Tunable Composite Membranes for Gas Separations.

PDF Version Also Available for Download.

Description

Poly(3-dodecylthiophene) films were solution cast and subsequently subjected to chemical oxidation (doping), followed by chemical undoping. The microstructure of each form of the membrane was determined by optical microscopy (OM), scanning electron microscopy (SEM) and TappingMode Atomic Force Microscopy (TMAFM). Energy dispersive x-ray spectrometry (EDS) was used to elucidate the chemical composition of the membranes. Changes in microstructure after exposure to or protection from the laboratory atmosphere, and after permeability measurements, were assessed by these same techniques to estimate the environmental stability of the membranes. Although dramatic changes in topology occur for films exposed to the laboratory atmosphere, these are ... continued below

Physical Description

20 p.; Other: FDE: PDF; PL:

Creation Information

Ferraris, J.P.; Balkus, K.J. Jr. & Musselman, I.H. October 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Poly(3-dodecylthiophene) films were solution cast and subsequently subjected to chemical oxidation (doping), followed by chemical undoping. The microstructure of each form of the membrane was determined by optical microscopy (OM), scanning electron microscopy (SEM) and TappingMode Atomic Force Microscopy (TMAFM). Energy dispersive x-ray spectrometry (EDS) was used to elucidate the chemical composition of the membranes. Changes in microstructure after exposure to or protection from the laboratory atmosphere, and after permeability measurements, were assessed by these same techniques to estimate the environmental stability of the membranes. Although dramatic changes in topology occur for films exposed to the laboratory atmosphere, these are greatly reduced when the films are stored in containers that limit the access of moisture. Films exposed to dry gases in the permeameter exhibit essentially no change to their original microstructures.

Physical Description

20 p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98051824

Source

  • Other Information: PBD: Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98051824
  • Report No.: DOE/PC/94222--T2
  • Grant Number: FG22-94PC94222
  • DOI: 10.2172/644665 | External Link
  • Office of Scientific & Technical Information Report Number: 644665
  • Archival Resource Key: ark:/67531/metadc692475

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Nov. 10, 2015, 9:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ferraris, J.P.; Balkus, K.J. Jr. & Musselman, I.H. Tunable Composite Membranes for Gas Separations., report, October 1, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc692475/: accessed April 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.