than 0.1 eV higher. More precisely, on Pt(854), within the LDA(GGA), the A-

edge-site-to-comer barrier is 0.96(0.82) as against 0.84(0.71) eV for hopping along

the straight A-type step.

It is important to appreciate that, by the principle of detailed balance, any

effect on an edge-to-cofier barrier has a corresponding effect on the reverse pro-

cess, in this case on corner-to-edge displacement. Moreover, locality of bonding

implies that the binding energies of adatoms in comer sites on the kinked A- and B-

type steps of Pt(854) and (874) must be roughly equal. On the basis of the edge-to-

comer barriers just discussed (refer to Table 2 for a summary), one can therefore

expect the corner-to-B-edge activation energy on Pt(874) to be about 0.08 eV

smaller than the comer-to-A-edge barrier on Pt(854). In agreement with this expec-

tation, the calculated LDA(GGA) corner-to-edge barrier is 0.40(0.37) eV for the

kinked B-type step and 0.5 1(0.46) eV for the kinked A-step.

This comer-to-edge barrier difference is of the order of magnitude needed to

explain the formation of dendritic islands in epitaxy on Pt(l 11),27 but it has the

14Implications of this discrepancy are dis-wrong sign to explain their orientation.

cussed below. First, however, it is worth trying to gain some understanding of the

physics that-gives rise to the barrier anisotropy.

To this end, note that while the adatom diffusion path from comer to B-edge

site is essentially a straight line parallel to the B-step (cf. Figs. 3), for displacement

from comer to an A-edge matters are different. In that case (see Fig. la), the atoms

on the lower terrace fwst guide the adatom away from comer atom C and toward
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hcp hollow, h, then back toward the f~st 5-fold coordinated A-edge site. On a

straight A-edge, sufficiently far from a kink, the diffusion barrier geometry is sym-

metrically located between neighboring 5-fold sites, where a “zig” ends and a “zag”
.
begins. But immediately at a kink, the fiist “zig” coupled with the strong pull of the

undercoordinated corner atom produces an asymmetric barrier and a correspond-

ingly higher activation- energy for diffusion.

In Ref. 15, Brune et al. remark that strain reliejis the source of the low comer

to B-edge barrier. The idea is that the short bonds required in the B-edge barrier

geometry are favored by Pt, whose relatively low temperature reconstructions iden-

tify it as a high-surface stress material. The semi-empirical calculational evidence is

that on a “low stress”

rather than B-edges.

Whether these

Ag surface, Ag atoms prefer

thoughts will be supported

to diffuse from corners to A-

by stress-relief calculations

remains to be seen. It is clear from the present calculations, though, that the barrier

to diffusion from a corner to a B-edge site is virtually identical to that for displace-

ment along a straight B-step. Thus, whatever the contribution of stress relief may

be, it is the same near a kink as far from one. This argument casts doubt on the
.

stress-relief explanation of the barrier anisotropy. What is different near a comer as

against a straight edge is the asymmetric organization of the atoms on the A-step

side of the comer. fiat, coupled with the low coordination of the corner atom, is the

most likely source of the computed high barrier against comer-to-’A-edge displace-

ment.

C) Diffusion around intersections of A- and B-type steps - As in edge-to-

kink displacement, an adatom will usually hop in two steps around a 120° comer

where an A- and a B-type step intersect. First displacing from an edge 5-fold site to
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a comer 4-fold geometry, the adatom will then move onto a 5-fold site on tie other

edge. According to Table 2 the barriers for displacement between 4- and 5-fold sites

at a corner on Pt(432) are within 20 meV of the barriers for the corresponding dis-

placements at the bottoms of the kinked steps of Pt(854) and Pt(874), one last con-

sequence of locality.

These results confirm that displacement from a corner site to a B-step edge is

more, rather than less facile than to an A-step edge site -- specifically, the

LDA(GGA) barrier agtinst displacement from a comer-site to the B-type edge is

0.09(0.06) eV smaller than to the A-edge. As was proposed at the end of the previ-

ous section, the source of this difference is likely the conflict between the zig-zag

diffusion path imposed by the lower terrace, as one moves from comer to A-edge,

and the need to coordinate as strongly as possible to the corner atom. In any event,

accepting the validity of the numerics, it remains to explain the orientation of the

dendritic islands observed in Ref. 14, which according to simulations,14*15require

that the corner-to-B-edge barrier be the lower.

D) Consistency of the calculated energies - Before comparing calculated to

measured edge-running and comer-rounding barriers, it is important to consider the
.

consistency of the calculated results -- and at first glance, there is some reason for

concern. Since A-type steps have a higher formation energy than B-type,*g the

former should be more reactive and should bind Pt adatoms more strongly.4730Not-

withstanding, the Pt(432) barriers in Table 2 imply28 a negligible LDA binding

energy difference between 5-fold sites immediately on the A- and B-step sides of a

comer. In the GGA (see Fig. 5), the difference is also small; the A-step site is favor-

able by only 0.02 eV.31

Why does displacing an atom from the A- to the B-side of a comer incur vir-
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tually no energy cost? Without responding to this question directly, an obvious reply

is ~at there is no reason that binding energies at 5-fold edge sites adjacent to cor-

ners should be the same as at 5-fold sites farther down an edge. In fact, based on

FIM observations, Fu, et al.32 show that just such an energy difference exists for an

Ir adatom on the A-step side of an island comer onIr(111), and amounts to -0.03

eV.

No comparable result has yet been reported for Pt. In the meantime, however,

it is of interest to compute the energy required to displace a Pt adatom from a

straight A- to a straight B-edge site, and verify that it is positive and substantial. To

this end, I optimize adatom geometries on striped (111)-slabs (cf. Sec. HA). Within

the LDA(GGA), using the supercell schematized in Fig. 2c, I find that a Pt adatom

should gain 0.11(O.13) eV in moving from a B- to an A-type step, in qualitative

agreement with the idea that the step with the higher formation energy should be

more attractive to an adatom.29

IV) Theory vs. experiment -

Comparison with available data (cf. Table.3) establishes that the reliability of

DFT self~diffusion barrier calculations for Pt(l 11) and its vicinals is in the neigh-

borhood of 10%. For example, the computed barrier for adatom hopping on Pt(l 11),

sq~s4~d scanning Tunnelingis -0.29 eV in both LDA and GGA, while Field Ion

Microscopy35 (FIM and STM) concur on an experimental value of -0.26 eV.

Edge-running along the bottom of a B-type step is represented in the litera-

ture by Bassett and Webber’s FIM measurement of self-diffusion on Pt(33 1).19

They obtain a barrier of (0.84*0. ~

tiers of 0.90 and 0.77 eV.

O)eV, which is bracketed by LDA and GGA bar-
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The only experimental results available for edge-running along an A-type

step are for self-diffusion on Pt(3 11). As Figs. 6 make clear, one can scarcely speak

of(111) terraces on this vicinal, since they are only two atomic rows wide. Compar-
.
ison with edge-running barriers computed for Pt(322), whose (111) terraces are 5

atomic rows across, is therefore not quite fair.

Instead, I have directly computed barriers for diffusion along the grooves of

Pt(3 11) for comparison to experiment. They are 0.77eV (LDA) and 0.64eV (GGA),

compared to FIM-based measurements yielding (0.69&0.20) and (0.604.03)

eV 20>21The GGA result is in rather close agreement with experiment, evidently,

while the LDA barrier is rather too high.

Before leaving the case of Pt(3 11), it is worth considering why its grooves

impose a smaller barrier to diffusion than that which hinders A-step edge-running

on Pt(322). A plausible answer (cf. Figs. 6) is that when an adatom displaces from

five-fold to four-fold coordination geometries onPt(311) it remains coordinated to

three step-edge atoms. In contrast, at an A-type step-bottom, the adatom moves

from an initial site where it has two edge-atom neighbors to a site where it has just

one.
.

Since step-edge atoms are the least well coordinated substrate atoms on a vic-

inal with straight steps, they are the atoms in greatest need of an additional neigh-

bor. Thus, binding ~omore edge atoms reduces the system energy, and in particular

the relativeenergy of the barrier geometryonPt(311), illustrated in Fig. 6b.36

Given that D~ produces self-diffusion barriers in reasonably good agree-

ment with experiment for vicinals to Pt(111) with straight steps, there is no reason

to expect it to fail for dfision around kinks and comers. The result that displace-

ment from a comer-site to a B-edge is more facile than to an A-edge must therefore
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be taken seriously, and a way must be found to reconcile it with the simulations of

dendritic island orientation performed by Hohage, et al. in Ref. 14.

As mentioned above, Brune, et al.,15 point out that corner-to-edge barriers
.

may be irrelevant to dendritic island morphology, because Pt atoms approaching an

island may be preferentially guided to A-type edges without ever attaching at a cor-

ner-site. Thus, they argue in essence that because the simulations of Ref. 14 leave

out key processes, they yield barriers which contradict theory.

In light of Ref. 1, prudence dictates, before computing more barriers and per-

forming further simulations, that one dispose of the possibility that the experimental

corner-rounding preference might appear reversed as a result of step-edge-adsorbed

contaminants. That this has been accomplished is the message of Ref. 16, which

shows that even with a level of step-contamination by CO much below the already

low level of Ref. 14, the dendritic-island orientation is no different.

V) The future -

A host of studies makes it clear that the morphology of virtually any growing

surface can be simulated by making “reasonable” assumptions concerning binding

and barriqr energies and applying the Monte Carlo technique. But such a posteriori

analysis entails several problems:

1) It is not clear that a set of binding energies and barriers that works provides.

a uniquely sensible flt to the available data.

2) It is not clear how processes left out of consideration might shift the ener-

gies one determines via a fit.

3) If sample characterization is inadequate, it is not clear what system the fit

barriers correspond to, and the degree to which they are ‘transferable’ for analysis

of other data.
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The fact that we can now perform f~st-principles calculations for relatively

low-symmetry, large unit-cells, containing essentially any atomic species, and the

existence of numerous cases where results of such calculations are in reasonably

good agreement with experiment, points to a near fiture in which Monte Carlo sim-

ulation will no longer be a fitting technique, and in which DFT results will routinely

be used to assess the adequacy of surface characterization.

In the quest to simulate epitaxy on clean Pt(l 11), several barriers (and all

prefactors!) remain to be determined - those for downward transport at a kink, for

adatom capture by a step and by a kink, and for diffusion of small clusters. Learning

their magnitudes, and thus establishing Pt(111) growth as a predictive test-bed for

the theory of epitaxy, is a very appealing goal.
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Figure Captions -

1. Ball model of the periodic vicinal, Pt(854), whose A-steps have a kink every

fourth atom. Panel a): the adatom, A, is shown in a 4-fold coordination site, in each

unit cell, adjacent to a kink. From there it may displace into the 6-fold kink site ~, or

it may zig-zag onto the A-edge through hcp and fcc hollows, h and f. Panel b): The

adatom is in the transition barrier geometry between the step-edge and corner sites.

Its bonds to terrace atom T2 and T1 differ by 0.26 ~ in the LDA, the former being

shorter.

2. An adatom, A, bound in a 5Tfold coordinated step-bottom site on a) Pt(322), b)

Pt(221) and c) on the A-step side of a valley between two monolayer-high stripe is-

lands on Pt( 111). Panels a) and b) represent the vicinals used to compute diffusion

barriers along unkinked A- and B-type steps. Panel c) shows the surface used to es-

tablish a common energy zero.

3. Ball model of the periodic vicinal Pt(874), whose B-type steps have a kink every

fourth atom. Panel a) Adatom, A, is shown in a 4-fold corner site, in each unit cell,

from which it might move to the 5-fold edge site on its right, y, or the 6-fold coordi-

nated kink site, ~, on its left. Panel b): The adatom is in the transition barrier geom-
.

etry between the step-edge and corner sites. Its bonds to step-bottom atoms Bz and

Bz differ by only by 0.08 ~ in the LDA.
.

4. Illustrations showing how the periodic vicinal, Pt(432), is used to estimate corner-

rounding bfiers. 2x 1 reconstructed geometries are relaxed, in which the atoms la-

beled A in panel a) are moved either of 5-fold edge sites, u or ~, or to 4-fold comer

site, y. Minimum energy paths between these sites are then computed using J6ns-

son’s NEB method (Ref. 25). Panel b) shows atoms A in the edge site on the A-type

side of y. Panel c) illustrates the tsxmsition geometry for a concerted substitution in
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which comer atom B emerges onto the lower terrace and is simultaneously replaced

by atom A.

5. Comer-rounding energetic on Pt(432) from the GGA column of Table 2. Note
.

(see dashed line) that binding on the A-

strong.

6. Schematic of a periodically repeated

and B-sides of the comer is close to equally

adatom on Pt(3 11). Panel a) shows the ada-

tom in its optimal 5-fold coordination site. Panel b) shows it in the 4-fold barrier ge-

ometry. In both cases the adatom has three edge neighbors (defined as atoms that are

seven-fold coordinated when the adatom is absent).
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Table Caption -

1. Comparison of LDA hopping and concerted substitution barriers (in eV) for self-

diffusion on various vicinals to Pt(l 11).

2. Comparison of hopping self-diffusion barriers (in eV) for various surfaces vicinal

to Pt(111 ), calculated within the LDA and the Generalized Gradient Approximation

(GGA).8

3. Comparison of 1st-principles LDA and GGA, semi-empirical and experimental

edge-running and comer-rounding barriers (in eV).

4. For adatom diffusion along the bottom of an A-type and a B-type step, and on a

step-free Pt(111 ) plane, lengths of the adatom’s shortest bonds --in its lowest energy,

high coordination site, and in the diffusion barrier geometry. The letters in parenthe-

sis indicate the identity of the substrate neighbor for each bond. Thus “e” indicates a

bond to a step-edge neighbor, “b” to a step-bottom neighbor and “t” to a terrace

neighbor. The numbers given correspond to LDA calculations for Pt/Pt(322), Pt/

Pt(221) and Pt/Pt(lll).

5. Comparison of bond lengths in barrier geometries corresponding to diffusion

along straight steps and from edge to comer sites on kinked steps. The letters in pa-
.

renthesis indicate the identity of the substrate neighbor for each bond. Thus “e” in-

dicates a bond to a step-edge neighbor, “b” to a step-bottom neighbor and “t” to a

terrace neighbor. The numbers given correspond to LDA calculations for Pt/Pt(322),

Pt/Pt(854)j Pmt(221) and.PW?t(874).
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Table 1:

Vicinal From To Fig.Step type ‘hop

Pt(322) A 5-fold S-fold 2a 0.84 1.34

o.90aPt(221) -B 5-fold 5-fold 2b 1.55

Pt(854) kinked A 5-fold 6-fold 1 0.96 1.34

hiked BPt(874) 5-fold 6-fold 3 0.89 1.30

Pt(432) 120° corner A-side B-side 4 0.99 1.44

0.90Pt(432) 120° corner B-side A-side 4 1.45

‘This compares to an FIM va.he (see Ref. 20) of 0.84&0.10 eV at B-steps on Pt(33 1).
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Table 2:

Vlcinal Step type

Pt(322) A

Pt(221) ‘B

Pt(854) kinked A

Pt(854) kinked A

I Pt(854) I kinked A

IPt(854) I kinked A

Pt(874) kinked B

Pt(874) kinked B

Pt(874) kinked B

Pt(874) kinked B

Pt(432) 120° corm

Pt(432) 120° corm

a Ref. 10

bRef. 8

From To
LDA= GGAb

‘ig” Ea(eV) E,(eV)

r

5-fold 5-fold 2a 0.84 0.71

5-fold 5-fold 2b 0.90C 0.77C

5-fold 4-fold 1 0.96 0.82

4-fold 6-fold 1 0.45 0.42

6-fold 4-fold 1 1.32 1.08

4-fold 5-fold 1 I 0.51 I 0.46 I
5-fold 4-fold 3 0.89 0.74

4-fold 6-fold 3 0.39 0.35

6-fold 4-fold 3 1.39 1.13

4-fold 5-fold 3 0.40 0.37

A-side 4-fold 4 I 0.99 I 0.84 I
4-fold B-side 4 0.40 0.38

B-side 4-fold 4 0.90 0.76

4-fold A-side 4 0.49 0.44

CThiscompares to an FIM value (see Ref. 20) of O.84M.1OeV at B-steps on Pt(33 1).
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Table 3:

along B-step 0.90 0.77

[ corner-to-A I 0.49 I 0.44

Icorner-to-B I 0.40 I 0.38

I Pt(311) - I 0.77 I 0.64

semi-empirical I Exp’t I

-o.45a

-o.40a 0.84’

0.21,b 0.23-0.25a I

0.17,b 0.18-0.20a

0.60$ 0.69C

aRef. 2

bRef. 15

cRef. 20

‘Ref. 21

Table 4:

Step Adatom
type site

shortest adatom bonds

A 5-fold 2.58(b),2.58(b),2.64(e),2.64(e),2.71(t)

A barrier 2.47(b),2.64(e),2.73(t),2.73(t)

B 5-fold 2.56(b),2.64(e),2.64(e),2.66(t),2.66(t)

B barrier 2.47(e),2.49(t),2.76(b)#.76(b)

no step 3-fold (fee) 2.52(t),2.52(t),2.52(t)

no step bridge 2.47(t),2.47(t)
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Table 5:

vicinal

Pt(221)

Pt(874)

Pt(322)

Pt(854)

barrier shortest adatom bonds

along B-step bottom 2.47(e) ~.49(t)J.76(b),2.76(b)

B-edge to corner 2.47(e)J.50(t),2.71 (b),2.79(b)

along A-step bottom 2.47(b) J.64(e),2.73(t),2.73 (t)

A-edge to corner 2.47(b) J.61(e),2.66(t),2.92(t)

.

.
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Fig. la
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Fig. lb

.

.

-30-



Fig. 2a
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Fig. 3a
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Fig. 3b
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Fig. 4C
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Fig. 5
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Fig. 6a
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Fig. 6b
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