Washing and Caustic Leaching of Hanford Tank Sludge: Results of FY 1997 Studies

G. J. Lumetta
I. E. Burgeson
M. J. Wagner
J. Liu
Y. L. Chen

August 1997

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Richland, Washington 99352
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Summary

This report describes the sludge washing and caustic leaching tests conducted at Pacific Northwest National Laboratory in FY 1997. These tests supported the development of the baseline Hanford tank sludge pretreatment flowsheet. The U.S. Department of Energy funded the work through the Tanks Focus Area (TFA; EM-50). The results of this work can be summarized as follows.

- Table S.1 summarizes the Al behavior for the five tanks investigated in FY 1997. The Al concentrations in the sludges varied from about 1 to 16 wt%. The Al removed by washing with dilute NaOH (simple wash) varied from very little (Tank S-104a) to over half of the Al removed (Tank BY-108) for the single-shell tanks investigated. Caustic leaching (enhanced sludge washing) led to little improvement in Al removal from BY-108 sludge, but it dramatically improved removal from the other single-shell tank sludges investigated in FY 1997. Dilute hydroxide washing alone resulted in nearly complete Al removal for the double-shell tank waste (AN-104) investigated; caustic leaching essentially removed the water-insoluble fraction of the AN-104 Al. Taking into account all the testing data to date, caustic leaching was generally effective at removing Al. Only three groups of sludges displayed consistently low (<50%) Al removal—sort on radioactive waste type (SORWT) groups 7, 16, and 20. Extended caustic leaching (several days at 100°C) significantly improves Al removal (and in some cases, Cr removal) from REDOX process sludge (SORWT groups 1 and 4) when compared to previous testing methods in which samples were only leached for 5 h. This can be attributed to slow dissolution of boehmite. The longer leaching times led to nearly complete removal of Al from the three REDOX sludges examined (S-101, S-104, and S-111). The Al removal data generally indicate good agreement for tanks within a given SORWT group.

- Table S.1 summarizes the Cr behavior for the five tanks investigated in FY 1997. In all cases, the Cr concentration in the sludge was <1 wt%. The Cr removed by washing with dilute NaOH varied from 18 to 94%. In the case of BY-108, caustic leaching did little to improve the Cr removal. On the other hand, significantly more Cr was removed from the AN-104, S-101, and S-111 sludges by caustic leaching. Caustic leaching also improved Cr removal from the S-104 sludge. Spectrophotometric measurements detected Cr(VI) in both the wash and leach solutions. Spectrophotometric determination of the Cr(VI) concentrations generally agreed with the inductively coupled plasma/atomic emission spectroscopy (ICP/AES) analyses of total Cr concentrations. No spectral evidence for Cr(III) was observed, but due to the relatively high detection limits for Cr(III) by visible spectrophotometry, its existence in the washing and leaching solutions could not be entirely ruled out.

- Chromium(III) hydroxide can dissolve in high caustic solutions at room temperature, but heating such solution causes precipitation of guyanaite,

(a) The common 241- prefix is omitted from waste tank designations.
Table S.1 summarizes the P behavior for the five tanks investigated in FY 1997. The amount of P present in these sludges varied from 0.002 to 2.35 wt%. In all cases, simply washing with dilute NaOH removed > 70% of the P. Caustic leaching led to improved P removal from S-101 sludge, but had little impact on the other sludges. Taking into account all the testing data to date, P removal by caustic leaching exceeds 90% for most tank sludges. Only for BY-110, SX-108, B-201, B-202, and C-109, did P removal fall below 50%.

Table S.1. Summary of Al, Cr, and P Removal

<table>
<thead>
<tr>
<th></th>
<th>Aluminum Removed, %</th>
<th>Chromium Removed, %</th>
<th>Phosphorus Removed, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tank</td>
<td>Al, wt%(a)</td>
<td>Simple Wash(b)</td>
</tr>
<tr>
<td>AN-104</td>
<td>2.61</td>
<td>34</td>
<td>63</td>
</tr>
<tr>
<td>BY-108</td>
<td>1.26</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>S-101</td>
<td>14.7</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>S-104</td>
<td>15.3</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>S-111</td>
<td>16.0</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

(a) Concentration based on dry weight of sludge, except for S-111 which is on a wet sludge basis.
(b) Washing with dilute NaOH
(c) Enhanced Sludge Washing (ESW) refers to the process of leaching the sludge with NaOH (2 to 3 M), then washing with dilute NaOH.
Cesium-137 will likely need to be removed from the sludge washing and leaching solutions before these solutions are immobilized as low-level waste. The behavior of 137Cs in sludges from ferrocyanide-scavenged tanks suggests that the 137Cs might still be present as the cesium nickel ferrocyanide salt. The quantities of transuranics, 90Sr, and 99Tc in the washing and leaching solutions are generally low, and removal of these isotopes from the low-level waste stream probably will not be necessary.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>complex concentrate waste</td>
</tr>
<tr>
<td>CW</td>
<td>cladding waste</td>
</tr>
<tr>
<td>DIA</td>
<td>diatomaceous earth</td>
</tr>
<tr>
<td>DSSF</td>
<td>double-shell slurry feed</td>
</tr>
<tr>
<td>EB</td>
<td>evaporator bottoms</td>
</tr>
<tr>
<td>EDS</td>
<td>electrode dispersion spectroscopy</td>
</tr>
<tr>
<td>ESW</td>
<td>enhanced sludge washing</td>
</tr>
<tr>
<td>F</td>
<td>ferrocyanide-scavenged waste</td>
</tr>
<tr>
<td>HLW</td>
<td>high-level waste</td>
</tr>
<tr>
<td>ICP/AES</td>
<td>inductively coupled plasma/atomic emission spectroscopy</td>
</tr>
<tr>
<td>ITS</td>
<td>in-tank solidification</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LLW</td>
<td>low-level waste</td>
</tr>
<tr>
<td>NRC</td>
<td>U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>OWW</td>
<td>organic solvent wash from PUREX</td>
</tr>
<tr>
<td>PNNL</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>PUREX</td>
<td>plutonium uranium extraction process</td>
</tr>
<tr>
<td>R</td>
<td>high-level REDOX process waste</td>
</tr>
<tr>
<td>REDOX</td>
<td>REDOX process for Pu recovery</td>
</tr>
<tr>
<td>SAD</td>
<td>selected area diffraction</td>
</tr>
<tr>
<td>SORWT</td>
<td>sort on radioactive waste type</td>
</tr>
<tr>
<td>SRS</td>
<td>strontium leached sludge</td>
</tr>
<tr>
<td>TBP</td>
<td>tributyl phosphate</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic elements</td>
</tr>
</tbody>
</table>
Acknowledgments

The authors gratefully acknowledge the technical assistance of the Analytical Chemistry Laboratory personnel, especially R. T. Steele and F. V. Hoopes. We also thank W. C. Cosby, B. M. Rapko, and J. L. Swanson for reviewing this document.

The U.S. Department of Energy Office of Science and Technology's Tanks Focus Area (TFA) supported this work. The authors thank the following individuals from the TFA organization: D. Geiser, C. P. McGinnis, J. Hennig, M. C. Vargas, and T. L. Stewart. The authors thank S. C. Slate, W. F. Bonner, and E. J. Hirschi for their project management support. The authors thank the following individuals from the TWRS organization for their assistance and guidance: R. A. Kirkbride, G. T. MacLean, R. M. Orme, and K. M. Eager.

Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.
Contents

Summary ... iii

Glossary ... vii

Acknowledgements ... ix

1.0 Introduction ... 1.1

2.0 Behavior of Chromium During Enhanced Sludge Washing ... 2.1

3.0 Modified Tank S-104 Enhanced Sludge Washing Test ... 3.1

 3.1 Background .. 3.1

 3.2 Experimental .. 3.1

 3.3 Results and Discussion ... 3.1

 3.3.1 Washing With Dilute NaOH ... 3.1

 3.3.2 Caustic Leaching ... 3.5

4.0 Tank BY-108 Enhanced Sludge Washing Test .. 4.1

 4.1 Experimental ... 4.1

 4.2 Results and Discussion .. 4.1

 4.2.1 Washing With Dilute NaOH ... 4.1

 4.2.2 Caustic Leaching ... 4.8

 4.2.3 Particle-Size Analysis .. 4.15

 4.2.4 Microscopic Analysis ... 4.16

 4.2.5 Settling Data .. 4.17

5.0 Tank S-101 Enhanced Sludge Washing Test .. 5.1
5.1 Experimental .. 5.1
5.2 Results and Discussion .. 5.4
 5.2.1 Washing With Dilute NaOH... 5.4
 5.2.2 Caustic Leaching .. 5.8
 5.2.3 Particle-Size Analysis... 5.15
 5.2.4 Microscopic Analysis ... 5.16
 5.2.5 Settling Data ... 5.18

6.0 Tank S-111 Enhanced Sludge Washing Test... 6.1
 6.1 Experimental ... 6.1
 6.2 Results and Discussion .. 6.1
 6.2.1 Particle-Size Analysis.. 6.10
 6.2.2 Microscopic Analysis ... 6.11

7.0 Tank AN-104 Enhanced Sludge Washing Test... 7.1
 7.1 Experimental ... 7.1
 7.2 Results and Discussion .. 7.3
 7.2.1 Washing With Dilute NaOH... 7.3
 7.2.2 Caustic Leaching .. 7.5
 7.2.3 Particle-Size Analysis... 7.13
 7.2.4 Microscopic Analysis ... 7.14

8.0 Discussion ... 8.1
 8.1 Aluminum .. 8.1
 8.2 Chromium ... 8.5
Figures

2.1 Spectra of Cr (III) Solution in 3 M NaOH Before and After Heating at 100°C ... 2.2

2.2 Spectra of Solution Formed By Stirring Cr(III) Hydroxide in 3 M NaOH Before and After Heating at 100°C ... 2.3

3.1 Schematic Representation of S-104 Leaching Test .. 3.2

3.2. Aluminum and Na Concentrations as a Function of Time in the First Caustic Leaching Step ... 3.5

3.3 UV/Vis Spectra of the First S-104 Caustic Leaching Solution and a Solution Derived From Dissolving Cr(OH)3 in 3 M NaOH ... 3.6

3.4 Boehmite Particles in the Untreated S-104 Sludge ... 3.9

3.5 Mixed Iron/Manganese Oxide and Amorphous Aluminosilicate Particles in the Caustic-Leached S-104 Sludge. EDS = electron dispersion spectroscopy; SAD = selected area diffraction ... 3.10

3.6 Uranium Oxide Species Before and After Leaching S-104 Sludge ... 3.11

4.1 Schematic Representation of the BY-108 ESW Test ... 4.2

4.2 Particle-Size Number Distributions for Untreated (a) and Treated (b) BY-108 Sludge 4.15

4.3 Particle-Size Number Distributions for Untreated (a) and Treated (b) BY-108 Sludge 4.16

4.4 Settling Data From the BY-108 Caustic Leaching Test ... 4.18

4.5 Normalized Settling Data From the BY-108 Caustic Leaching Test ... 4.19

5.1 Schematic Representation of the S-101 ESW Test ... 5.2

5.2 Particle-Size Number Distribution for Untreated (a) and Treated (b) S-101 Sludge 5.15

5.3 Particle-Size Volume Distribution for Untreated (a) and Treated (b) S-101 Sludge 5.16

5.4 Micrograph of S-101 Sludge Boehmite Particles Before (a) and After (b) Leaching 5.17

5.5 Rod-like Diaspore (a) and Amorphous Aluminosilicate (b) in the Leached S-101 Sludge 5.17

xiv
5.6 Settling Data From the S-101 Caustic Leaching Test... 5.19
5.7 Normalized Settling Data From the S-101 Caustic Leaching Test.. 5.19
6.1 Schematic Representation of the S-111 ESW Test.. 6.2
6.2 Particle-Size Number Distribution for Treated S-111 Sludge Before (a) and After (b) Sonication ... 6.10
6.3 Particle-Size Volume Distributions for Treated S-111 Sludge Before (a) and After (b) Sonication ... 6.11
6.4 Aluminum-Containing Phases in Leached S-111 Sludge ... 6.12
6.5 Mixed Fe, Cr, and Mn Phases in Leached S-111 Sludge ... 6.13
7.1 Schematic Representation of the AN-104 ESW Test... 7.1
7.2 Particle-Size Number Distributions for Untreated (a) and Treated (b) AN-104 Sludge........... 7.13
7.3 Particle-Size Volume Distributions for Untreated (a) and Treated (b) AN-104 Sludge......... 7.14
7.4 Transmission Electron Micrograph and EDS Spectrum of the Mixed Cr and Al Phases in the Untreated AN-104 Solids.. 7.15
7.5 Transmission Electron Micrograph and EDS Spectrum of the Untreated AN-104 Solids 7.16
7.6 Transmission Electron Micrograph and EDS Spectrum of the Clay-Like Al/Si Phase in the Untreated AN-104 Solids.. 7.17
7.7 Transmission Electron Micrograph and EDS Spectrum of the Mixed Cr and Si Phases in the Caustic-Leach AN-104 Solids... 7.18
7.8 Transmission Electron Micrograph and EDS Spectrum of the Mixed Cr and Ca Phase in the Caustic-Leached AN-104 Solids... 7.19
7.9 Transmission Electron Micrograph and EDS Spectrum of the Crystalline Uranium-Containing Particles in the Caustic-Leached AN-104 Solids .. 7.19
4.10 Distribution of Radioactive BY-108 Sludge Components Between the Various Process Streams During Caustic Leaching ... 4.14

4.11 Concentrations of the Radioactive Components in the Initial BY-108 Solids: Results of the Caustic Leaching Portion of the Test .. 4.14

4.12 Settling Data From the BY-108 Caustic Leaching Test ... 4.18

5.1 Results of Tank S-101 Sludge Washing Nonradioactive Components ... 5.5

5.2 Concentrations of Nonradioactive Components in the Untreated S-101 .. 5.6

5.3 Results of Tank S-101 Sludge Washing Radioactive Components ... 5.7

5.4 Concentrations of Radioactive Components in the Untreated S-101 Solids as Determined in the Simple Washing Test .. 5.7

5.5 Concentrations of the Nonradioactive S-101 Sludge Components in the Various Process Streams During Caustic Leaching .. 5.9

5.6 Distribution of Nonradioactive S-101 Sludge Components Between the Various Process Streams During Caustic Leaching .. 5.10

5.7 Concentrations of the Nonradioactive S-101 Sludge Components in the Initial Sludge Solids: Results From the Caustic Leaching Portion of the Test 5.12

5.8 Anion Concentrations in the Various S-101 Process Solutions ... 5.13

5.9 Concentrations of the Radioactive S-101 Sludge Components in the Various Process Streams During Caustic Leaching .. 5.13

5.10 Distribution of Radioactive S-101 Sludge Components Between the Various Process Streams During Caustic Leaching ... 5.14

5.11 Concentrations of the Radioactive Components in the Initial S-101 Sludge Solids: Results of the Caustic Leaching Portion of the Test .. 5.14

5.12 Settling Data From the S-101 Caustic Leaching Test ... 4.18

6.1 Concentrations of the Nonradioactive S-111 Sludge Components in the Various Process Streams ... 6.4

6.2 Concentrations of the Nonradioactive S-111 Sludge Components in the Untreated Sludge (a) .. 6.5
6.3 Distribution of Nonradioactive S-111 Sludge Components Between the Various Process Streams ... 6.6

6.4 Anion Concentrations in the Various S-111 Process Solutions .. 6.8

6.5 Concentrations of the Radioactive S-111 Sludge Components in the Various Process Streams ... 6.9

6.6 Distribution of Radioactive S-111 Sludge Components Between the Various Process Streams ... 6.9

7.1 Results of Tank AN-104 Sludge Washing: Nonradioactive Components .. 7.4

7.2 Results of Tank AN-104 Sludge Washing: Radioactive Components ... 7.5

7.3 Concentrations of the Nonradioactive AN-104 Sludge Components in the Various Process Streams .. 7.6

7.4 Distribution of Nonradioactive AN-104 Sludge Components Between Various Process Streams During Caustic Leaching .. 7.7

7.5 Results of AN-104 Caustic Leaching Based on Iron Normalization Procedure ... 7.8

7.6 Concentrations of the Nonradioactive AN-104 Sludge Components in the Initial Sludge Solids: Results of the Caustic Leaching Portion of the Test .. 7.9

7.7 Anion Concentrations in the Various AN-104 Process Solutions .. 7.10

7.8 Concentrations of the Radioactive AN-104 Sludge Components in the Various Process Streams During Caustic Leaching ... 7.11

7.9 Concentrations of the Radioactive Components in the Initial AN-104 Sludge Solids as Determined From the Caustic Leaching Portion of the Test ... 7.12

7.10 Anion Concentrations in the Various AN-104 Process Solutions .. 7.12

8.1 Aluminum Removal As a Function of Waste Type ... 8.2

8.2 Aluminum-Containing Phases Identified in Hanford Sludges .. 8.4

8.3 Chromium Removal As a Function of Waste Type ... 8.6

8.4 Chromium-Containing Phases Identified in Hanford Sludges .. 8.8
8.5 Phosphorus Removal As a Function of Waste Type ... 8.9
8.6 Phosphorus-Containing Phases Identified in Hanford Sludges ... 8.11
8.7 Sodium Removal By Dilute Hydroxide Washing As a Function of Waste Type 8.12
8.8 Cesium-137 Removal As a Function of Waste Type .. 8.14
8.9 Projected Radionuclide Content for LLW From Immobilization of Combined Wash and Leach Solutions ... 8.16
8.10 Summary of Particle Size Data ... 8.18
1.0 Introduction

During the past few years, the primary mission at the U.S. Department of Energy’s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The low-level waste (LLW) will be processed to remove 137Cs (and possibly other radionuclides), and then it will be immobilized in a glass matrix and disposed of by shallow burial on site. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository (Orme et al. 1996). Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW).

Dilute hydroxide washing is the minimum pretreatment that would be performed on Hanford tank sludges. This method simply involves mixing the sludge with dilute (0.1 M or less) NaOH, then performing some sort of solid/liquid separation. This is meant to remove water-soluble sludge components (mainly sodium salts) from the HLW stream. Dilute hydroxide is used rather than water to maintain the ionic strength high enough that colloidal suspensions are avoided.

Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. The Al will be removed by converting aluminum oxides/hydroxides to sodium aluminate. For example, boehmite and gibbsite are dissolved according to the following equations (Weber 1982).

\[
\text{AIOOH(s) + NaOH(aq)} \rightarrow \text{NaAlO}_2(aq) + \text{H}_2\text{O} \quad (1.1)
\]

\[
\text{Al(OH)}_3(s) + \text{NaOH(aq)} \rightarrow \text{NaAlO}_2(aq) + 2\text{H}_2\text{O} \quad (1.2)
\]

A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na$_3$PO$_4$. An example of this is shown for iron(III) phosphate in the following equation.

\[
\text{FePO}_4(s) + 3\text{NaOH(aq)} \rightarrow \text{Fe(OH)}_3(s) + \text{Na}_3\text{PO}_4(aq) \quad (1.3)
\]

Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream.

Based on its known amphoteric behavior (Rai, Sass, and Moore 1987), Cr(III) is expected to be removed by caustic leaching according to the following equation:
\[
\begin{align*}
\text{Cr(OH)}_3(s) + \text{NaOH(aq)} & \rightarrow \text{Na[Cr(OH)}_4\text{]}(aq)
\end{align*}
\]

However, recent studies conducted at the Pacific Northwest National Laboratory (PNNL) have suggested that the behavior of Cr in the caustic leaching process is more complex. This subject is discussed further in Section 2.0 of this report.

Results of previous studies of the baseline Hanford sludge washing and caustic leaching process have been reported (Lumetta and Rapko 1994; Rapko, Lumetta, and Wagner 1995, Lumetta et al. 1996, Temer and Villarreal 1995 and 1996). This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111. Table 1.1 lists the primary and secondary waste types stored in these tanks. In addition, a repeat ESW test with Tank S-104 sludge was performed using extended leaching times (Section 3.0).

Table 1.1. Primary and Secondary Waste Types

<table>
<thead>
<tr>
<th>Tank</th>
<th>Primary Waste</th>
<th>Secondary Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN-104</td>
<td>DSSF</td>
<td>N/A</td>
</tr>
<tr>
<td>BY-108</td>
<td>TBP-F</td>
<td>EB-ITS</td>
</tr>
<tr>
<td>S-101</td>
<td>R</td>
<td>EB</td>
</tr>
<tr>
<td>S-111</td>
<td>R</td>
<td>EB</td>
</tr>
</tbody>
</table>

(a) The waste types are defined as follows (Hill, Anderson, and Simpson 1995).

Note:
- **DSSF**: Double-shell slurry feed
- **EB**: Evaporator bottoms
- **F**: Ferrocyanide-scavaged waste
- **ITS**: In-tank solidification
- **R**: High-level REDOX process waste
- **TBP**: Waste from tributyl phosphate extraction process
2.0 Behavior of Chromium During Enhanced Sludge Washing

In the last quarter of FY 1996, concern arose over the amount of Cr in the HLW stream resulting from the baseline processing of the Hanford tank wastes. The reason for this concern was 2-fold. First, due to new data considered in the annual ESW evaluation (Colton 1996), the projected Cr removal efficiency for the ESW process was much less than that estimated in the previous year (Colton 1995). Second, ongoing work in revising the tank inventory suggested that the tank wastes contain much more Cr than previously assumed. The combination of these two factors led to a predicted HLW glass volume of 31,260 m3 compared to 9,100 m3, which was the prediction made at the end of FY 1995 using the best available information available at that time.(a)

To better understand the behavior of Cr in high-caustic media, we undertook a series of experiments probing the behavior of Cr under conditions analogous to those that would be encountered during enhanced washing of tank sludges. Chromium(VI) is highly soluble under alkaline conditions. However, as a result of these experiments, we have concluded that we should not expect any significant removal of Cr(III) from tank sludges by ESW (as it is currently envisioned). The observations made that led to this conclusion are discussed below.

We have observed during our ESW tests with actual tank waste that the Cr in the caustic leach solutions is in the +6 oxidation state, even when the sludge has been washed to remove Cr(VI) in the interstitial liquid before the caustic leaching step. This would presumably remove all the Cr initially present as Cr(VI) (Lumetta et al. 1996). The exact mechanism by which this occurs was unknown; we thought the most likely mechanism was that the Cr(III) in the sludge dissolved according to Equation 1.4, then was oxidized to Cr(VI) once the Cr was in solution. This led us to perform the first experiment, in which 1 g of Cr(OH)$_3$ was heated overnight at 100°C with 10 mL of 3 M NaOH. After cooling to room temperature, the mixture was filtered yielding a yellow solution. The ultraviolet/visible (UV/vis) spectrum of a 100-fold dilution of this solution revealed the presence of CrO$_4^{2-}$ (2.4×10^{-4}M). Not much could be concluded regarding the presence of Cr(Ill) because the Cr(Ill) concentration in the solution that was measured was less than 0.046 M, based on the extinction coefficient for Cr(Ill) at 595 nm (22 cm$^{-1}$M$^{-1}$). Although this experiment did not tell us if Equation 1.4 was operating in this system, it did tell us that Cr(VI) can indeed form while Cr(III) is leached with caustic.

The second experiment was designed to demonstrate that [Cr(OH)$_4$]$^-$ is converted to CrO$_4^{2-}$ in hot aqueous caustic media. A solution of [Cr(OH)$_4$]$^-$ was prepared by adding aqueous Cr(NO$_3$)$_3$ (0.4 mL of a 0.1 M solution) to 3 M NaOH (20 mL). This yielded a pale green solution that displayed two bands in the UV/vis spectrum ($\lambda_{\text{max}} = 430$ nm and 595 nm). This solution was stable at room temperature; no change was observed in the UV/vis spectrum after stirring overnight at room temperature. However, after heating for 2 h at 100°C, a green precipitate had formed, and the solution was pale yellow. The UV/vis

spectra of the solution before and after heating (total heating time was 3 h) are presented in Figure 2.1. The spectrum reveals that the solution contained both Cr(III) and Cr(VI) after heating. This result was reproducible. In a repeat of this experiment, 0.6 mL of 0.1 M Cr(NO$_3$)$_3$ was added with stirring to 60 mL of 3 M NaOH to give a 0.001 M Cr solution (inductively coupled plasma/atomic emission spectroscopy [ICP/AES] analysis indicated the concentration to be 0.0012 M). Heating this solution for 3 h again resulted in the precipitation of a green solid. The UV/vis spectrum of the resulting solution indicated the Cr(III) concentration to be 2.0 x 10$^{-4}$ M and the Cr(VI) concentration to be 1.3 x 10$^{-4}$ M, or a total Cr concentration of 4.3 x 10$^{-4}$ M. The ICP/AES analysis indicated the total Cr concentration to be < 2.9 x 10$^{-4}$ M. Thus, the Cr concentration decreased ~75% during heating.

Although we saw Cr(VI) in solution, as expected, the green precipitate was puzzling, and furthermore suggested that the amount of Cr expected to be removed by caustic leaching might be limited. That is, the Cr(III) might dissolve according to Equation 1.4, but subsequently precipitate. Such behavior might also be responsible for the decreased solubility of Cr(III) hydroxide at higher temperatures previously reported in the literature (Rai, Sass, and Moore 1987).

In the third experiment, 0.4 g of Cr(OH)$_3$ was stirred at room temperature for several days with 10 mL of 3 M NaOH. The mixture was filtered to give a green solution. The UV/vis spectrum of this solution indicated the presence of both Cr(III) (7.7 x 10$^{-3}$ M) and Cr(VI) (1.0 x 10$^{-4}$ M) (see Figure 2.2). The green precipitate formed when the solution was heated at 100°C for ~3 h. The UV/vis spectrum (Figure 2.2), obtained after cooling, indicated a decrease in the Cr(III) concentration to 5.7 x 10$^{-5}$ M. The spectrum indicated a slight increase in the Cr(VI) concentration to 1.3 x 10$^{-4}$ M. Thus, the UV/vis spectra

![Figure 2.1. Spectra of Cr(III) Solution in 3 M NaOH Before and After Heating at 100°C](image)

2.2
Figure 2.2. Spectra of Solution Formed By Stirring Cr(III) Hydroxide in 3 M NaOH Before and After Heating at 100°C

indicated an overall decrease of 98% in the total Cr concentration in solution. The solution was also analyzed by ICP/AES before and after heating. The Cr concentration dropped from 6.3×10^{-3} M before heating to 4.8×10^{-4} M after heating, which is 92% less Cr. The latter result agrees reasonably well with that obtained by UV/vis spectrophotometry. The green solid has been analyzed by microscopic methods. Although a definitive identification has not been made, it appears to have been an amorphous Cr oxide/hydroxide species with an O/Cr ratio of 2; the most likely assignment of this species is to guyanaite, syn (CrOOH).

Finally, a test was performed to determine if nitrite ion was involved in the oxidation of Cr(III) to Cr(VI) in high caustic media. A 0.0013 M solution of Cr(III) was prepared by adding 0.2 mL of 0.1 M Cr(NO₃)₃ to 15 mL of 3 M NaOH. To this solution was added 0.1 mL of 1.0 M NaN₂O₂ to give 0.0065 M nitrite. No change in the UV/vis spectrum of this solution occurred after stirring overnight at room temperature. However, a green precipitate (like the earlier experiments) had formed after heating the solution at 100°C for about 5 h. The UV/vis spectrum of the solution after heating indicated Cr(VI) at 1.2×10^{-4} M and Cr(III) at $< 6.4 \times 10^{-4}$ M; this was consistent with what was seen in the previous experiments. The green solid was isolated and confirmed to contain Cr(III) by treatment with permanganate. The material rapidly oxidized to Cr(VI) when treated with aqueous permanganate solution. Thus, under the very limited conditions of this experiment, nitrite does not appear to significantly oxidize Cr(III) to Cr(VI). Perhaps higher nitrite concentrations would result in more conversion to Cr(VI), or perhaps other waste components (or even oxygen) are responsible for the observed oxidation of some of the Cr to Cr(VI) during ESW.
In conclusion, it appears that elevated temperatures produce a significant driving force to precipitate Cr(III) from high (3 M) caustic solutions. The precipitation of Cr(O)OH might explain the low removal efficiencies observed for Cr during ESW tests with actual tank waste and the failure to observe any Cr(III) in the leachates (Lumett et al. 1996; Colton 1996). This observation is consistent with previous reports of low solubility of Cr(OH)$_3$ in acidic and near-neutral solutions at elevated temperature (Rai, Sass, and Moore 1987). It might be possible to remove Cr(III) from the sludges by caustic leaching at ~25°C, but this might not practical because some mechanical heating will likely occur during sludge retrieval (which could lead to the more refractory Cr(O)OH phase). Oxidation to Cr(VI) is likely the best option for ensuring adequate Cr removal. Further work in this area is needed to determine if oxidation is best carried out before, after, or concurrently with caustic leaching.
3.0 Modified Tank S-104 Enhanced Sludge Washing Test

3.1 Background

In FY 1995, two ESW tests were performed on sludge from Hanford Tank S-104. One of these tests was performed at PNNL, while a duplicate test was conducted at Los Alamos National Laboratory (LANL). A significant finding of these tests was that ESW removed relatively little Al. The test conducted at PNNL in FY 1995 indicated that only 38% of the Al was removed (Rapko, Lumetta, and Wagner 1995); this result was substantiated by the duplicate test run at LANL, which revealed 33% Al removal (Temer and Villarreal 1995). Based on thermodynamic models, it was suggested that the low Al removal was due to solubility constraints (Rapko et al. 1996), but microscopic analysis of the leached S-104 residue and a study of the stability of aluminate solutions suggested this was not the case (Lumetta et al. 1996). To determine if additional Al could be removed from S-104 sludge, another test was performed at PNNL in which the S-104 sludge was treated with greater relative volumes of caustic and for longer periods of time. The results of this study are summarized here.

3.2 Experimental

Figure 3.1 summarizes the experimental procedure used in this test. The procedure was essentially the same as the baseline enhanced sludge washing test procedure described previously (Lumetta et al. 1996), except that the first caustic leaching step was performed over a period of ~8 days rather than the usual 5 h. The leachate was sampled at the following intervals: 5 h, 75 h, and 211 h. Also, during the second caustic leaching step, the mixture was heated for 3 days rather than the usual 5 h.

3.3 Results and Discussion

3.3.1 Washing With Dilute NaOH

Table 3.1 summarizes the behavior of important sludge components during washing of the S-104 sludge with 0.01 M NaOH. Only Cr, Na, and P were significantly removed by dilute hydroxide washing. A small fraction of Al (2%), Ni (5%), and Si (8%) were also removed. Iron, Mn, and Sr were largely unaffected by dilute hydroxide washing. Mass recoveries were within 30% for all the components listed, except for P, Ni, and Si. The low mass recoveries for the latter two elements are unexplained at this time. The high mass recovery for P is likely due to experimental uncertainties in determining this component at the low concentrations in the S-104 sludge.

(a) In this report, we define the mass recovery to be the ratio of the concentration determined by the summation method to that determined by direct analysis of the untreated sludge solids multiplied by 100. To determine the concentrations by the summation method, the amount of material found in each process solution and in the residual solids was summed, and the resulting quantity was divided by the mass of solids used in the test.
Wt. Slurry After Sampling = 27.411 g (0.10's...tng...)

Wt. Sludge Solids Remaining = (27.411 g slurry) * (0.177 g solids/g slurry) = 4.852 g

1.685 g sludge (1.595 g solids) initially in B;
0.807 g washed solids
= 48 wt% insoluble solids in sludge

4.553 g slurry in B;
0.851 g sludge in B;
0.807 g dried solids
= 6 wt% water in sludge;
0.177 g sludge solids/g slurry

Figure 3.1. Schematic Representation of S-104 Leaching Test

(b) After centrifuging, there were solids floating on the surface of the liquid phase. A pipette was used to draw off the liquid between this floating layer and the centrifuged solids layer. Because of this, it was necessary to leave some free liquid in the leaching vessel. The mass of material in the leaching vessel after transfer of the liquid was 7.763 g. The volume of liquid remaining in the leaching vessel was estimated to be 6.4 mL by subtracting the weight of the dried leached solids (0.181 g) from the total weight of the material still in the leaching vessel (7.763 g) and dividing by the solution density (1.180 g/mL).
10 M NaOH (32 mL) and water (72 mL) to give 121 g slurry

Caustic Leach 2
Mix 76 h, 100°C, cool, centrifuge, decant

Solution F
103 mL Decanted
2.9 M OH⁻

(c) The mass of material in the leaching vessel after transfer of the liquid was 3.496 g. The volume of liquid remaining in the leaching vessel was estimated to be 2.9 mL by subtracting the weight of the dried leached solids (0.182 g) from the total weight of the material still in the leaching vessel (3.496 g) and dividing by the solution density (1.136 g/mL).

Wash 1
Mix 0.5 h, room temp., centrifuge, decant

Wash 2
Mix 0.5 h, room temp., centrifuge, decant

Solution G
148 mL

Wash 3
Mix 0.5 h, room temp., sample slurry

Wash 3 (cont.)
centrifuge, decant

Sample H
(0.501 g slurry)

Sample I
(0.201 g slurry)

Solids (2.416 g wet solids)

Dry solids at 105°C
0.182 g

(d) Final weight of dried solids was adjusted for that removed in samples H and I.

Figure 3.1. (contd)
Table 3.1. Results of Tank S-104 Sludge Washing: Nonradioactive Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>Washed Solids</th>
<th>Total Mass, µg</th>
<th>Component Distribution, %</th>
<th>Concentration in Initial Solids µg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL</td>
<td>Mass, µg</td>
<td>Conc., µg/g</td>
<td>Mass, µg</td>
<td>Wash Solution</td>
</tr>
<tr>
<td>AI</td>
<td>190</td>
<td>5873</td>
<td>380500</td>
<td>0 307064</td>
<td>312936</td>
</tr>
<tr>
<td>Cr</td>
<td>187</td>
<td>5775</td>
<td>444</td>
<td>0 358</td>
<td>6133</td>
</tr>
<tr>
<td>Fe</td>
<td>< 0.13</td>
<td>< 4</td>
<td>7675</td>
<td>0 6194</td>
<td>< 6198</td>
</tr>
<tr>
<td>Mn</td>
<td>< 0.26</td>
<td>< 8</td>
<td>5018</td>
<td>0 4049</td>
<td>< 4057</td>
</tr>
<tr>
<td>Na</td>
<td>8117</td>
<td>243900</td>
<td>13550</td>
<td>0 10935</td>
<td>254835</td>
</tr>
<tr>
<td>Ni</td>
<td>0.44</td>
<td>14</td>
<td>355</td>
<td>0 286</td>
<td>360</td>
</tr>
<tr>
<td>P</td>
<td>2.73</td>
<td>84</td>
<td>< 133</td>
<td>< 107</td>
<td>191</td>
</tr>
<tr>
<td>Si</td>
<td>9.77</td>
<td>302</td>
<td>4300</td>
<td>0 3470</td>
<td>3772</td>
</tr>
<tr>
<td>Sr</td>
<td>< 0.08</td>
<td>< 2</td>
<td>1553</td>
<td>0 1253</td>
<td>< 1255</td>
</tr>
<tr>
<td>U</td>
<td>0.35</td>
<td>11</td>
<td>21900</td>
<td>0 17673</td>
<td>17684</td>
</tr>
</tbody>
</table>

(a) Solids were prepared for analysis by both KOH and Na2O2 fusion methods; mean values are given for analytes that can be determined by both these methods.

(b) Value adjusted for the Na added as 0.01 M NaOH.

(c) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.
3.3.2 Caustic Leaching

Figure 3.2 depicts the Al and Na concentrations as a function of time in the first caustic leaching step. These results clearly indicate that additional Al dissolved between 5 and 75 hours of leaching. Thus, kinetic factors are important in the removal of Al from the S-104 sludge. The previous studies with the S-104 sludge used two successive leaching steps of 5 h each. The results of the current study suggest that slow Al dissolution kinetics were, at least in part, responsible for the low Al removal efficiencies observed in the earlier studies. The Na concentration remained essentially constant (3.6 M) during the 211 h of leaching.

The Cr concentration also remained essentially constant (~420 µg/mL) throughout the first leaching step. Spectrophotometry indicated that the only Cr species was CrO$_4^{2-}$ (λ_{max} = 372 nm); no evidence existed for bands at 430 and 595 nm, which would be characteristic of Cr(III) (Figure 3.3). To obtain the spectrum depicted in Figure 3.3, the first leaching solution was diluted by some unknown amount. Based on calibration with standard Cr(VI) solutions, the Cr(VI) concentration in the solution measured for Figure 3.3 was ~10 µg/mL. Nitrite ion displays an absorbance at 354 nm, so it might also be contributing to the absorbance at 371 nm. The detection limit for Cr(III) in the diluted solution is used to measure the spectrum of 10 µg/mL; that is, the Cr(III) concentration would have had to be about the same as that for Cr(VI) for it to have been detected.

![Figure 3.2. Aluminum and Na Concentrations as a Function of Time in the First Caustic Leaching Step](image-url)
Figure 3.3. UV/Vis Spectra of the First S-104 Caustic Leaching Solution and a Solution Derived From Dissolving Cr(OH)$_3$ in 3 M NaOH

Table 3.2 presents the concentrations of various sludge components in each process stream, and Table 3.3 presents the distribution of the sludge components between the various process streams; the results are not adjusted for the amount of each component carried over from one step to the next in the interstitial liquid. Leaching with caustic under the conditions described here led to much greater Al removal than previously observed. The results indicated 99% of the Al was removed from the S-104 sludge. Virtually all of the Al dissolution occurred in the first leaching step; the amount of Al present in the second leaching step could be accounted for by diluting the interstitial liquid carried over from the first leaching step. In previous studies, the Al removal was indicated to be between 30 and 40%. Thus, longer leaching times, combined with a greater solution-to-solids ratio, led to a dramatic increase in Al removal for the S-104 sludge.

Nearly all of the Cr was removed in the caustic leaching procedure, although the wash with dilute NaOH indicated that caustic leaching is not necessary to remove most of the Cr in the S-104 sludge (see above). Interestingly, a significant fraction of the Ni appeared to be removed by caustic leaching; but because the Ni concentrations were often near the analytical detection limit, this result should be viewed with caution. Likewise, very little P was present in this waste, so definitive conclusions regarding its behavior could not be deduced from this work. Approximately half of the Si was removed by caustic leaching. However, Fe, Mn, and U showed little tendency towards dissolution under these alkaline conditions.
Table 3.2. Concentrations of the Nonradioactive S-104 Sludge Components in the Various Process Streams

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
<th>Total Mass, µg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL</td>
<td>Mass, µg(a)</td>
<td>Conc., µg/mL</td>
<td>Mass, µg(b)</td>
<td>Conc., µg/g</td>
</tr>
<tr>
<td>Al</td>
<td>14700</td>
<td>539570</td>
<td>150</td>
<td>15429</td>
<td>65.2</td>
</tr>
<tr>
<td>Cr</td>
<td>419</td>
<td>15488</td>
<td>22.8</td>
<td>2350</td>
<td>0.48</td>
</tr>
<tr>
<td>Fe</td>
<td>2.0</td>
<td>76</td>
<td>2.1</td>
<td>216</td>
<td>< 0.07</td>
</tr>
<tr>
<td>Mn</td>
<td>< 1.8</td>
<td>< 63</td>
<td>< 1.8</td>
<td>< 180</td>
<td>< 0.06</td>
</tr>
<tr>
<td>Na</td>
<td>82600</td>
<td>3057455</td>
<td>62020</td>
<td>6388060</td>
<td>2222</td>
</tr>
<tr>
<td>P</td>
<td>2.1</td>
<td>76</td>
<td>2.1</td>
<td>216</td>
<td>0.70</td>
</tr>
<tr>
<td>Si</td>
<td>15.4</td>
<td>566</td>
<td>< 3.5</td>
<td>< 361</td>
<td>< 0.11</td>
</tr>
<tr>
<td>Sr</td>
<td>0.53</td>
<td>19</td>
<td>0.66</td>
<td>68</td>
<td>< 0.02</td>
</tr>
<tr>
<td>U(d)</td>
<td>0.308</td>
<td>11</td>
<td>0.489</td>
<td>50</td>
<td>0.072</td>
</tr>
</tbody>
</table>

(a) Mass of material present in the solution decanted during the first leaching step; the mass value is corrected for the mass of material present in the samples taken at 5 and 75 hrs.
(b) Mass of material present in the solution decanted during the indicated step.
(c) Adjusted for the amount of Na added as NaOH gives a negative mass for Na in the sludge, indicating < 100% mass recovery for Na.
(d) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.
The test data indicated that 3% of the Sr was in the leach solutions, which might have implications regarding the LLW stream (i.e., by leaching of ^{90}Sr). Radiochemical analysis indicated that the first leach, second leach, and final wash solutions contained 0.326, 0.570, and 0.058 $\mu\text{Ci} \, ^{90}\text{Sr}/\text{mL}$, respectively. Assuming the LLW glass form will contain 20 wt% Na$_2$O (Orme et al. 1996), with a density of 2.7 metric tons/m3, the LLW form resulting from immobilization of only these solutions would be projected to contain 3 Ci $^{90}\text{Sr}/\text{m}^3$. This would be two orders-of-magnitude above the 0.04 Ci/m3 U.S. Nuclear Regulatory Commission (NRC) Class A LLW limit for this isotope, but well within the Class C LLW limit of 7000 Ci/m3. As current plans only require Class C LLW, no ^{90}Sr removal from the S-104 leaching and washing solutions would be required.

Table 3.4 presents the concentrations in the untreated S-104 sludge solids as determined by direct analysis and by summing the components found in each process stream; the table also presents the mass recovery for each component. With the exceptions of P and Si, mass recoveries were all within 30%. The data for P and Si should be viewed with caution based upon the poor mass balance for these components. The concentrations determined by direct analysis agreed well with those obtained in the FY 1995 study (Rapko, Lumetta, and Wagner 1995), except for Si.

Microscopic analysis of untreated S-104 solids indicated boehmite (AlOOH) to be the predominant phase present (Figure 3.4). Some clay, some iron-containing particles, and other minor phases were also observed. Microscopic analysis of treated S-104 solids indicated that boehmite almost completely dissolved. This contrasts with the earlier studies of the S-104 sludge in which boehmite remained after caustic leaching. Again, these observations support the hypothesis that the previously observed low Al

Table 3.3. Distribution of Nonradiative S-104 Sludge Components Between the Various Process Streams

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>95</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cr</td>
<td>86</td>
<td>13</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fe</td>
<td>0.6</td>
<td>1.6</td>
<td>0.1</td>
<td>97</td>
</tr>
<tr>
<td>Mn</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>Na</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.1$^{(a)}$</td>
</tr>
<tr>
<td>Ni</td>
<td>7</td>
<td>19</td>
<td>9</td>
<td>66</td>
</tr>
<tr>
<td>P</td>
<td>> 58</td>
<td>< 37</td>
<td>< 2</td>
<td>> 4</td>
</tr>
<tr>
<td>Si</td>
<td>11</td>
<td>31</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>Sr</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

(a) Amount of Na in residue determined by comparing the amount of Na in the untreated solid to that in the leached solid.
Table 3.4. Concentrations of the Nonradioactive S-104 Sludge Components in the Initial Sludge Solids

<table>
<thead>
<tr>
<th>Component</th>
<th>Summation Method</th>
<th>This Work</th>
<th>Previous Work</th>
<th>Mass Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>117515</td>
<td>152735</td>
<td>150000</td>
<td>77</td>
</tr>
<tr>
<td>Cr</td>
<td>3725</td>
<td>4470</td>
<td>4700</td>
<td>83</td>
</tr>
<tr>
<td>Fe</td>
<td>2818</td>
<td>3017</td>
<td>3400</td>
<td>93</td>
</tr>
<tr>
<td>Mn</td>
<td>< 2160</td>
<td>2088</td>
<td>2200</td>
<td>--</td>
</tr>
<tr>
<td>Na</td>
<td>--</td>
<td>184450</td>
<td>200000</td>
<td>--</td>
</tr>
<tr>
<td>Ni</td>
<td>240</td>
<td>306</td>
<td>Not Determined</td>
<td>78</td>
</tr>
<tr>
<td>P</td>
<td>202</td>
<td>17</td>
<td>< 200</td>
<td>1186</td>
</tr>
<tr>
<td>Si</td>
<td>1637</td>
<td>3950</td>
<td>6800</td>
<td>41</td>
</tr>
<tr>
<td>Sr</td>
<td>623</td>
<td>651</td>
<td>610</td>
<td>96</td>
</tr>
<tr>
<td>U</td>
<td>9542</td>
<td>9360</td>
<td>10100</td>
<td>102</td>
</tr>
</tbody>
</table>

(a) The value was determined by summing the amount of a given component in the caustic leaching solutions, the subsequent washing solutions, and the leached solids; the total concentration was then determined by dividing the sum by the amount of solids used.

(b) Rapko, Lumetta, and Wagner 1995.

Figure 3.4. Boehmite Particles in the Untreated S-104 Sludge
removal was due to slow boehmite dissolution. Microscopic analysis indicated that Fe, U, Mn, and Si were the major elements in the caustic-leached S-104 solids. Mixed Fe/Mn oxide phases were observed along with aluminosilicates (Figure 3.5). The morphology and structure of the U-containing particles appeared to change during the treatment (Figure 3.6).

Figure 3.5. Mixed Iron/Manganese Oxide and Amorphous Aluminosilicate Particles in the Caustic-Leached S-104 Sludge. EDS = electron dispersion spectroscopy; SAD = selected area diffraction.
Before Treatment

After Treatment

50 nm

Figure 3.6. Uranium Oxide Species Before and After Leaching S-104 Sludge
4.0 Tank BY-108 Enhanced Sludge Washing Test

This section presents the results of the ESW test performed on Hanford Tank BY-108 sludge. The sludge sample used in this test was received at PNNL on August 2, 1996; the 222-S laboratory ID for this sample was S96T002035, and the jar number was 10527. This material was a composite of segment 4 from Core 99.

4.1 Experimental

Figure 4.1 summarizes the experimental procedure used in the BY-108 ESW test. The procedure was the same as the baseline ESW test procedure described previously (Lumen et al. 1996), except gravity settling was used rather than centrifugation for solids/liquid separations in the leaching steps. Centrifugation was not used because a suitable centrifuge was not available in the hot cell where the test was performed.\(^{(a)}\)

For the dilute hydroxide washing steps (sample B1), the undissolved solids concentrations ranged from 1.7 to 2.9 wt%. The target undissolved solids concentration in the first and second caustic leaching steps were 5 wt% and 1 wt% respectively. Based upon the leached-solids' mass of 3.167 g, the actual concentrations were 7.1 and 1.7 wt%, respectively.

4.2 Results and Discussion

4.2.1 Washing With Dilute NaOH

Table 4.1 summarizes the behavior of most of the nonradioactive sludge components during washing of the BY-108 sludge with 0.01 M NaOH. Sodium was the most soluble element present with 96% being removed by washing with 0.01 M NaOH. A relatively large fraction (63%) of the Al was removed by dilute hydroxide washing. Although most other tanks investigated indicated a smaller percentage of Al removed (see Section 8.0), the value of 63% determined for BY-108 is similar to the value of 65% determined for BY-104, and it is even less than observed for BY-110 (Lumetta et al. 1996). Both BY-104 and BY-110 are reported to contain similar wastes to that stored in BY-108 (Hill, Anderson, and Simpson 1995). Significant fractions of P (73%) and Cr (49%) were also removed from BY-108 sludge by dilute hydroxide washing.

\(^{(a)}\) Typically, the ESW tests are performed in fume hoods, but because of the radiological characteristics of the BY-108 sludge, it was necessary to perform this test in the hot cell.
Figure 4.1 Schematic Representation of the BY-108 ESW Test
Figure 4.1. (contd)
Table 4.1. Results of Dilute Hydroxide Washing of Tank BY-108 Sludge: Nonradioactive Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>Washed Solids</th>
<th>Total Mass, (\mu g)</th>
<th>Component Distribution, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc. mg/mL</td>
<td>Conc. (\mu g/g)</td>
<td>Mass, (\mu g)</td>
<td>Wash Solution</td>
</tr>
<tr>
<td>Ag</td>
<td>< 0.0825</td>
<td>< 2</td>
<td>< 23</td>
<td>8</td>
</tr>
<tr>
<td>Al</td>
<td>363</td>
<td>10655</td>
<td>23960</td>
<td>16048</td>
</tr>
<tr>
<td>As</td>
<td>< 0.825</td>
<td>< 23</td>
<td>< 659</td>
<td>193</td>
</tr>
<tr>
<td>B</td>
<td>0.792</td>
<td>22</td>
<td>< 76</td>
<td>42</td>
</tr>
<tr>
<td>Ba</td>
<td>< 0.055</td>
<td>< 2</td>
<td>1018</td>
<td>266</td>
</tr>
<tr>
<td>Be</td>
<td>< 0.0275</td>
<td>< 1</td>
<td>< 8</td>
<td>3</td>
</tr>
<tr>
<td>Bi</td>
<td>< 0.55</td>
<td>< 15</td>
<td>6215</td>
<td>1631</td>
</tr>
<tr>
<td>Ca</td>
<td>1.375</td>
<td>38</td>
<td>52710</td>
<td>13743</td>
</tr>
<tr>
<td>Cd</td>
<td>< 0.0825</td>
<td>< 2</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>Ce</td>
<td>< 1.1</td>
<td>< 30</td>
<td>< 444</td>
<td>146</td>
</tr>
<tr>
<td>Co</td>
<td>0.275</td>
<td>8</td>
<td>< 76</td>
<td>27</td>
</tr>
<tr>
<td>Cr</td>
<td>6.259</td>
<td>171</td>
<td>692</td>
<td>553</td>
</tr>
<tr>
<td>Cu</td>
<td>< 0.175</td>
<td>< 4</td>
<td>220</td>
<td>63</td>
</tr>
<tr>
<td>Dy</td>
<td>< 0.275</td>
<td>< 8</td>
<td>< 76</td>
<td>27</td>
</tr>
<tr>
<td>Eu</td>
<td>< 0.55</td>
<td>< 15</td>
<td>152</td>
<td>55</td>
</tr>
<tr>
<td>Fe</td>
<td>0.175</td>
<td>4</td>
<td>134500</td>
<td>34970</td>
</tr>
<tr>
<td>K</td>
<td>69.3</td>
<td>1915</td>
<td>3046</td>
<td>2712</td>
</tr>
<tr>
<td>La</td>
<td>< 0.275</td>
<td>< 8</td>
<td>218</td>
<td>64</td>
</tr>
<tr>
<td>Li</td>
<td>< 0.165</td>
<td>< 5</td>
<td>< 46</td>
<td>16</td>
</tr>
<tr>
<td>Mg</td>
<td>< 0.55</td>
<td>< 15</td>
<td>3405</td>
<td>901</td>
</tr>
<tr>
<td>Mn</td>
<td>< 0.275</td>
<td>< 8</td>
<td>1558</td>
<td>412</td>
</tr>
<tr>
<td>Mo</td>
<td>< 0.275</td>
<td>< 8</td>
<td>< 76</td>
<td>27</td>
</tr>
<tr>
<td>Na</td>
<td>0.427</td>
<td>64 25428</td>
<td>42300</td>
<td>265226</td>
</tr>
<tr>
<td>Ni</td>
<td>80.74</td>
<td>2233</td>
<td>38600</td>
<td>12272</td>
</tr>
<tr>
<td>P</td>
<td>915.2</td>
<td>25311</td>
<td>35900</td>
<td>34685</td>
</tr>
<tr>
<td>Pb</td>
<td>< 0.55</td>
<td>< 15</td>
<td>3975</td>
<td>1049</td>
</tr>
<tr>
<td>Pb</td>
<td>< 4.125</td>
<td>< 114</td>
<td>< 1142</td>
<td>411</td>
</tr>
<tr>
<td>Rh</td>
<td>< 1.65</td>
<td>< 46</td>
<td>< 457</td>
<td>164</td>
</tr>
<tr>
<td>Ru</td>
<td>< 5.5</td>
<td>< 152</td>
<td>< 1523</td>
<td>548</td>
</tr>
<tr>
<td>Sb</td>
<td>< 3.75</td>
<td>< 76</td>
<td>< 762</td>
<td>274</td>
</tr>
<tr>
<td>Se</td>
<td>< 1.375</td>
<td>< 38</td>
<td>< 615</td>
<td>198</td>
</tr>
<tr>
<td>Si</td>
<td>7.15</td>
<td>198</td>
<td>9245</td>
<td>2602</td>
</tr>
<tr>
<td>Sn</td>
<td>< 8.25</td>
<td>< 229</td>
<td>< 2880</td>
<td>977</td>
</tr>
<tr>
<td>Sr</td>
<td>< 0.0825</td>
<td>< 2</td>
<td>37450</td>
<td>9737</td>
</tr>
<tr>
<td>Te</td>
<td>< 8.25</td>
<td>< 220</td>
<td>< 2285</td>
<td>822</td>
</tr>
<tr>
<td>Th</td>
<td>< 5.5</td>
<td>< 152</td>
<td>< 1523</td>
<td>548</td>
</tr>
<tr>
<td>Tl</td>
<td>< 0.175</td>
<td>< 4</td>
<td>169</td>
<td>48</td>
</tr>
<tr>
<td>U</td>
<td>< 2.75</td>
<td>< 76</td>
<td>< 762</td>
<td>274</td>
</tr>
<tr>
<td>U(N)</td>
<td>0.0812</td>
<td>2</td>
<td>202000</td>
<td>552520</td>
</tr>
<tr>
<td>V</td>
<td>< 0.275</td>
<td>< 8</td>
<td>< 76</td>
<td>27</td>
</tr>
<tr>
<td>W</td>
<td>< 11</td>
<td>< 305</td>
<td>< 3046</td>
<td>1007</td>
</tr>
<tr>
<td>Y</td>
<td>< 0.275</td>
<td>< 8</td>
<td>< 76</td>
<td>27</td>
</tr>
<tr>
<td>Zn</td>
<td>0.66</td>
<td>18</td>
<td>973</td>
<td>271</td>
</tr>
<tr>
<td>Zr</td>
<td>< 0.275</td>
<td>< 8</td>
<td>142</td>
<td>45</td>
</tr>
</tbody>
</table>

(a) Value adjusted for the Na added to 0.01 M NaOH.

(b) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.
Table 4.2 presents the concentrations determined in the untreated BY-108 sludge solids for most of the nonradioactive sludge components; also given is the mass recovery achieved for each of these components. The ten most abundant elements in the BY-108 sludge, as determined by direct analysis of the sludge, were Na (21.3 wt%), U (8.07 wt%), Fe (5.17 wt%), P (2.35 wt%), Ca (2.08 wt%), Ni (1.77 wt%), Sr (1.36 wt%), Al (1.26 wt%), Si (0.74 wt%), and K (0.26 wt%). Mass recoveries were good for Al and Na, less so for Cr, and poor for all the other components. Mass recoveries obtained in the caustic leaching portion of the test were much better (see below) suggesting the analytical error was not the major cause for this discrepancy. There was a discrepancy between the weight of the dilute hydroxide-washed solids and the weight of the caustic-leached solids. Washing of sample B1 indicated that the sludge contained 16 wt% insoluble solids. Using that value, the weight of the residue from the caustic leaching portion of the test would be expected to be 1.95 g or less; but, the actual weight of the caustic-leached solids was 3.167 g. Furthermore, during the third wash of B1, there was a mass loss of 4.213 g. During the previous two washing steps, the mass lost upon heating was only ~0.1 g. This suggests that vial B1 might have leaked during the third washing step, which would account for the low mass balance.

Table 4.3 summarizes the behavior of the radioactive sludge components during washing of the BY-108 sludge with 0.01 M NaOH. As has been seen with most other Hanford tank sludges, the TRU elements are very insoluble in 0.01 M NaOH. All Np, Pu, Am, and Cm isotopes were below the detection limit in the wash solution. Likewise, 60Co, 90Sr, and 154,155Eu showed little propensity for dissolving in 0.01 M NaOH. Interestingly, 137Cs did not dissolve effectively in 0.01 M NaOH. Tank BY-108 is believed to contain wastes that were treated with ferrocyanide to scavenge 137Cs, which might explain this result. As would be consistent with the behavior of pertechnetate ion, 99Tc was effectively (>95%) dissolved in the dilute NaOH wash.

Table 4.4 presents the concentrations of the various radionuclides in the untreated BY-108 sludge solids along with the mass recovery for each. As was the case with most of the nonradioactive components, the mass recoveries were low for most of the radionuclides.
Table 4.2. Concentrations of Nonradioactive Components in the Untreated BY-108 Solids: Results from the Dilute Hydroxide Wash

<table>
<thead>
<tr>
<th>Component</th>
<th>Summation Method<sup>a</sup></th>
<th>Direct Analysis<sup>b</sup></th>
<th>Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>< 7.17E+00</td>
<td>< 2.03E+01</td>
<td>--</td>
</tr>
<tr>
<td>Al</td>
<td>1.40E+04</td>
<td>1.26E+04</td>
<td>111</td>
</tr>
<tr>
<td>As</td>
<td>< 1.69E+02</td>
<td>< 2.03E+02</td>
<td>--</td>
</tr>
<tr>
<td>B</td>
<td>19.1 < x < 36.4</td>
<td>1.60E+03</td>
<td>1 < x < 2</td>
</tr>
<tr>
<td>Ba</td>
<td>2.31E+02</td>
<td>3.89E+02</td>
<td>59</td>
</tr>
<tr>
<td>Be</td>
<td>< 2.39E+00</td>
<td>< 6.78E+00</td>
<td>--</td>
</tr>
<tr>
<td>Bi</td>
<td>1.41E+03</td>
<td>2.35E+03</td>
<td>60</td>
</tr>
<tr>
<td>Ca</td>
<td>1.20E+04</td>
<td>2.08E+04</td>
<td>58</td>
</tr>
<tr>
<td>Cd</td>
<td>6.36 < x < 8.35</td>
<td>2.60E+01</td>
<td>24 < x < 52</td>
</tr>
<tr>
<td>Ce</td>
<td>< 1.27E+02</td>
<td>< 2.71E+02</td>
<td>--</td>
</tr>
<tr>
<td>Co</td>
<td>< 2.39E+01</td>
<td>< 6.78E+01</td>
<td>--</td>
</tr>
<tr>
<td>Cr</td>
<td>3.08E+02</td>
<td>3.98E+02</td>
<td>77</td>
</tr>
<tr>
<td>Cu</td>
<td>51.8 < x < 55.1</td>
<td>1.22E+02</td>
<td>42 < x < 45</td>
</tr>
<tr>
<td>Dy</td>
<td>< 2.39E+01</td>
<td>< 6.78E+01</td>
<td>--</td>
</tr>
<tr>
<td>Eu</td>
<td>< 4.78E+01</td>
<td>< 1.36E+02</td>
<td>--</td>
</tr>
<tr>
<td>Fe</td>
<td>3.05E+04</td>
<td>5.17E+04</td>
<td>59</td>
</tr>
<tr>
<td>K</td>
<td>1670 < x < 2360</td>
<td>2.58E+03</td>
<td>65 < x < 92</td>
</tr>
<tr>
<td>La</td>
<td>49.3 < x < 55.9</td>
<td>1.03E+02</td>
<td>48 < x < 54</td>
</tr>
<tr>
<td>Li</td>
<td>< 1.43E+01</td>
<td>< 4.07E+01</td>
<td>--</td>
</tr>
<tr>
<td>Mg</td>
<td>7.72E+02</td>
<td>1.31E+03</td>
<td>58</td>
</tr>
<tr>
<td>Mn</td>
<td>3.53E+02</td>
<td>5.34E+02</td>
<td>66</td>
</tr>
<tr>
<td>Mo</td>
<td>< 2.39E+01</td>
<td>< 6.78E+01</td>
<td>0 < x < 35</td>
</tr>
<tr>
<td>Na</td>
<td>2.31E+05</td>
<td>2.13E+05</td>
<td>108</td>
</tr>
<tr>
<td>Nd</td>
<td>149 < x < 162</td>
<td>3.10E+02</td>
<td>48 < x < 52</td>
</tr>
<tr>
<td>Ni</td>
<td>1.07E+04</td>
<td>1.77E+04</td>
<td>60</td>
</tr>
<tr>
<td>P</td>
<td>3.02E+04</td>
<td>2.35E+04</td>
<td>129</td>
</tr>
<tr>
<td>Pb</td>
<td>9.01E+02</td>
<td>1.55E+03</td>
<td>58</td>
</tr>
<tr>
<td>Pd</td>
<td>< 3.59E+02</td>
<td>< 1.02E+03</td>
<td>--</td>
</tr>
<tr>
<td>Pb</td>
<td>< 1.43E+02</td>
<td>< 4.07E+02</td>
<td>--</td>
</tr>
<tr>
<td>Ru</td>
<td>< 4.78E+02</td>
<td>< 1.36E+03</td>
<td>--</td>
</tr>
<tr>
<td>Sb</td>
<td>< 2.39E+02</td>
<td>< 6.78E+02</td>
<td>--</td>
</tr>
<tr>
<td>Se</td>
<td>< 1.71E+02</td>
<td>< 3.39E+02</td>
<td>--</td>
</tr>
<tr>
<td>Si</td>
<td>2.27E+03</td>
<td>7.36E+03</td>
<td>31</td>
</tr>
<tr>
<td>Sn</td>
<td>8.52E+02</td>
<td>2.03E+03</td>
<td>--</td>
</tr>
<tr>
<td>Sr</td>
<td>8.49E+03</td>
<td>1.36E+04</td>
<td>63</td>
</tr>
<tr>
<td>Te</td>
<td>< 7.17E+02</td>
<td>< 2.03E+03</td>
<td>--</td>
</tr>
<tr>
<td>Th</td>
<td>< 4.78E+02</td>
<td>< 1.36E+03</td>
<td>--</td>
</tr>
<tr>
<td>Ti</td>
<td>28.3 < x < 41.6</td>
<td>7.05E+01</td>
<td>54 < x < 59</td>
</tr>
<tr>
<td>Tl</td>
<td>< 2.39E+02</td>
<td>< 6.78E+02</td>
<td>--</td>
</tr>
<tr>
<td>U</td>
<td>4.58E+04</td>
<td>8.07E+04</td>
<td>57</td>
</tr>
<tr>
<td>V</td>
<td>< 2.39E+01</td>
<td>< 6.78E+01</td>
<td>--</td>
</tr>
<tr>
<td>W</td>
<td>< 9.56E+02</td>
<td>< 2.71E+03</td>
<td>--</td>
</tr>
<tr>
<td>Y</td>
<td>< 2.39E+01</td>
<td>< 6.78E+01</td>
<td>--</td>
</tr>
<tr>
<td>Zn</td>
<td>2.34E+02</td>
<td>4.03E+02</td>
<td>59</td>
</tr>
<tr>
<td>Zr</td>
<td>22.2 < x < 38.8</td>
<td>1.04E+02</td>
<td>30 < x < 36</td>
</tr>
</tbody>
</table>

^a Values determined by summing the mass of the component found in each process stream and dividing by the amount of sludge solids treated.

^b Solids were prepared for analysis by both KOH and Na₂O₂ fusion methods; mean values are given for analytes that can be determined by both these methods.
Table 4.3. Results of Dilute Hydroxide Washing of Tank BY-108 Sludge: Radioactive Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>Washed Solids</th>
<th>Component Distribution, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µCi/mL</td>
<td>Activity, µCi</td>
<td>Total Activity, µCi</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 3.30E-04</td>
<td>< 9.14E-03</td>
<td>< 3.37E-01</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>< 3.30E-04</td>
<td>< 9.14E-03</td>
<td>7.54E-01</td>
</tr>
<tr>
<td>241Am+238Pu</td>
<td>< 3.30E-04</td>
<td>< 9.14E-03</td>
<td>9.70E-02</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 1.43E-02</td>
<td>< 3.96E-01</td>
<td>< 1.30E-02</td>
</tr>
<tr>
<td>137Cs</td>
<td>1.24E+00</td>
<td>3.44E+01</td>
<td>3.95E+03</td>
</tr>
<tr>
<td>60Co</td>
<td>< 4.40E-03</td>
<td>< 1.22E-01</td>
<td>< 4.00E-03</td>
</tr>
<tr>
<td>134Eu</td>
<td>< 1.32E-02</td>
<td>< 3.66E-01</td>
<td>< 1.04E-01</td>
</tr>
<tr>
<td>151Eu</td>
<td>< 1.43E-02</td>
<td>< 3.96E-01</td>
<td>< 1.30E-02</td>
</tr>
<tr>
<td>90Sr</td>
<td>< 2.20E-02</td>
<td>< 6.09E-01</td>
<td>6.60E+02</td>
</tr>
<tr>
<td>99Tc</td>
<td>8.31E-04</td>
<td>2.50E-02</td>
<td>6.60E+02</td>
</tr>
<tr>
<td>240,244Cm</td>
<td>< 3.30E-04</td>
<td>< 9.14E-03</td>
<td>< 1.30E-02</td>
</tr>
<tr>
<td>237Np</td>
<td>< 3.30E-04</td>
<td>< 9.14E-03</td>
<td>2.47E-03</td>
</tr>
<tr>
<td>234U</td>
<td>< 3.30E-04</td>
<td>< 9.14E-03</td>
<td>1.96E-02</td>
</tr>
</tbody>
</table>

Table 4.4. Concentrations of Radioactive Components in the Untreated BY-108 Solids as Determined in the Dilute Hydroxide Washing Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration in Initial Solids, µCi/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summation</td>
<td>Direct Analysis</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td></td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 2.94E-01</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>< 1.79E-01</td>
</tr>
<tr>
<td>241Am+238Pu</td>
<td>< 9.25E-02</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 3.48E-01</td>
</tr>
<tr>
<td>137Cs</td>
<td>9.25E+02</td>
</tr>
<tr>
<td>60Co</td>
<td>< 1.07E-01</td>
</tr>
<tr>
<td>134Eu</td>
<td>< 4.09E-01</td>
</tr>
<tr>
<td>151Eu</td>
<td>< 3.48E-01</td>
</tr>
<tr>
<td>90Sr</td>
<td>< 5.76E+02</td>
</tr>
<tr>
<td>99Tc</td>
<td>< 2.12E-02</td>
</tr>
<tr>
<td>240,244Cm</td>
<td>< 2.10E-02</td>
</tr>
<tr>
<td>237Np</td>
<td>< 1.01E-02</td>
</tr>
<tr>
<td>234U</td>
<td>< 2.50E-02</td>
</tr>
</tbody>
</table>
4.2.2 Caustic Leaching

Table 4.5 presents the concentrations of most of the nonradioactive sludge components in each process stream, and Table 4.6 presents the distribution of those sludge components between the various process streams. The values presented in Table 4.6 are not adjusted for material contained in the interstitial liquid, but rather represent the amount of each component contained in the liquid that was decanted in a given step (or in the residual solid).

The cumulative removal of Al was 71%, which was only slightly higher than the 63% removed by washing with 0.01 M NaOH. Hence, caustic leaching did not have a large effect on the removal of Al from BY-108 sludge. Accounting for the 16.8 mL of leachate solution that remained after decanting the first leach solution, 57% of the Al dissolved in the first leaching step; another 14% dissolved in the second leaching step. Only 43% of the Cr was removed during the caustic leaching test, which was actually somewhat lower than the amount removed by dilute NaOH washing. Thus, caustic leaching did nothing to improve Cr removal. Again, taking into account the interstitial liquid volumes, 37% of the Cr was dissolved during the first leaching step and 6% more during the second leaching step. Caustic leaching did not significantly improve the P removal either as the cumulative P removal (70%) was similar to the amount removed by dilute NaOH washing (73%). Accounting for interstitial liquid, the P removals were 52%, 16%, and 2% in the first leach, second leach, and final wash, respectively. On the other hand, Si removal was improved from 8% for dilute NaOH washing to 42% for caustic leaching. Virtually all of the U, which is the second-most abundant metallic element in the BY-108 sludge, remained in the sludge solids during caustic leaching.

Table 4.7 summarizes the mass recoveries for the various elements analyzed by ICP/AES and for U, which was determined by laser fluorimetry. For the most part, the mass recoveries for the caustic leaching portion of the test were much better than was seen for the dilute hydroxide washing (compare the values in Table 4.7 to those in Table 4.2).

Table 4.8 presents the concentrations of the various anions in each process solution. Also listed are the amount of each anion in solution per gram of sludge solids treated. For the anions determined, in no case did the amount dissolved during caustic leaching exceed that which was removed simply by washing with 0.01 M NaOH. Thus, for Tank BY-108 sludge, ESW would not provide much benefit in terms of removing these anions from the HLW stream.
Table 4.5. Concentrations of the Nonradioactive BY-108 Sludge Components in the Various Process Streams During the Caustic Leaching Portion of the Test

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
<th>Total Mass, ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td><0.098 <2</td>
<td><0.098 <15</td>
<td><0.083 <8</td>
<td><22 <71</td>
<td><95</td>
</tr>
<tr>
<td>Al</td>
<td>22.10 40222</td>
<td>335 50276</td>
<td>62.6 6290</td>
<td>12421 39336</td>
<td>136124</td>
</tr>
<tr>
<td>As</td>
<td><0.98 <18</td>
<td><0.98 <146</td>
<td><0.83 <83</td>
<td>671 2125</td>
<td>22372</td>
</tr>
<tr>
<td>B</td>
<td>3.89 71</td>
<td>0.60 90</td>
<td>0.28 28</td>
<td>74 235</td>
<td>423</td>
</tr>
<tr>
<td>Ba</td>
<td><0.065 <1</td>
<td><0.065 <10</td>
<td>0.055 <6</td>
<td>989 3131</td>
<td>3147</td>
</tr>
<tr>
<td>Be</td>
<td><0.033 <1.1</td>
<td><0.033 <5</td>
<td>0.028 <3</td>
<td>7 <24</td>
<td>32</td>
</tr>
<tr>
<td>Bi</td>
<td><0.65 <12</td>
<td><0.65 <97</td>
<td>0.55 <55</td>
<td>5970 18907</td>
<td>19072</td>
</tr>
<tr>
<td>Ca</td>
<td><1.63 <30</td>
<td>5.59 838</td>
<td>1.38 138</td>
<td>51087 161793</td>
<td>162798</td>
</tr>
<tr>
<td>Cd</td>
<td><0.098 <2</td>
<td><0.098 <15</td>
<td><0.083 <8</td>
<td>46 146</td>
<td>170</td>
</tr>
<tr>
<td>Ce</td>
<td><1.3 <24</td>
<td><1.3 <195</td>
<td>1.1 <111</td>
<td>442 1400</td>
<td>1729</td>
</tr>
<tr>
<td>Co</td>
<td>2.08 38</td>
<td>0.36 55</td>
<td>0.28 <28</td>
<td>74 <235</td>
<td>356</td>
</tr>
<tr>
<td>Cr</td>
<td>34.6 629</td>
<td>4.6 688</td>
<td>0.87 87</td>
<td>598 1894</td>
<td>3298</td>
</tr>
<tr>
<td>Cu</td>
<td>1.20 22</td>
<td>0.21 31</td>
<td>0.14 <14</td>
<td>212 670</td>
<td>737</td>
</tr>
<tr>
<td>Dy</td>
<td><0.33 <6</td>
<td><0.33 <49</td>
<td>0.28 <28</td>
<td>74 <235</td>
<td>318</td>
</tr>
<tr>
<td>Eu</td>
<td><0.65 <12</td>
<td><0.65 <97</td>
<td>0.55 <55</td>
<td>149 <471</td>
<td>635</td>
</tr>
<tr>
<td>Fe</td>
<td>85.9 1564</td>
<td>19.8 2962</td>
<td>4.11 413</td>
<td>130000 411710</td>
<td>416649</td>
</tr>
<tr>
<td>K</td>
<td>387 7051</td>
<td>49.4 7405</td>
<td>11.0 1106</td>
<td>2974 <9419</td>
<td>24980</td>
</tr>
<tr>
<td>La</td>
<td><0.33 <6</td>
<td><0.33 <49</td>
<td>0.28 <28</td>
<td>209 662</td>
<td>744</td>
</tr>
<tr>
<td>Li</td>
<td><0.20 <4</td>
<td><0.20 <29</td>
<td>0.17 <17</td>
<td>45 <141</td>
<td>191</td>
</tr>
<tr>
<td>Mg</td>
<td>0.65 <12</td>
<td><0.65 <97</td>
<td>0.55 <55</td>
<td>3200 10029</td>
<td>100304</td>
</tr>
<tr>
<td>Mn</td>
<td><0.33 <6</td>
<td><0.33 <49</td>
<td>0.28 <28</td>
<td>1716 5433</td>
<td>5515</td>
</tr>
<tr>
<td>Mo</td>
<td><0.33 <6</td>
<td><0.33 <49</td>
<td>0.28 <28</td>
<td>74 <235</td>
<td>318</td>
</tr>
<tr>
<td>Na</td>
<td>91110 165856</td>
<td>66430 957857</td>
<td>12100 1216650</td>
<td>68600 217256</td>
<td>2578</td>
</tr>
<tr>
<td>Nd</td>
<td><0.65 <12</td>
<td><0.65 <97</td>
<td>0.55 <55</td>
<td>628 1987</td>
<td>2152</td>
</tr>
<tr>
<td>Ni</td>
<td>325 5915</td>
<td>45.1 6762</td>
<td>8.3 835</td>
<td>38800 122880</td>
<td>136931</td>
</tr>
<tr>
<td>P</td>
<td>4082 74292</td>
<td>672 100748</td>
<td>178 17909</td>
<td>26300 83292</td>
<td>276241</td>
</tr>
<tr>
<td>Pb</td>
<td><0.65 <12</td>
<td><0.65 <97</td>
<td>0.55 <55</td>
<td>3740 11845</td>
<td>12009</td>
</tr>
<tr>
<td>Pd</td>
<td><4.88 <89</td>
<td><4.88 <731</td>
<td>4.13 <415</td>
<td>1115 <3532</td>
<td>49666</td>
</tr>
<tr>
<td>Rh</td>
<td><1.95 <35</td>
<td><1.95 <292</td>
<td>1.65 <166</td>
<td>446 <1413</td>
<td>1906</td>
</tr>
<tr>
<td>Ru</td>
<td><6.5 <118</td>
<td><6.5 <974</td>
<td>5.5 <553</td>
<td>1487 4709</td>
<td>6355</td>
</tr>
<tr>
<td>Sb</td>
<td><3.25 <59</td>
<td><3.25 <487</td>
<td>2.75 <276</td>
<td>744 <2555</td>
<td>3177</td>
</tr>
<tr>
<td>Se</td>
<td><1.63 <30</td>
<td><1.63 <244</td>
<td>1.38 <138</td>
<td>629 <1992</td>
<td>2403</td>
</tr>
<tr>
<td>Si</td>
<td>26 473</td>
<td>75.8 11361</td>
<td>19.8 1990</td>
<td>5915 18733</td>
<td>32557</td>
</tr>
<tr>
<td>Sn</td>
<td><9.75 <177</td>
<td><9.75 <1462</td>
<td>8.25 <829</td>
<td>2830 <8963</td>
<td>11431</td>
</tr>
<tr>
<td>Sr</td>
<td><0.098 <2</td>
<td><0.098 <15</td>
<td>0.083 <8</td>
<td>30350 115120</td>
<td>115145</td>
</tr>
<tr>
<td>Te</td>
<td><9.75 <177</td>
<td><9.75 <1462</td>
<td>8.25 <829</td>
<td>2231 <7064</td>
<td>9552</td>
</tr>
<tr>
<td>Th</td>
<td><6.5 <118</td>
<td><6.5 <974</td>
<td>5.5 <553</td>
<td>1487 4709</td>
<td>6355</td>
</tr>
<tr>
<td>Ti</td>
<td><0.16 <3</td>
<td><0.16 <24</td>
<td>0.14 <14</td>
<td>159 504</td>
<td>545</td>
</tr>
<tr>
<td>Tl</td>
<td><3.25 <59</td>
<td><3.25 <487</td>
<td>2.75 <276</td>
<td>744 <2555</td>
<td>3177</td>
</tr>
<tr>
<td>U</td>
<td>^{238} 0.092</td>
<td>0.092 14</td>
<td>0.046 5</td>
<td>196000 620732</td>
<td>620752</td>
</tr>
<tr>
<td>V</td>
<td>^{23} <0.33</td>
<td><0.33 <49</td>
<td>0.28 <28</td>
<td>74 <235</td>
<td>318</td>
</tr>
<tr>
<td>W</td>
<td>^{183} <13</td>
<td><13 <1949</td>
<td><11 <1106</td>
<td>2974 9419</td>
<td>12709</td>
</tr>
<tr>
<td>Y</td>
<td>^{89} <0.33</td>
<td><0.33 <49</td>
<td>0.28 <28</td>
<td>74 <235</td>
<td>318</td>
</tr>
<tr>
<td>Zn</td>
<td>3.34 43</td>
<td>1.3 195</td>
<td>0.275 <28</td>
<td>856 2711</td>
<td>2976</td>
</tr>
<tr>
<td>Zr</td>
<td>^{90} <0.33</td>
<td><0.33 <49</td>
<td>0.28 <28</td>
<td>258 817</td>
<td>899</td>
</tr>
</tbody>
</table>

(a) Mass of material present in the solution decanted during the indicated step.
(b) Adjusted for the amount (12.562150 ug) of Na added as NaOH.
(c) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.
Table 4.6. Distribution of Nonradioactive BY-108 Sludge Components Between the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Al</td>
<td>30</td>
<td>37</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>As</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>B</td>
<td>> 17</td>
<td>> 21</td>
<td>< 7</td>
<td>< 55</td>
</tr>
<tr>
<td>Ba</td>
<td>< 0</td>
<td>< 0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Be</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Bi</td>
<td>< 0</td>
<td>< 0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Ca</td>
<td>< 0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Cd</td>
<td>< < 1</td>
<td>< < 9</td>
<td>< 5</td>
<td>> 86</td>
</tr>
<tr>
<td>Ce</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Co</td>
<td>> 11</td>
<td>> 15</td>
<td>< 8</td>
<td>< 66</td>
</tr>
<tr>
<td>Cr</td>
<td>19</td>
<td>21</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>Cu</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>Dy</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Eu</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Fe</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>K</td>
<td>28 < x < 45</td>
<td>30 < x < 48</td>
<td>4 < x < 7</td>
<td>< 38</td>
</tr>
<tr>
<td>La</td>
<td>< < 1</td>
<td>< < 7</td>
<td>< 4</td>
<td>> 88</td>
</tr>
<tr>
<td>Li</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Mg</td>
<td>< < 1</td>
<td>< < 1</td>
<td>< 1</td>
<td>> 97</td>
</tr>
<tr>
<td>Mn</td>
<td>< < 1</td>
<td>< < 1</td>
<td>< 1</td>
<td>> 97</td>
</tr>
<tr>
<td>Mo</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Na</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32<sup>10</sup></td>
</tr>
<tr>
<td>Nd</td>
<td>< < 1</td>
<td>< < 4</td>
<td>< 3</td>
<td>> 92</td>
</tr>
<tr>
<td>Ni</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>P</td>
<td>27</td>
<td>36</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Pb</td>
<td>< < 1</td>
<td>< < 1</td>
<td>< 1</td>
<td>> 97</td>
</tr>
<tr>
<td>Pd</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Rh</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Ru</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sb</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Se</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Si</td>
<td>1</td>
<td>35</td>
<td>6</td>
<td>58</td>
</tr>
<tr>
<td>Sn</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sr</td>
<td>< 2</td>
<td>< 0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Te</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Th</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Ti</td>
<td>< < 1</td>
<td>< < 4</td>
<td>< 3</td>
<td>> 92</td>
</tr>
<tr>
<td>Tl</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>W</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Y</td>
<td>< (a)</td>
<td>< (a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Zn</td>
<td>1</td>
<td>7</td>
<td>< 1</td>
<td>> 91</td>
</tr>
<tr>
<td>Zr</td>
<td>< < 1</td>
<td>< < 5</td>
<td>< 3</td>
<td>> 91</td>
</tr>
</tbody>
</table>

(a) Analyte was below detection limit for all process streams.
(b) Amount of Na in residue was determined by comparing the amount of Na in the untreated solid to that in the leached solid.
Table 4.7. Concentrations of the Nonradioactive BY-108 Sludge Components in the Initial Sludge Solids: Results of the Caustic Leaching Portion of the Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Summation Method<sup>a</sup></th>
<th>Direct Analysis</th>
<th>Mass Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>< 11</td>
<td>< 20</td>
<td>--</td>
</tr>
<tr>
<td>Al</td>
<td>15823</td>
<td>12600</td>
<td>126</td>
</tr>
<tr>
<td>As</td>
<td>< 276</td>
<td>< 203</td>
<td>--</td>
</tr>
<tr>
<td>B</td>
<td>19 < x < 49</td>
<td>1603</td>
<td>1 < x < 3</td>
</tr>
<tr>
<td>Ba</td>
<td>364</td>
<td>369</td>
<td>94</td>
</tr>
<tr>
<td>Be</td>
<td>< 4</td>
<td>< 7</td>
<td>--</td>
</tr>
<tr>
<td>Bi</td>
<td>2197</td>
<td>2345</td>
<td>94</td>
</tr>
<tr>
<td>Ca</td>
<td>18904</td>
<td>20810</td>
<td>91</td>
</tr>
<tr>
<td>Cd</td>
<td>17 < x < 20</td>
<td>26</td>
<td>65 < x < 76</td>
</tr>
<tr>
<td>Ce</td>
<td>< 201</td>
<td>< 271</td>
<td>--</td>
</tr>
<tr>
<td>Co</td>
<td>< 41</td>
<td>< 68</td>
<td>--</td>
</tr>
<tr>
<td>Cr</td>
<td>383</td>
<td>398</td>
<td>96</td>
</tr>
<tr>
<td>Cs</td>
<td>84</td>
<td>122</td>
<td>69</td>
</tr>
<tr>
<td>Dy</td>
<td>< 37</td>
<td>< 68</td>
<td>--</td>
</tr>
<tr>
<td>Eu</td>
<td>< 74</td>
<td>< 136</td>
<td>--</td>
</tr>
<tr>
<td>Fe</td>
<td>48431</td>
<td>51650</td>
<td>94</td>
</tr>
<tr>
<td>K</td>
<td>1809 < x < 2904</td>
<td>2580</td>
<td>70 < x < 113</td>
</tr>
<tr>
<td>La</td>
<td>77 < x < 87</td>
<td>103</td>
<td>75 < x < 84</td>
</tr>
<tr>
<td>Li</td>
<td>< 22</td>
<td>< 41</td>
<td>--</td>
</tr>
<tr>
<td>Mg</td>
<td>1189</td>
<td>1325</td>
<td>90</td>
</tr>
<tr>
<td>Mn</td>
<td>632</td>
<td>534</td>
<td>118</td>
</tr>
<tr>
<td>Mo</td>
<td>< 37</td>
<td>< 68</td>
<td>--</td>
</tr>
<tr>
<td>Na</td>
<td>56675</td>
<td>213400</td>
<td>27<sup>b</sup></td>
</tr>
<tr>
<td>Nd</td>
<td>231 < x < 250</td>
<td>310</td>
<td>75 < x < 81</td>
</tr>
<tr>
<td>Ni</td>
<td>15854</td>
<td>17700</td>
<td>90</td>
</tr>
<tr>
<td>P</td>
<td>32110</td>
<td>23500</td>
<td>137</td>
</tr>
<tr>
<td>Pb</td>
<td>1377</td>
<td>1550</td>
<td>89</td>
</tr>
<tr>
<td>Pd</td>
<td>< 554</td>
<td>< 1017</td>
<td>--</td>
</tr>
<tr>
<td>Rh</td>
<td>< 222</td>
<td>< 407</td>
<td>--</td>
</tr>
<tr>
<td>Ru</td>
<td>< 739</td>
<td>< 1356</td>
<td>--</td>
</tr>
<tr>
<td>Sb</td>
<td>< 369</td>
<td>< 678</td>
<td>--</td>
</tr>
<tr>
<td>Se</td>
<td>< 799</td>
<td>< 339</td>
<td>--</td>
</tr>
<tr>
<td>Si</td>
<td>3784</td>
<td>7560</td>
<td>51</td>
</tr>
<tr>
<td>Sn</td>
<td>< 1329</td>
<td>< 2034</td>
<td>--</td>
</tr>
<tr>
<td>Sr</td>
<td>13381</td>
<td>13550</td>
<td>99</td>
</tr>
<tr>
<td>Te</td>
<td>< 1108</td>
<td>< 2034</td>
<td>--</td>
</tr>
<tr>
<td>Th</td>
<td>< 739</td>
<td>< 1356</td>
<td>--</td>
</tr>
<tr>
<td>Ti</td>
<td>59 < x < 63</td>
<td>71</td>
<td>83 < x < 90</td>
</tr>
<tr>
<td>Tl</td>
<td>< 369</td>
<td>< 678</td>
<td>--</td>
</tr>
<tr>
<td>U</td>
<td>72155</td>
<td>80700</td>
<td>89</td>
</tr>
<tr>
<td>V</td>
<td>< 37</td>
<td>< 68</td>
<td>--</td>
</tr>
<tr>
<td>W</td>
<td>< 1477</td>
<td>< 2712</td>
<td>--</td>
</tr>
<tr>
<td>Y</td>
<td>< 37</td>
<td>< 68</td>
<td>--</td>
</tr>
<tr>
<td>Zn</td>
<td>343</td>
<td>403</td>
<td>85</td>
</tr>
<tr>
<td>Zr</td>
<td>95 < x < 105</td>
<td>108</td>
<td>88 < x < 97</td>
</tr>
</tbody>
</table>

^a The value was determined by summing the amount of a given component in the caustic leaching solutions, the subsequent washing solutions, and the leached solids; the total concentration was then determined by dividing the sum by the amount of solids processed.

^b Adjusted for Na added during testing.
Table 4.8. Anion Concentrations in the Various BY-108 Process Solutions

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th></th>
<th>First Leach Solution</th>
<th></th>
<th>Second Leach Solution</th>
<th></th>
<th>Final Wash Solution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL</td>
<td>Dissolved, µg/g sludge solids(a)</td>
</tr>
<tr>
<td>OH⁻</td>
<td>Not Determined</td>
<td></td>
<td>31,450</td>
<td>Not Determined</td>
<td>49,980</td>
<td>Not Determined</td>
<td>400</td>
<td>4673</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>4,500</td>
<td>108,675</td>
<td>25,700</td>
<td>54,369</td>
<td>1,800</td>
<td>31363</td>
<td>350</td>
<td>N/A</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>2,200</td>
<td>53,130</td>
<td>12,600</td>
<td>26,656</td>
<td>900</td>
<td>15682</td>
<td>500</td>
<td>5841</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>2500</td>
<td>60,375</td>
<td>4,700</td>
<td>9,943</td>
<td>1400</td>
<td>24394</td>
<td>500</td>
<td>N/A</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>900</td>
<td>21,735</td>
<td>5000</td>
<td>10,578</td>
<td>400</td>
<td>6970</td>
<td>100</td>
<td>1168</td>
</tr>
<tr>
<td>F⁻</td>
<td>70</td>
<td>1,690</td>
<td>110</td>
<td>223</td>
<td>90</td>
<td>1568</td>
<td><50</td>
<td><550</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>80</td>
<td>1,932</td>
<td>370</td>
<td>785</td>
<td><50</td>
<td><60</td>
<td><50</td>
<td><70</td>
</tr>
<tr>
<td>Br⁻</td>
<td><50</td>
<td><1200</td>
<td><250</td>
<td><350</td>
<td><50</td>
<td><700</td>
<td><50</td>
<td><70</td>
</tr>
</tbody>
</table>

(a) Amount of component dissolved in a given process step.
(b) Hydroxide added as NaOH.
(c) Nitrite was added in this step as part of the washing solution (0.01 M NaOH/0.01 M NaNO₂).

Table 4.9 presents the concentrations of various radioactive sludge components in each process stream, and Table 4.10 presents the distribution of those sludge components between the various process streams. As was the case with the dilute NaOH wash, only ⁴⁰K and ¹³⁷Cs were detected in the leach and wash solutions. Comparable to what was observed for the dilute NaOH wash, >91% of the ⁹⁹Tc was removed. Significantly more ¹³⁷Cs was dissolved by caustic leaching than by dilute NaOH washing; nearly all of the ¹³⁷Cs was solubilized by caustic leaching compared to only 3% by dilute hydroxide washing. The increased ¹³⁷Cs dissolution is probably the most important distinction between the dilute hydroxide washing and caustic leaching of the BY-108 sludge. As it would be preferable to have the ¹³⁷Cs remain with the HLW solids, simply washing with dilute hydroxide would seem the best option for this sludge.

Table 4.11 summarizes the mass recoveries achieved for the various radionuclides during the caustic leaching portion of the test. Except for ⁹⁰Sr, the mass recoveries were all somewhat greater than 100%.
Table 4.9. Concentrations of the Radioactive BY-108 Sludge Components in the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µCi/mL</td>
<td>Activity, µCi</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 2.60E-04</td>
<td>< 4.73E-03</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>< 2.60E-04</td>
<td>< 4.73E-03</td>
</tr>
<tr>
<td>241Am238Pu</td>
<td>< 2.60E-04</td>
<td>< 4.73E-03</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 1.69E-02</td>
<td>< 3.08E-01</td>
</tr>
<tr>
<td>137Cs</td>
<td>4.30E+02</td>
<td>7.83E+03</td>
</tr>
<tr>
<td>60Co</td>
<td>< 5.20E-03</td>
<td>< 9.46E-02</td>
</tr>
<tr>
<td>154Eu</td>
<td>< 1.56E-02</td>
<td>< 2.84E-01</td>
</tr>
<tr>
<td>235Eu</td>
<td>< 1.69E-02</td>
<td>< 3.08E-01</td>
</tr>
<tr>
<td>90Sr</td>
<td>1.52E+00</td>
<td>2.77E+01</td>
</tr>
<tr>
<td>90Tc</td>
<td>4.78E-03</td>
<td>8.71E-02</td>
</tr>
<tr>
<td>243,244Cm</td>
<td>< 2.60E-04</td>
<td>< 4.73E-03</td>
</tr>
<tr>
<td>237Np</td>
<td>< 2.60E-04</td>
<td>< 4.73E-03</td>
</tr>
<tr>
<td>239U</td>
<td>< 2.60E-04</td>
<td>< 4.73E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µCi/mL</td>
<td>Activity, µCi</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 2.20E-04</td>
<td>< 2.21E-02</td>
</tr>
<tr>
<td>239Pu</td>
<td>< 2.20E-04</td>
<td>< 2.21E-02</td>
</tr>
<tr>
<td>241Am238Pu</td>
<td>< 2.20E-04</td>
<td>< 2.21E-02</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 1.43E-02</td>
<td>< 1.44E+00</td>
</tr>
<tr>
<td>137Cs</td>
<td>7.17E+00</td>
<td>7.21E+02</td>
</tr>
<tr>
<td>60Co</td>
<td>< 4.40E-03</td>
<td>< 4.42E-01</td>
</tr>
<tr>
<td>154Eu</td>
<td>< 1.32E-02</td>
<td>< 1.33E+00</td>
</tr>
<tr>
<td>155Eu</td>
<td>< 1.43E-02</td>
<td>< 1.44E+00</td>
</tr>
<tr>
<td>90Sr</td>
<td>6.60E-03</td>
<td>6.63E-01</td>
</tr>
<tr>
<td>90Tc</td>
<td>7.55E-05</td>
<td>7.58E-03</td>
</tr>
<tr>
<td>243,244Cm</td>
<td>< 2.20E-04</td>
<td>< 2.21E-02</td>
</tr>
<tr>
<td>237Np</td>
<td>< 2.20E-04</td>
<td>< 2.21E-02</td>
</tr>
<tr>
<td>239U</td>
<td>< 2.20E-04</td>
<td>< 2.21E-02</td>
</tr>
</tbody>
</table>

4.13
Table 4.10. Distribution of Radioactive BY-108 Sludge Components Between the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Alpha</td>
<td>0</td>
<td>< 1</td>
<td>0</td>
<td>> 99</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>0</td>
<td>< 2</td>
<td>< 1</td>
<td>> 97</td>
</tr>
<tr>
<td>241Am+239Pu</td>
<td>0</td>
<td>< 3</td>
<td>< 2</td>
<td>> 95</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>137Cs</td>
<td>52</td>
<td>42</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>60Co</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>154Eu</td>
<td>< 5</td>
<td>< 41</td>
<td>< 23</td>
<td>> 31</td>
</tr>
<tr>
<td>155Eu</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>90Sr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>90Tc</td>
<td>> 48</td>
<td>> 39</td>
<td>> 4</td>
<td>< 9</td>
</tr>
<tr>
<td>243,244Cm</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>237Np</td>
<td>< 2</td>
<td>< 13</td>
<td>< 7</td>
<td>> 78</td>
</tr>
<tr>
<td>238U</td>
<td>< 2</td>
<td>< 13</td>
<td>< 7</td>
<td>> 78</td>
</tr>
</tbody>
</table>

(a) Analyte was below detection limit for all solutions.

Table 4.11. Concentrations of the Radioactive Components in the Initial BY-108 Solids: Results of the Caustic Leaching Portion of the Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration in Initial Solids, μCi/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Alpha</td>
<td>5.08E-01</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>2.95E-01</td>
</tr>
<tr>
<td>241Am+239Pu</td>
<td>1.59E-01</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 5.02E-01</td>
</tr>
<tr>
<td>137Cs</td>
<td>1.74E+03</td>
</tr>
<tr>
<td>60Co</td>
<td>< 1.54E-01</td>
</tr>
<tr>
<td>154Eu</td>
<td>0.21 < x < 0.67</td>
</tr>
<tr>
<td>155Eu</td>
<td>< 5.02E-01</td>
</tr>
<tr>
<td>90Sr</td>
<td>8.68E+02</td>
</tr>
<tr>
<td>90Tc</td>
<td>0.019 < x < 0.021</td>
</tr>
<tr>
<td>243,244Cm</td>
<td>< 7.72E-03</td>
</tr>
<tr>
<td>237Np</td>
<td>0.027 < x < 0.035</td>
</tr>
<tr>
<td>238U</td>
<td>0.029 < x < 0.036</td>
</tr>
</tbody>
</table>

(a) The value was determined by summing the amount of a given component in the caustic leaching solutions, the subsequent washing solutions, and the leached solids; the total concentration was then determined by dividing the sum by the amount of sludge solids processed.
4.2.3 Particle-Size Analysis

Figure 4.2 presents the particle-size data for the untreated and treated BY-108 sludge solids in terms of the number distributions, and Figure 4.3 presents the data in terms of the volume distributions. Leaching the sludge with caustic slightly reduced the mean particle size. The volume distribution for the untreated BY-108 sludge indicated a mean particle size of 6.5 μm, while that for the treated material was 3.8 μm. Based on the number distribution, the mean particle size was virtually unchanged after leaching (~0.31 μm). The particle-size measurements were repeated after an ultrasonic field was applied. This had very little effect, except to break up some of the largest particles (>20 μm).

![Particle Size Distributions](image)

Figure 4.2. Particle-Size Number Distributions for Untreated (a) and Treated (b) BY-108 Sludge
Figure 4.3. Particle-Size Number Distributions for Untreated (a) and Treated (b) BY-108 Sludge

4.2.4 Microscopic Analysis

As expected from the ICP/AES analysis, transmission electron microscopy (TEM) examination of the untreated BY-108 sludge revealed the presence of significant amounts of sodium salts, which existed as irregularly shaped agglomerates. Other phases identified were as follows.

- A single-crystalline phase of FeOOH (orthorhombic, \(a = 1.07 \text{ nm}, b = 0.98 \text{ nm}, \text{ and } c = 0.296 \text{ nm}\)), which has a different size of unit cell than goethite; these particles were approximately 1 \(\mu\text{m}\) in diameter.
• Multicrystalline phases of maghemite (γ-Fe$_2$O$_3$)

• Hexagonal Ca$_{10}$Sr$_{10-x}$(PO$_4$)$_6$(OH)$_2$ (where x = 8 or 9)

• β-U$_3$O$_8$, in nanometer-sized single crystalline particles

Except for the sodium salts, these phases remained after caustic leaching.

4.2.5 Settling Data

Table 4.12 and Figures 4.4 and 4.5 present the BY-108 settling data from the caustic leaching steps and the final wash step.\(^{(a)}\) The data are presented in terms of the actual sludge height versus time (Figure 4.4) and in terms of normalized sludge height versus a dimensionless time value (Figure 4.5).\(^{(b)}\) Wide variability in the settling behavior was observed. Settling was slowest during the first caustic leaching step and fastest during the second caustic leaching step. The settling behavior during the third washing step was in between. The settling behavior qualitatively correlates to the solids concentration in the slurries being settled—7.1 wt% for the first caustic leach, 1.7 wt% for the second caustic leach, and 6.0 wt% for the third wash.

\(^{(a)}\) Settling data are not presented for the first and second washing steps because an error was made in reading the scale on the ruler. This error could not be reconciled after-the-fact, so the data are omitted from this report.

\(^{(b)}\) Data were normalized according to a formula suggested by G.T. MacLean, SGN Eurisys Services Corp., personal communication, 1996. The formula is given in Table 4.12.
Table 4.12. Settling Data From the BY-108 Caustic Leaching Test\(^{(a)}\)

<table>
<thead>
<tr>
<th>Time, min</th>
<th>Height, mm</th>
<th>T</th>
<th>Height, mm</th>
<th>T</th>
<th>Height, mm</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41</td>
<td>0.00</td>
<td>1.00</td>
<td>0</td>
<td>65</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>0.02</td>
<td>0.98</td>
<td>1</td>
<td>64</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>0.05</td>
<td>0.95</td>
<td>2</td>
<td>63</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>0.12</td>
<td>0.95</td>
<td>5</td>
<td>61</td>
<td>0.04</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>0.24</td>
<td>0.93</td>
<td>10</td>
<td>60</td>
<td>0.06</td>
</tr>
<tr>
<td>20</td>
<td>38</td>
<td>0.49</td>
<td>0.93</td>
<td>20</td>
<td>59</td>
<td>0.07</td>
</tr>
<tr>
<td>30</td>
<td>37</td>
<td>0.73</td>
<td>0.90</td>
<td>30</td>
<td>58</td>
<td>0.08</td>
</tr>
<tr>
<td>40</td>
<td>36</td>
<td>0.98</td>
<td>0.88</td>
<td>40</td>
<td>57</td>
<td>0.11</td>
</tr>
<tr>
<td>50</td>
<td>34</td>
<td>1.22</td>
<td>0.88</td>
<td>50</td>
<td>55</td>
<td>0.14</td>
</tr>
<tr>
<td>60</td>
<td>32</td>
<td>1.46</td>
<td>0.83</td>
<td>60</td>
<td>50</td>
<td>0.21</td>
</tr>
<tr>
<td>70</td>
<td>31</td>
<td>1.71</td>
<td>0.78</td>
<td>70</td>
<td>45</td>
<td>0.28</td>
</tr>
<tr>
<td>80</td>
<td>30</td>
<td>1.95</td>
<td>0.76</td>
<td>80</td>
<td>40</td>
<td>0.34</td>
</tr>
<tr>
<td>110</td>
<td>29</td>
<td>2.68</td>
<td>0.73</td>
<td>110</td>
<td>36</td>
<td>0.41</td>
</tr>
<tr>
<td>140</td>
<td>28</td>
<td>3.41</td>
<td>0.71</td>
<td>140</td>
<td>32</td>
<td>0.48</td>
</tr>
<tr>
<td>170</td>
<td>27</td>
<td>4.15</td>
<td>0.68</td>
<td>170</td>
<td>26</td>
<td>0.62</td>
</tr>
<tr>
<td>200</td>
<td>26</td>
<td>4.88</td>
<td>0.66</td>
<td>200</td>
<td>23</td>
<td>0.76</td>
</tr>
<tr>
<td>260</td>
<td>25</td>
<td>6.34</td>
<td>0.63</td>
<td>260</td>
<td>20</td>
<td>0.90</td>
</tr>
<tr>
<td>1250</td>
<td>19.5</td>
<td>30.49</td>
<td>0.61</td>
<td>1250</td>
<td>14</td>
<td>1.31</td>
</tr>
</tbody>
</table>

\(^{(a)} t = \text{time, } h = \text{sludge height, } T = \text{normalized time value} = t v_{\text{max}} / h_0, H = h / h_0.\)

Figure 4.4. Settling Data From the BY-108 Caustic Leaching Test
Figure 4.5. Normalized Settling Data From the BY-108 Caustic Leaching Test
5.0 Tank S-101 Enhanced Sludge Washing Test

This section presents the results of the ESW test performed on Hanford Tank S-101 sludge. The sludge sample used in this test was received at PNNL on August 2, 1996; the 222-S laboratory ID for this sample was S96T003486, and the jar number was 10519.

5.1 Experimental

Figure 5.1 summarizes the experimental procedure used in the S-101 ESW test. The procedure was the same as the baseline ESW test procedure described previously (Lumetta et al. 1996), except 1) gravity settling was used rather than centrifugation for solids/liquid separations in the leaching steps, and 2) the second caustic leach step was performed for 100 h rather than 5 h. Centrifugation was not used because a suitable centrifuge was not available in the hot cell where the test was performed. An exception to this was the first leaching step. In that case, there was no apparent settling after standing overnight. In order to sample the solution, an approximately 20-mL portion of the slurry was transferred to a vial suitable for centrifugation. This portion was centrifuged, and 10.7 mL of liquid was decanted; the remaining solids were transferred back to the original vial for the second leaching step. The extended leaching time was used because of the previous observation that kinetics plays an important role in the removal of Al from REDOX sludges (see Section 3.0). During the second leaching step, samples were taken after 5 and 100 h of heating.

For the dilute hydroxide washing steps (sample B1), the insoluble solids concentrations were \(\sim 1.8 \) wt% and 1 wt% respectively. Usually, we estimate the undissolved solids concentration in the first and second caustic leaching steps were 5 wt% and 1 wt% respectively. Usually, we estimate the undissolved solids concentration in the first caustic leaching slurry from the weight of the residual caustic-leached solids. But because significant Al dissolution occurred in the second leaching step, using the residual solids weight would give an erroneously low value for the undissolved solids in the first leaching step. However, we can give a range of 0.8 to 5.0 wt% undissolved solids in the first caustic leaching slurry. The former number was determined using the weight of the residual solids, while the latter value was obtained from the expected amount of water-insoluble solids in the S-101 sludge (as determined from washing sample B1). Based upon the leached-solids mass of 0.223 g, the undissolved solids concentrations were 0.2 and 0.9 wt% in the second caustic leaching slurry and the final wash slurries, respectively.

(a) Typically, the ESW tests are performed in fume hoods, but because of the radiological characteristics of the S-101 sludge, it was necessary to perform this test in the hot cell.
Figure 5.1 Schematic Representation of the S-101 ESW Test
10 M NaOH (34 mL) and water (80 mL) →

Caustic Leach 2
Mix 5 h, 100°C, cool, settle, sample → Sample Liquid → Sample 1F0A 1.0 mL aliquot

Caustic Leach 2 (contd.)
Mix 95 h, 100°C, cool, settle, decant

<table>
<thead>
<tr>
<th>Liquid</th>
<th>Solution F</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 mL Decanted 2.7 M OH⁻</td>
<td></td>
</tr>
</tbody>
</table>

(b) The volume of liquid remaining in the leaching vessel was estimated to be 12.5 mL by subtracting the weight of the dried leached solids (0.223 g) from the total weight of the material still in the leaching vessel (13.356 g) and dividing by the solution density (1.061 g/mL).

0.01 M NaOH/0.01 M NaNO₂ (24 mL) →

Wash 1
Mix 0.5 h, room temp., centrifuge, decant → Liquid → Solids

0.01 M NaOH/0.01 M NaNO₂ (24 mL) →

Wash 2
Mix 0.5 h, room temp., centrifuge, decant → Liquid → Solution G 78.1 mL

0.01 M NaOH/0.01 M NaNO₂ (24 mL) →

Wash 3
Mix 0.5 h, room temp., sample slurry

Samples

Wash 3 (cont.)
centrifuge, decant → Liquid

Dry solids at 105°C 0.223 g

(c) Final weight of dried solids was adjusted for that removed in samples H and I.

Figure 5.1. (contd)
5.2 Results and Discussion

5.2.1 Washing With Dilute NaOH

Table 5.1 summarizes the behavior of most of the nonradioactive sludge components during washing of the S-101 sludge with 0.01 M NaOH. Sodium was the most soluble element present with 97% being removed by washing with 0.01 M NaOH. A small fraction (12%) of the Al was removed by dilute hydroxide washing, which is consistent with the behavior of other REDOX sludges (e.g., see Section 3.0 and Lumetta et al. 1996). Significant fractions of P (87%) and Cr (44%) were also removed from S-101 sludge by dilute hydroxide washing. The value of 44% removal for Cr highlights the variability in Cr removal for REDOX sludges. REDOX sludge is the primary waste type in tanks S-101, S-104, S-107, SX-108, and SX-113; the Cr removals by simple washing of these sludges were 44%, 94%, 24%, 71%, and 2%, respectively. Thus, Cr removal for REDOX sludges varies from practically no removal (SX-113) to nearly complete removal (S-104). SX-108 sludge contained only 0.01 wt% Cr, while the others listed here contained between 0.41 and 0.79 wt%. It would interesting to examine other factors (secondary and tertiary waste types, tank processing history, etc.) in trying to correlate the behavior of Cr in these wastes.

Table 5.2 presents the concentrations determined in the untreated S-101 sludge solids for most of the nonradioactive sludge components; also given is the mass recovery achieved for each of these components. The ten most abundant elements in the S-101 sludge, as determined by direct analysis of the sludge, were Na (18.0 wt%), Al (14.7 wt%), U (9.56 wt%), Cr (7.11 wt%), Mn (2.84 wt%), Si (2.67 wt%), P (2.30 wt%), Fe (2.15 wt%), Ca (1.29 wt%), and Ce (0.80 wt%). Mass recoveries were within 10% for Al, Cr, Mn, P, and Fe, and within 20% for Sr, U, and Si. The mass recovery for Na was slightly high (123%), but reasonable. Mass recoveries were poor for most of the other components.

Table 5.3 summarizes the behavior of the radioactive sludge components during washing of the S-101 sludge with 0.01 M NaOH. As has been seen with most other Hanford tank sludges, the TRU elements are very insoluble in 0.01 M NaOH. All Pu and Am isotopes were below the detection limit in the wash solution. Likewise, 60Co, 90Sr, and 154,155Eu showed little propensity for dissolving in 0.01 M NaOH. Cesium-137 dissolved effectively (97%) in 0.01 M NaOH. Likewise, as would be consistent with the behavior of pertechnetate ion, 99Tc was effectively (97%) dissolved in the dilute NaOH wash.

Table 5.4 presents the concentrations of the various radionuclides in the untreated S-101 sludge solids along with the mass recovery for each. Mass recoveries for 137Cs, 90Sr, and 99Tc were within 30%, but recoveries for the TRUs 154,155Eu and 60Co were much worse. We cannot explain the poor mass recoveries.
Table 5.1. Results of Tank S-101 Sludge Washing Nonradioactive Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>Washed Solids</th>
<th>Total Mass, g</th>
<th>Component Distribution, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL</td>
<td>Mass, µg</td>
<td>Conc., µg/g</td>
<td>Mass, µg</td>
</tr>
<tr>
<td>Ag</td>
<td>< 0.033</td>
<td>< 1</td>
<td>< 61</td>
<td>< 16</td>
</tr>
<tr>
<td>Al</td>
<td>397</td>
<td>11578</td>
<td>342500</td>
<td>87338</td>
</tr>
<tr>
<td>As</td>
<td>< 0.33</td>
<td>< 9</td>
<td>< 609</td>
<td>< 155</td>
</tr>
<tr>
<td>B</td>
<td>0.85</td>
<td>25</td>
<td>203</td>
<td>52</td>
</tr>
<tr>
<td>Ba</td>
<td>< 0.013</td>
<td>< 0</td>
<td>144</td>
<td>37</td>
</tr>
<tr>
<td>Be</td>
<td>< 0.013</td>
<td>< 0</td>
<td>< 24</td>
<td>< 6</td>
</tr>
<tr>
<td>Bi</td>
<td>< 0.13</td>
<td>< 4</td>
<td>250</td>
<td>64</td>
</tr>
<tr>
<td>Ca</td>
<td>1.43</td>
<td>42</td>
<td>2169</td>
<td>553</td>
</tr>
<tr>
<td>Cd</td>
<td>< 0.020</td>
<td>< 1</td>
<td>38</td>
<td>10</td>
</tr>
<tr>
<td>Ce</td>
<td>< 0.26</td>
<td>< 8</td>
<td>642</td>
<td>164</td>
</tr>
<tr>
<td>Co</td>
<td>< 0.065</td>
<td>< 2</td>
<td>< 122</td>
<td>< 31</td>
</tr>
<tr>
<td>Cr</td>
<td>72</td>
<td>2114</td>
<td>10590</td>
<td>2678</td>
</tr>
<tr>
<td>Cu</td>
<td>< 0.033</td>
<td>< 1</td>
<td>180</td>
<td>46</td>
</tr>
<tr>
<td>Dy</td>
<td>< 0.065</td>
<td>< 2</td>
<td>< 122</td>
<td>< 31</td>
</tr>
<tr>
<td>Eu</td>
<td>< 0.13</td>
<td>< 4</td>
<td>< 244</td>
<td>< 62</td>
</tr>
<tr>
<td>Fe</td>
<td>0.078</td>
<td>2</td>
<td>5509</td>
<td>1405</td>
</tr>
<tr>
<td>K</td>
<td>20</td>
<td>569</td>
<td>< 4872</td>
<td>< 1242</td>
</tr>
<tr>
<td>La</td>
<td>< 0.065</td>
<td>< 2</td>
<td>< 122</td>
<td>< 31</td>
</tr>
<tr>
<td>Li</td>
<td>< 0.039</td>
<td>< 1</td>
<td>< 73</td>
<td>< 19</td>
</tr>
<tr>
<td>Mg</td>
<td>< 0.13</td>
<td>< 4</td>
<td>244</td>
<td>62</td>
</tr>
<tr>
<td>Mn</td>
<td>< 0.065</td>
<td>< 2</td>
<td>6902</td>
<td>1760</td>
</tr>
<tr>
<td>Mo</td>
<td>0.74</td>
<td>22</td>
<td>< 122</td>
<td>< 31</td>
</tr>
<tr>
<td>Na</td>
<td>5187</td>
<td>144560</td>
<td>15920</td>
<td>3886</td>
</tr>
<tr>
<td>Nd</td>
<td>< 0.13</td>
<td>< 4</td>
<td>287</td>
<td>73</td>
</tr>
<tr>
<td>Ni</td>
<td>0.10</td>
<td>3</td>
<td>721</td>
<td>184</td>
</tr>
<tr>
<td>P</td>
<td>46</td>
<td>1348</td>
<td>763</td>
<td>195</td>
</tr>
<tr>
<td>Pb</td>
<td>< 0.13</td>
<td>< 4</td>
<td>344</td>
<td>88</td>
</tr>
<tr>
<td>Pd</td>
<td>< 0.98</td>
<td>< 28</td>
<td>< 1827</td>
<td>< 466</td>
</tr>
<tr>
<td>Rh</td>
<td>< 0.39</td>
<td>< 11</td>
<td>< 731</td>
<td>< 186</td>
</tr>
<tr>
<td>Ru</td>
<td>< 1.43</td>
<td>< 42</td>
<td>< 2680</td>
<td>< 683</td>
</tr>
<tr>
<td>Sb</td>
<td>< 0.65</td>
<td>< 19</td>
<td>< 1218</td>
<td>< 311</td>
</tr>
<tr>
<td>Se</td>
<td>< 0.325</td>
<td>< 9</td>
<td>< 609</td>
<td>< 155</td>
</tr>
<tr>
<td>Si</td>
<td>20</td>
<td>585</td>
<td>3500</td>
<td>893</td>
</tr>
<tr>
<td>Sn</td>
<td>< 1.95</td>
<td>< 57</td>
<td>< 3654</td>
<td>< 932</td>
</tr>
<tr>
<td>Sr</td>
<td>< 0.020</td>
<td>< 1</td>
<td>1098</td>
<td>280</td>
</tr>
<tr>
<td>Te</td>
<td>< 1.95</td>
<td>< 57</td>
<td>< 3654</td>
<td>< 932</td>
</tr>
<tr>
<td>Th</td>
<td>< 1.3</td>
<td>< 38</td>
<td>< 2456</td>
<td>< 621</td>
</tr>
<tr>
<td>Ti</td>
<td>< 0.033</td>
<td>< 1</td>
<td>99</td>
<td>25</td>
</tr>
<tr>
<td>Tl</td>
<td>< 0.65</td>
<td>< 19</td>
<td>< 1218</td>
<td>< 311</td>
</tr>
<tr>
<td>U(b)</td>
<td>0.484</td>
<td>14</td>
<td>21600</td>
<td>5508</td>
</tr>
<tr>
<td>V</td>
<td>0.12</td>
<td>3</td>
<td>< 122</td>
<td>< 31</td>
</tr>
<tr>
<td>W</td>
<td>< 2.6</td>
<td>< 76</td>
<td>< 4872</td>
<td>< 1242</td>
</tr>
<tr>
<td>Y</td>
<td>< 0.065</td>
<td>< 2</td>
<td>< 122</td>
<td>< 31</td>
</tr>
<tr>
<td>Zn</td>
<td>0.14</td>
<td>4</td>
<td>268</td>
<td>68</td>
</tr>
<tr>
<td>Zr</td>
<td>< 0.065</td>
<td>< 2</td>
<td>< 126</td>
<td>< 32</td>
</tr>
</tbody>
</table>

(a) Value adjusted for the Na added as 0.01 M NaOH.

(b) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.

5.5
Table 5.2. Concentrations of Nonradioactive Components in the Untreated S-101

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration in Initial Solids ug/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summation Method(a)</td>
</tr>
<tr>
<td>Ag</td>
<td>< 2.47E+01</td>
</tr>
<tr>
<td>Al</td>
<td>1.48E+05</td>
</tr>
<tr>
<td>As</td>
<td>< 2.47E+02</td>
</tr>
<tr>
<td>B</td>
<td>1.14E+02</td>
</tr>
<tr>
<td>Ba</td>
<td>55 < x < 231</td>
</tr>
<tr>
<td>Be</td>
<td>< 9.87E+00</td>
</tr>
<tr>
<td>Bi</td>
<td>1.41E+03</td>
</tr>
<tr>
<td>Ca</td>
<td>8.90E+02</td>
</tr>
<tr>
<td>Cd</td>
<td>~13</td>
</tr>
<tr>
<td>Ce</td>
<td>=220</td>
</tr>
<tr>
<td>Co</td>
<td>< 4.93E+01</td>
</tr>
<tr>
<td>Cr</td>
<td>7.17E+03</td>
</tr>
<tr>
<td>Cu</td>
<td>6.20E+01</td>
</tr>
<tr>
<td>Dy</td>
<td>< 4.93E+01</td>
</tr>
<tr>
<td>Eu</td>
<td>< 9.87E+01</td>
</tr>
<tr>
<td>Fe</td>
<td>2.11E+03</td>
</tr>
<tr>
<td>K</td>
<td>852 < x < 2710</td>
</tr>
<tr>
<td>La</td>
<td>< 4.93E+01</td>
</tr>
<tr>
<td>Li</td>
<td>< 2.96E+01</td>
</tr>
<tr>
<td>Mg</td>
<td>7.73E+02</td>
</tr>
<tr>
<td>Mn</td>
<td>2.64E+03</td>
</tr>
<tr>
<td>Mo</td>
<td>32 < x < 79</td>
</tr>
<tr>
<td>Na</td>
<td>2.22E+05</td>
</tr>
<tr>
<td>Nd</td>
<td>97 < x < 102</td>
</tr>
<tr>
<td>Ni</td>
<td>2.80E+02</td>
</tr>
<tr>
<td>P</td>
<td>2.31E+03</td>
</tr>
<tr>
<td>Pb</td>
<td>131 < x < 901</td>
</tr>
<tr>
<td>Pd</td>
<td>< 7.40E+02</td>
</tr>
<tr>
<td>Rh</td>
<td>< 2.96E+02</td>
</tr>
<tr>
<td>Ru</td>
<td>< 1.09E+03</td>
</tr>
<tr>
<td>Sb</td>
<td>< 4.93E+02</td>
</tr>
<tr>
<td>Se</td>
<td>< 2.47E+02</td>
</tr>
<tr>
<td>Si</td>
<td>2.21E+03</td>
</tr>
<tr>
<td>Sn</td>
<td>< 1.48E+03</td>
</tr>
<tr>
<td>Sr</td>
<td>4.20E+02</td>
</tr>
<tr>
<td>Te</td>
<td>< 1.48E+03</td>
</tr>
<tr>
<td>Th</td>
<td>< 9.87E+02</td>
</tr>
<tr>
<td>Ti</td>
<td>3.40E+01</td>
</tr>
<tr>
<td>Tl</td>
<td>< 4.93E+02</td>
</tr>
<tr>
<td>U</td>
<td>8.27E+03</td>
</tr>
<tr>
<td>V</td>
<td>< 5.16E+01</td>
</tr>
<tr>
<td>W</td>
<td>< 1.97E+03</td>
</tr>
<tr>
<td>Y</td>
<td>< 4.93E+01</td>
</tr>
<tr>
<td>Zn</td>
<td>1.09E+02</td>
</tr>
<tr>
<td>Zr</td>
<td>< 5.10E+01</td>
</tr>
</tbody>
</table>

(a) The values were determined by summing the mass of the component found in each process stream and dividing by the amount of sludge solids treated.

(b) Solids were prepared for analysis by both KOH and Na$_2$O, fusion methods; mean values are given for analytes that can be determined by both these methods.
Table 5.3. Results of Tank S-101 Sludge Washing Radioactive Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>Washed Solids</th>
<th>Component Distribution, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., μCi/mL</td>
<td>Activity, μCi</td>
<td>Conc., μCi/g</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 2.60E-04</td>
<td>< 7.59E-03</td>
<td>1.10E+00</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>< 2.60E-04</td>
<td>< 7.59E-03</td>
<td>7.81E-01</td>
</tr>
<tr>
<td>241Am-239Pu</td>
<td>< 2.60E-04</td>
<td>< 7.59E-03</td>
<td>3.19E-01</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 3.90E-03</td>
<td>< 1.14E-01</td>
<td>3.56E-01</td>
</tr>
<tr>
<td>137Cs</td>
<td>3.85E+00</td>
<td>1.12E+02</td>
<td>1.27E+01</td>
</tr>
<tr>
<td>60Co</td>
<td>< 5.20E-05</td>
<td>< 1.52E-03</td>
<td>3.29E-02</td>
</tr>
<tr>
<td>154Eu</td>
<td>< 2.60E-04</td>
<td>< 7.59E-03</td>
<td>2.08E-01</td>
</tr>
<tr>
<td>155Eu</td>
<td>< 3.90E-03</td>
<td>< 1.14E-01</td>
<td>< 2.00E-01</td>
</tr>
<tr>
<td>90Sr</td>
<td>< 2.60E-02</td>
<td>< 7.59E-01</td>
<td>9.10E+02</td>
</tr>
<tr>
<td>99Tc</td>
<td>2.70E-03</td>
<td>7.90E-02</td>
<td>1.06E-02</td>
</tr>
</tbody>
</table>

Table 5.4. Concentrations of Radioactive Components in the Untreated S-101 Solids as Determined in the Simple Washing Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration in Initial Solids, μCi/g</th>
<th>Summation Method</th>
<th>Direct Analysis</th>
<th>Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Alpha</td>
<td>0.374 < x < 0.384</td>
<td>0.374 < x < 0.384</td>
<td>1.36E+00</td>
<td>-31</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>0.265 < x < 0.275</td>
<td>0.265 < x < 0.275</td>
<td>4.80E-01</td>
<td>-63</td>
</tr>
<tr>
<td>241Am+239Pu</td>
<td>0.108 < x < 0.118</td>
<td>0.108 < x < 0.118</td>
<td>6.28E-01</td>
<td>-20</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>0.121 < x < 0.273</td>
<td>0.121 < x < 0.273</td>
<td>< 7.00E-01</td>
<td>--</td>
</tr>
<tr>
<td>137Cs</td>
<td>1.73E+02</td>
<td>1.73E+02</td>
<td>1.38E+02</td>
<td>125</td>
</tr>
<tr>
<td>60Co</td>
<td>0.011 < x < 0.013</td>
<td>0.011 < x < 0.013</td>
<td>< 5.00E-02</td>
<td>--</td>
</tr>
<tr>
<td>154Eu</td>
<td>0.071 < x < 0.081</td>
<td>0.071 < x < 0.081</td>
<td>< 2.00E-01</td>
<td>--</td>
</tr>
<tr>
<td>155Eu</td>
<td>< 2.47E-01</td>
<td>< 2.47E-01</td>
<td>< 5.00E-01</td>
<td>--</td>
</tr>
<tr>
<td>90Sr</td>
<td>3.49E+02</td>
<td>3.49E+02</td>
<td>4.41E+02</td>
<td>79</td>
</tr>
<tr>
<td>99Tc</td>
<td>1.22E-01</td>
<td>1.22E-01</td>
<td>1.40E-01</td>
<td>87</td>
</tr>
</tbody>
</table>

5.7
5.2.2 Caustic Leaching

Table 5.5 presents the concentrations of most of the nonradioactive sludge components in each process stream, and Table 5.6 presents the distribution of those sludge components between the various process streams. The values presented in Table 5.6 are not adjusted for material contained in the interstitial liquid, but rather represent the amount of each component contained in the liquid that was decanted in a given step (or in the residual solid).

The cumulative removal of Al was 96%, most of which occurred in the second leaching step. The decanted liquid from the first caustic leaching step contained only 11% of the Al; the interstitial liquid contained another ~13% of the Al. Thus, approximately 24% of the Al was dissolved in the first leaching step. During the second caustic leaching step, the Al concentration increased from 1115 µg/mL at 5 h to 4240 µg/mL after 100 h at 100°C. Thus, the Al concentration increased nearly 4-fold between 5 and 100 h of leaching; this translated to an additional dissolution of 72% of the Al. This result is similar to what was seen with S-104 sludge (see Section 3.0), again indicating the importance of kinetics in removing Al from REDOX sludges. The second caustic leaching solution was stable toward precipitation for at least 210 days.

The cumulative removal of Cr was 89%, which indicated a significant increase over that removed by simple washing. During the second caustic leaching step, the Cr concentration increased from 105 µg/mL at 5 h to 155 µg/mL after 100 h at 100°C, indicating a 1.5-fold increase in the dissolved Cr in that leaching step. Taking into the interstitial liquid volumes, 48% of the Cr was removed in the first leaching step and 41% in the second leaching step.

No spectrophotometry was performed on the second leaching solution immediately after the test was completed, but it was examined by UV/vis spectrophotometry ~210 days afterwards. The spectrum was obtained for the undiluted solution. No evidence existed for Cr(III) in the aged solution; the Cr(III) concentration was less than 25 µg/mL. The spectrum was also obtained for a diluted solution so that the Cr(VI) concentration could be determined. This measurement indicated that the second leaching solution contained 210 µg Cr(VI)/mL. As indicated above, the ICP/AES measurement indicated that the total Cr concentration was 155 µg/mL. It appears likely that all the Cr in the aged leaching solution was in the Cr(VI) form. Although the vial was tightly sealed, evaporation could not be ruled out as a possible reason for the increase in the Cr concentration.

The cumulative P removal (97%) was somewhat better than achieved by dilute NaOH washing (87%). The amount of P removed in the first leaching step was 88% (when adjusted for that in the interstitial liquid), which was very similar to that achieved in the dilute NaOH wash. An additional 9% of the P dissolved in the second leaching step, suggesting that kinetics were important for removing that fraction of the P. Silicon removal was improved from 40% by dilute NaOH washing to 71% for caustic leaching. Virtually all of the U, which is the third-most abundant metallic element in the S-101 sludge, remained in the sludge solids during caustic leaching.
Table 5.5. Concentrations of the Nonradioactive S-101 Sludge Components in the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
<th>Total Mass, µg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL</td>
<td>Mass, µg<sup>(a)</sup></td>
<td>Conc., µg/mL</td>
<td>Mass, µg<sup>(a)</sup></td>
<td>Conc., µg/g</td>
</tr>
<tr>
<td>Ag</td>
<td><0.16</td>
<td><2</td>
<td><0.16</td>
<td><19</td>
<td><0.14</td>
</tr>
<tr>
<td>Al</td>
<td>6798</td>
<td>72742</td>
<td>4238</td>
<td>488485</td>
<td>699</td>
</tr>
<tr>
<td>As</td>
<td><1.61</td>
<td><17</td>
<td><1.63</td>
<td><187</td>
<td><1.38</td>
</tr>
<tr>
<td>B</td>
<td>6.81</td>
<td>73</td>
<td>0.70</td>
<td>82</td>
<td><0.28</td>
</tr>
<tr>
<td>Ba</td>
<td><0.065</td>
<td><1</td>
<td><0.065</td>
<td><7</td>
<td><0.055</td>
</tr>
<tr>
<td>Be</td>
<td><0.065</td>
<td><1</td>
<td><0.065</td>
<td><7</td>
<td><0.055</td>
</tr>
<tr>
<td>Bi</td>
<td>0.86</td>
<td>9</td>
<td>0.65</td>
<td>75</td>
<td>0.55</td>
</tr>
<tr>
<td>Ca</td>
<td>1.94</td>
<td>21</td>
<td>9.10</td>
<td>1039</td>
<td>1.38</td>
</tr>
<tr>
<td>Cd</td>
<td>0.15</td>
<td>2</td>
<td>0.10</td>
<td>12</td>
<td><0.083</td>
</tr>
<tr>
<td>Ce</td>
<td><1.29</td>
<td><14</td>
<td><1.30</td>
<td><150</td>
<td><1.1</td>
</tr>
<tr>
<td>Co</td>
<td>0.39</td>
<td>4</td>
<td><0.33</td>
<td><37</td>
<td><0.28</td>
</tr>
<tr>
<td>Cr</td>
<td>640</td>
<td>6848</td>
<td>153</td>
<td>17748</td>
<td>26.1</td>
</tr>
<tr>
<td>Cu</td>
<td>9.06</td>
<td>97</td>
<td>1.90</td>
<td>220</td>
<td><0.14</td>
</tr>
<tr>
<td>Dy</td>
<td><0.32</td>
<td><3</td>
<td><0.33</td>
<td><37</td>
<td><0.28</td>
</tr>
<tr>
<td>Eu</td>
<td><0.65</td>
<td><7</td>
<td><0.65</td>
<td><75</td>
<td>0.55</td>
</tr>
<tr>
<td>Fe</td>
<td>4.5</td>
<td>48</td>
<td>5.9</td>
<td>685</td>
<td>0.31</td>
</tr>
<tr>
<td>K</td>
<td>217</td>
<td>2319</td>
<td>24.7</td>
<td>2877</td>
<td><11.0</td>
</tr>
<tr>
<td>La</td>
<td><0.22</td>
<td><3</td>
<td><0.33</td>
<td><37</td>
<td><0.28</td>
</tr>
<tr>
<td>Li</td>
<td>0.22</td>
<td>2</td>
<td>0.20</td>
<td>22</td>
<td><0.17</td>
</tr>
<tr>
<td>Mg</td>
<td><0.65</td>
<td><7</td>
<td><0.65</td>
<td><78</td>
<td>0.55</td>
</tr>
<tr>
<td>Mn</td>
<td>0.54</td>
<td>6</td>
<td><0.33</td>
<td><37</td>
<td><0.28</td>
</tr>
<tr>
<td>Mo</td>
<td>5.56</td>
<td>59</td>
<td>0.38</td>
<td>43</td>
<td><0.28</td>
</tr>
<tr>
<td>Na</td>
<td>109779</td>
<td>1174635</td>
<td>74750</td>
<td>8668410</td>
<td>12430</td>
</tr>
<tr>
<td>Nd</td>
<td>0.70</td>
<td>7</td>
<td><0.65</td>
<td><75</td>
<td><0.55</td>
</tr>
<tr>
<td>Ni</td>
<td><0.19</td>
<td><2</td>
<td><0.2</td>
<td><22</td>
<td><0.2</td>
</tr>
<tr>
<td>P</td>
<td>375</td>
<td>4017</td>
<td>41</td>
<td>4766</td>
<td>7</td>
</tr>
<tr>
<td>Pb</td>
<td>5.03</td>
<td>54</td>
<td>1.56</td>
<td>179</td>
<td>0.55</td>
</tr>
<tr>
<td>Pd</td>
<td><4.84</td>
<td><52</td>
<td><4.88</td>
<td><561</td>
<td><4.13</td>
</tr>
<tr>
<td>Rh</td>
<td><1.94</td>
<td><21</td>
<td><1.95</td>
<td><224</td>
<td><1.65</td>
</tr>
<tr>
<td>Ru</td>
<td><7.10</td>
<td><73</td>
<td><7.15</td>
<td><822</td>
<td><6.05</td>
</tr>
<tr>
<td>Sb</td>
<td><3.23</td>
<td><35</td>
<td><3.25</td>
<td><374</td>
<td><2.75</td>
</tr>
<tr>
<td>Se</td>
<td><1.61</td>
<td><17</td>
<td><1.63</td>
<td><187</td>
<td><1.38</td>
</tr>
<tr>
<td>Si</td>
<td>55</td>
<td>594</td>
<td>29.9</td>
<td>3488</td>
<td>5.3</td>
</tr>
<tr>
<td>Sn</td>
<td><9.68</td>
<td><104</td>
<td><9.75</td>
<td><1121</td>
<td><8.25</td>
</tr>
<tr>
<td>Sr</td>
<td>0.12</td>
<td>1</td>
<td>0.10</td>
<td>12</td>
<td><0.08</td>
</tr>
<tr>
<td>Te</td>
<td><9.68</td>
<td><104</td>
<td><9.75</td>
<td><1121</td>
<td><8.25</td>
</tr>
<tr>
<td>Th</td>
<td><6.45</td>
<td><69</td>
<td><6.5</td>
<td><748</td>
<td>5.5</td>
</tr>
<tr>
<td>Ti</td>
<td><0.16</td>
<td><2</td>
<td><0.16</td>
<td><19</td>
<td><0.14</td>
</tr>
<tr>
<td>Tl</td>
<td><3.23</td>
<td><35</td>
<td><3.25</td>
<td><374</td>
<td><2.75</td>
</tr>
<tr>
<td>U<sup>(c)</sup></td>
<td>0.325</td>
<td>3</td>
<td>3.86</td>
<td>444</td>
<td>1.05</td>
</tr>
<tr>
<td>V</td>
<td>0.72</td>
<td>8</td>
<td><0.35</td>
<td><37</td>
<td><0.28</td>
</tr>
<tr>
<td>W</td>
<td><12.9</td>
<td><138</td>
<td><13</td>
<td><1495</td>
<td><11</td>
</tr>
<tr>
<td>Y</td>
<td><0.32</td>
<td><3</td>
<td><0.35</td>
<td><37</td>
<td><0.28</td>
</tr>
<tr>
<td>Zn</td>
<td>1.81</td>
<td>19</td>
<td>0.74</td>
<td>87</td>
<td>0.36</td>
</tr>
<tr>
<td>Zr</td>
<td><0.32</td>
<td><3</td>
<td><0.33</td>
<td><37</td>
<td><0.28</td>
</tr>
</tbody>
</table>

(a) Mass of material present in the solution decanted during the indicated step.

(b) Adjusted for the amount (9,433,000 µg) of Na added as NaOH.

(c) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.

5.9
Table 5.6. Distribution of Nonradioactive S-101 Sludge Components Between the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td><4</td>
<td><40</td>
<td><23</td>
<td>>33</td>
</tr>
<tr>
<td>Al</td>
<td>11</td>
<td>76</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>As</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>B</td>
<td>35 < x < 39</td>
<td>39 < x < 43</td>
<td><10</td>
<td>16 < x < 18</td>
</tr>
<tr>
<td>Ba</td>
<td><1</td>
<td><3</td>
<td><2</td>
<td>>94</td>
</tr>
<tr>
<td>Br</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Bi</td>
<td>3 < x < 5</td>
<td><24</td>
<td><14</td>
<td>59 < x < 95</td>
</tr>
<tr>
<td>Ca</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>Cd</td>
<td>4</td>
<td>25 < x < 30</td>
<td><14</td>
<td>57 < x < 66</td>
</tr>
<tr>
<td>Ce</td>
<td><3</td>
<td><32</td>
<td><18</td>
<td>>47</td>
</tr>
<tr>
<td>Co</td>
<td>>5</td>
<td>>43</td>
<td><25</td>
<td><27</td>
</tr>
<tr>
<td>Cr</td>
<td>23</td>
<td>59</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Cu</td>
<td>23</td>
<td>52</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Dy</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Eu</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Fe</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>91</td>
</tr>
<tr>
<td>K</td>
<td>33 < x < 45</td>
<td>41 < x < 55</td>
<td><12</td>
<td>14</td>
</tr>
<tr>
<td>La</td>
<td><2</td>
<td><24</td>
<td><14</td>
<td>>60</td>
</tr>
<tr>
<td>Li</td>
<td>>5</td>
<td>>43</td>
<td><25</td>
<td><27</td>
</tr>
<tr>
<td>Mg</td>
<td><3</td>
<td><33</td>
<td><19</td>
<td>>46</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Mo</td>
<td>40 < x < 58</td>
<td>29 < x < 42</td>
<td><15</td>
<td><16</td>
</tr>
<tr>
<td>Na</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>34(b)</td>
</tr>
<tr>
<td>Nd</td>
<td>2 < x < 3</td>
<td><20</td>
<td><11</td>
<td>67 < x < 97</td>
</tr>
<tr>
<td>Ni</td>
<td>0</td>
<td><4</td>
<td><3</td>
<td>>93</td>
</tr>
<tr>
<td>P</td>
<td>42</td>
<td>50</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Pb</td>
<td>14 < x < 15</td>
<td>46 < x < 51</td>
<td><11</td>
<td>29 < x < 33</td>
</tr>
<tr>
<td>Pd</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Rh</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Ru</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sb</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Se</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Si</td>
<td>9</td>
<td>55</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>Sn</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sr</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>>49</td>
</tr>
<tr>
<td>Te</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Th</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Ti</td>
<td><2</td>
<td><19</td>
<td><11</td>
<td>>92</td>
</tr>
<tr>
<td>Tl</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>V</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>W</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Y</td>
<td><4</td>
<td><39</td>
<td><22</td>
<td>>25</td>
</tr>
<tr>
<td>Zn</td>
<td>5</td>
<td>24</td>
<td><1</td>
<td>>91</td>
</tr>
<tr>
<td>Zr</td>
<td><2</td>
<td><16</td>
<td><9</td>
<td>>73</td>
</tr>
</tbody>
</table>

(a) Analyte was below detection limit for all process streams.

(b) Amount of Na in residue was determined by comparing the amount of Na in the untreated solid to that in the leached solid.

5.10
Table 5.7 summarizes the mass recoveries achieved for the various elements analyzed by ICP/AES and for U, which was determined by laser fluorimetry. For the most part, the mass recoveries for the caustic leaching portion of the test were better than was seen for the dilute hydroxide washing (compare the values in Table 5.7 to those in Table 5.2). Good mass recoveries were obtained for Al, Cr, Fe, Mn, P, and U. Recoveries for Ca, Ce, and Si were low.

Table 5.8 presents the concentrations of the various anions in each process solution. Also listed is the amount of each anion in solution as a function of the amount of sludge solids treated. Although the amounts of NO₃⁻, NO₂⁻, PO₄³⁻, and SO₄²⁻ in solution during the caustic leaching portion of the test were greater (on a per gram of sludge processed basis) than in the dilute hydroxide wash, in no case did this difference exceed 20%. These results indicate that ESW would not provide much benefit in terms of removing these anions from the HLW stream.

Table 5.9 presents the concentrations of various radioactive sludge components in each process stream, and Table 5.10 presents the distribution of these sludge components between the various process streams. As was the case with the dilute NaOH wash, only ¹³⁷Cs and ⁹⁹Tc were detected in the leach and wash solutions; these radioisotopes were virtually quantitatively dissolved during caustic leaching. Table 5.11 summarizes the mass recoveries achieved for the various radionuclides during the caustic leaching portion of the test. Mass recoveries were good for ²³⁹,²⁴⁰Pu, ¹³⁷Cs, and ⁹⁰Sr, but the mass recovery for ⁹⁹Tc was low.
Table 5.7. Concentrations of the Nonradioactive S-101 Sludge Components in the Initial Sludge Solids: Results From the Caustic Leaching Portion of the Text

<table>
<thead>
<tr>
<th>Component</th>
<th>Summation Method*</th>
<th>Direct Analysis</th>
<th>Mass Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>4 < x < 12</td>
<td>< 61</td>
<td>--</td>
</tr>
<tr>
<td>Al</td>
<td>160236</td>
<td>147000</td>
<td>109</td>
</tr>
<tr>
<td>As</td>
<td>< 107</td>
<td>< 607</td>
<td>--</td>
</tr>
<tr>
<td>B</td>
<td>47 < x < 52</td>
<td>370</td>
<td>13</td>
</tr>
<tr>
<td>Ba</td>
<td>52 < x < 55</td>
<td>69</td>
<td>75 < x < 80</td>
</tr>
<tr>
<td>Be</td>
<td>< 4</td>
<td>< 24</td>
<td>--</td>
</tr>
<tr>
<td>Bi</td>
<td>2197</td>
<td>< 243</td>
<td>905</td>
</tr>
<tr>
<td>Ca</td>
<td>806 < x < 833</td>
<td>1294</td>
<td>62 < x < 64</td>
</tr>
<tr>
<td>Cd</td>
<td>10 < x < 12</td>
<td>< 36</td>
<td>--</td>
</tr>
<tr>
<td>Ce</td>
<td>56 < x < 118</td>
<td>804</td>
<td>7 < x < 15</td>
</tr>
<tr>
<td>Co</td>
<td>< 22</td>
<td>< 121</td>
<td>--</td>
</tr>
<tr>
<td>Cr</td>
<td>7469</td>
<td>7110</td>
<td>105</td>
</tr>
<tr>
<td>Cu</td>
<td>109</td>
<td>99</td>
<td>110</td>
</tr>
<tr>
<td>Dy</td>
<td>< 21</td>
<td>< 121</td>
<td>--</td>
</tr>
<tr>
<td>Eu</td>
<td>< 43</td>
<td>< 243</td>
<td>--</td>
</tr>
<tr>
<td>Fe</td>
<td>2209</td>
<td>2149</td>
<td>103</td>
</tr>
<tr>
<td>K</td>
<td>1290 < x < 1740</td>
<td>720</td>
<td>179 < x < 242</td>
</tr>
<tr>
<td>La</td>
<td>23 < x < 39</td>
<td>< 121</td>
<td>--</td>
</tr>
<tr>
<td>Li</td>
<td>< 13</td>
<td>< 73</td>
<td>--</td>
</tr>
<tr>
<td>Mg</td>
<td>26 < x < 57</td>
<td>< 243</td>
<td>--</td>
</tr>
<tr>
<td>Mn</td>
<td>2574</td>
<td>2842</td>
<td>91</td>
</tr>
<tr>
<td>Mo</td>
<td>26 < x < 37</td>
<td>< 121</td>
<td>--</td>
</tr>
<tr>
<td>Na</td>
<td>348360</td>
<td>180140</td>
<td>193</td>
</tr>
<tr>
<td>Nd</td>
<td>66 < x < 95</td>
<td>161</td>
<td>41 < x < 59</td>
</tr>
<tr>
<td>Ni</td>
<td>117 < x < 126</td>
<td>< 73</td>
<td>17</td>
</tr>
<tr>
<td>P</td>
<td>2402</td>
<td>2295</td>
<td>103</td>
</tr>
<tr>
<td>Pb</td>
<td>87 < x < 98</td>
<td>482</td>
<td>18 < x < 20</td>
</tr>
<tr>
<td>Pd</td>
<td>< 322</td>
<td>< 1820</td>
<td>--</td>
</tr>
<tr>
<td>Rh</td>
<td>< 129</td>
<td>< 728</td>
<td>--</td>
</tr>
<tr>
<td>Ru</td>
<td>< 472</td>
<td>2670</td>
<td>--</td>
</tr>
<tr>
<td>Sb</td>
<td>< 215</td>
<td>< 1214</td>
<td>--</td>
</tr>
<tr>
<td>Se</td>
<td>< 107</td>
<td>< 607</td>
<td>--</td>
</tr>
<tr>
<td>Si</td>
<td>1592</td>
<td>2670</td>
<td>60</td>
</tr>
<tr>
<td>Sn</td>
<td>< 644</td>
<td>< 3641</td>
<td>--</td>
</tr>
<tr>
<td>Sr</td>
<td>638</td>
<td>493</td>
<td>89</td>
</tr>
<tr>
<td>Te</td>
<td>< 644</td>
<td>< 3641</td>
<td>--</td>
</tr>
<tr>
<td>Th</td>
<td>< 429</td>
<td>< 2427</td>
<td>--</td>
</tr>
<tr>
<td>Ti</td>
<td>17 < x < 25</td>
<td>213</td>
<td>8 < x < 12</td>
</tr>
<tr>
<td>Tl</td>
<td>< 215</td>
<td>< 1214</td>
<td>--</td>
</tr>
<tr>
<td>U</td>
<td>9491</td>
<td>9560</td>
<td>99</td>
</tr>
<tr>
<td>V</td>
<td>< 23</td>
<td>< 121</td>
<td>--</td>
</tr>
<tr>
<td>W</td>
<td>< 358</td>
<td>< 4854</td>
<td>--</td>
</tr>
<tr>
<td>Y</td>
<td>8 < x < 24</td>
<td>< 121</td>
<td>--</td>
</tr>
<tr>
<td>Zn</td>
<td>89</td>
<td>151</td>
<td>59</td>
</tr>
<tr>
<td>Zr</td>
<td>42 < x < 57</td>
<td>< 121</td>
<td>--</td>
</tr>
</tbody>
</table>

(a) The value was determined by summing the amount of a given component in the caustic leaching solutions, the subsequent washing solutions, and the leached solids; the total concentration was then determined by dividing the sum by the amount of solids processed.
Table 5.8. Anion Concentrations in the Various S-101 Process Solutions

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentr. & Dissolved, µg/mL</td>
<td>Concentr. & Dissolved, µg/mL</td>
<td>Concentr. & Dissolved, µg/mL</td>
<td>Concentr. & Dissolved, µg/mL</td>
</tr>
<tr>
<td>OH<sup>-</sup></td>
<td>Not Determined</td>
<td>18.6</td>
<td>16.6</td>
<td>Not Determined</td>
</tr>
<tr>
<td>NO<sub>3</sub><sup>-</sup></td>
<td>4,800</td>
<td>107,000</td>
<td>10,150</td>
<td>600</td>
</tr>
<tr>
<td>NO<sub>2</sub><sup>-</sup></td>
<td>1,620</td>
<td>12,600</td>
<td>3,500</td>
<td>280</td>
</tr>
<tr>
<td>PO<sub>4</sub><sup>3-</sup></td>
<td>180</td>
<td>1,400</td>
<td>140</td>
<td>25</td>
</tr>
<tr>
<td>Br<sup>-</sup></td>
<td>270</td>
<td>10,498</td>
<td>190</td>
<td>29</td>
</tr>
<tr>
<td>Cl<sup>-</sup></td>
<td>30</td>
<td>300</td>
<td>2,408</td>
<td>20</td>
</tr>
<tr>
<td>Si<sup>4+</sup></td>
<td><25</td>
<td>900</td>
<td>2,750</td>
<td>13</td>
</tr>
</tbody>
</table>

(a) Amount of component dissolved in a given process step.
(b) Hydroxide added as NaOH.
(c) Nitrate was added in this step as part of the washing solution (0.01 M NaOH/0.01 M NaNO₃.

Table 5.9. Concentrations of the Radioactive S-101 Sludge Components in the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentr., µCi/mL</td>
<td>Activity, µCi</td>
<td>Concentr., µCi/mL</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 2.58E-04</td>
<td>< 2.76E-03</td>
<td>< 2.60E-04</td>
</tr>
<tr>
<td><sup>239</sup>240Pu</td>
<td>< 2.58E-04</td>
<td>< 2.76E-03</td>
<td>< 2.60E-04</td>
</tr>
<tr>
<td><sup>241</sup>Am<sup>238</sup>Pu</td>
<td>< 2.58E-04</td>
<td>< 2.76E-03</td>
<td>< 2.60E-04</td>
</tr>
<tr>
<td><sup>241</sup>Am(g)</td>
<td>< 3.87E-02</td>
<td>< 4.14E-01</td>
<td>< 3.90E-03</td>
</tr>
<tr>
<td>C<sup>60</sup></td>
<td>2.84E+01</td>
<td>3.08E+02</td>
<td>3.97E+00</td>
</tr>
<tr>
<td>Co<sup>60</sup></td>
<td>< 3.87E-04</td>
<td>< 4.14E-03</td>
<td>< 3.90E-05</td>
</tr>
<tr>
<td>Eu<sup>152</sup></td>
<td>< 3.87E-04</td>
<td>< 2.76E-03</td>
<td>< 2.60E-04</td>
</tr>
<tr>
<td>Eu<sup>154</sup></td>
<td>< 3.87E-04</td>
<td>< 2.76E-03</td>
<td>< 2.60E-04</td>
</tr>
<tr>
<td>Si<sup>90</sup></td>
<td>< 3.87E-02</td>
<td>< 9.66E-01</td>
<td>6.81E-02</td>
</tr>
<tr>
<td>Tc<sup>99</sup></td>
<td>1.14E-04</td>
<td>1.22E-01</td>
<td>2.11E-03</td>
</tr>
</tbody>
</table>

5.13
Table 5.10. Distribution of Radioactive S-101 Sludge Components Between the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Alpha</td>
<td>0</td>
<td>< 1</td>
<td>< 1</td>
<td>> 98</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>0</td>
<td>< 2</td>
<td>< 2</td>
<td>> 96</td>
</tr>
<tr>
<td>241Am+239Pu</td>
<td>0</td>
<td>< 4</td>
<td>< 3</td>
<td>> 93</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 23</td>
<td>< 25</td>
<td>< 10</td>
<td>> 43</td>
</tr>
<tr>
<td>137Cs</td>
<td>< 6</td>
<td>48</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>60Co</td>
<td>< 5</td>
<td>< 6</td>
<td>< 3</td>
<td>> 86</td>
</tr>
<tr>
<td>154Eu</td>
<td>< 3</td>
<td>< 4</td>
<td>< 2</td>
<td>> 91</td>
</tr>
<tr>
<td>155Eu</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>90Sr</td>
<td>> 32</td>
<td>> 63</td>
<td>> 6</td>
<td>0</td>
</tr>
<tr>
<td>99Tc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Analyte was below detection limit for all solutions.

Table 5.11. Concentrations of the Radioactive Components in the Initial S-101 Sludge Solids: Results of the Caustic Leaching Portion of the Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Summation Method (a)</th>
<th>Direct Analysis</th>
<th>Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Alpha</td>
<td>0.59 < x < 0.61</td>
<td>1.36E+00</td>
<td>43 < x < 45</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>0.40 < x < 0.42</td>
<td>4.80E-01</td>
<td>84 < x < 87</td>
</tr>
<tr>
<td>241Am+239Pu</td>
<td>0.18 < x < 0.20</td>
<td>6.28E-01</td>
<td>~30</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>0.19 < x < 0.45</td>
<td>< 7.00E-01</td>
<td>--</td>
</tr>
<tr>
<td>137Cs</td>
<td>1.66E+02</td>
<td>1.38E+02</td>
<td>120</td>
</tr>
<tr>
<td>60Co</td>
<td>0.017 < x < 0.020</td>
<td>< 5.00E-02</td>
<td>--</td>
</tr>
<tr>
<td>154Eu</td>
<td>0.19 < x < 0.21</td>
<td>< 2.00E-01</td>
<td>--</td>
</tr>
<tr>
<td>155Eu</td>
<td>< 3.17E-01</td>
<td>< 5.00E-01</td>
<td>--</td>
</tr>
<tr>
<td>90Sr</td>
<td>4.45E+02</td>
<td>4.41E+02</td>
<td>101</td>
</tr>
<tr>
<td>99Tc</td>
<td>0.097 < x < 0.10</td>
<td>1.40E-01</td>
<td>69 < x < 71</td>
</tr>
</tbody>
</table>

(a) The value was determined by summing the amount of a given component in the caustic leaching solutions, the subsequent washing solutions, and the leached solids; the total concentration was determined by dividing the sum by the amount of sludge solids processed.
5.2.3 Particle-Size Analysis

Figure 5.2 presents the particle-size data for the untreated and treated S-101 sludge solids in terms of the number distributions, and Figure 5.3 presents the data in terms of the volume distributions. Leaching the sludge with caustic slightly reduced the mean particle size. The volume distribution for the untreated S-101 sludge indicated a mean particle size of 6.8 μm, while that for the treated material was 4.8 μm. Based on the number distribution, the mean particle decreased from 0.51 μm to 0.32 μm upon caustic leaching.

![Particle Size Distribution](image)

Figure 5.2. Particle-Size Number Distribution for Untreated (a) and Treated (b) S-101 Sludge
5.2.4 Microscopic Analysis

Similar to S-107 (Lumetta et al. 1996) and S-104 (Section 3.0), boehmite was the predominant solid phase in the S-101 sludge. During leaching, the size of the boehmite particles decreased dramatically, and the edges of the particles became more rounded (Figure 5.4). Examination of the leached solids revealed the presence of amorphous aluminosilicates and rod-like aluminum oxyhydroxide (diaspore) (Figure 5.5). A mixed Mn(Fe)O$_2$H phase was observed in the leached solids as were spherical particles of uranium oxides (Figure 5.4).
Figure 5.4. Micrograph of S-101 Sludge Boehmite Particles Before (a) and After (b) Leaching

Figure 5.5. Rod-like Diaspore (a) and Amorphous Aluminosilicate (b) in the Leached S-101 Sludge
5.2.5 Settling Data

For the first leaching step, no settling occurred after the mixture had stood overnight. For the second leaching step, initial indications were that the settling was slow for this slurry as well, but the solids did settle after standing overnight. Because the second caustic leaching slurry had a very low undissolved solids concentration (0.2 wt%), it is likely that this slurry was in a regime where the particles fall freely through the solution. That is, the heavier particles settle to the bottom of the vessel first, and finer particles remain suspended, giving the solution a very cloudy appearance (this behavior would be difficult to observe through the hot cell window and the high-density polyethylene bottle used). Such behavior has been documented for other Harford sludges; e.g., for S-107 sludge where the undissolved solids concentration in the second leaching slurry was 0.35 wt% (Lumetta et al. 1996). Table 5.12 and Figures 5.6 and 5.7 present the S-101 settling data from the final three washing steps. For the final washing steps, the undissolved solids concentration was 0.9 wt%. The data are presented in terms of the actual sludge height versus time (Figure 5.6) and in terms of normalized sludge height versus a dimensionless time value (Figure 5.7). The settling behavior was similar for all three washes.

Table 5.12. Settling Data From the S-101 Caustic Leaching Test(a)

<table>
<thead>
<tr>
<th></th>
<th>First Wash</th>
<th></th>
<th>Second Wash</th>
<th></th>
<th>Third Wash</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t, min</td>
<td>h, mm</td>
<td>T</td>
<td>t, min</td>
<td>h, mm</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>35</td>
<td>0.00 1.00</td>
<td>0</td>
<td>35 0.00 1.00</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>33 0.14 0.94</td>
<td>1 30 0.14 0.86</td>
<td>1</td>
<td>35 0.13 0.92</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>31 0.29 0.89</td>
<td>2 25 0.29 0.71</td>
<td>2</td>
<td>30 0.26 0.79</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>25 0.43 0.71</td>
<td>3 20 0.43 0.57</td>
<td>3</td>
<td>25 0.39 0.66</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>20 0.57 0.57</td>
<td>4 17 0.57 0.49</td>
<td>4</td>
<td>19 0.53 0.50</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15 0.71 0.43</td>
<td>5 15 0.71 0.43</td>
<td>5</td>
<td>16 0.66 0.42</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>14 0.86 0.40</td>
<td>6 14 0.86 0.40</td>
<td>6</td>
<td>14 0.79 0.37</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>13 1.14 0.27</td>
<td>7 13 1.00 0.37</td>
<td>7</td>
<td>13 0.92 0.34</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12 1.43 0.24</td>
<td>10 12 1.43 0.34</td>
<td>10</td>
<td>12 1.32 0.32</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>11 1.86 0.31</td>
<td>15 11 2.14 0.31</td>
<td>15</td>
<td>11 1.97 0.29</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>9 4.29 0.26</td>
<td>35 10 5.00 0.29</td>
<td>25</td>
<td>10 3.29 0.26</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>9 6.43 0.26</td>
<td>95 9 13.6 0.26</td>
<td>55</td>
<td>10 7.24 0.26</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>9 10.7 0.25</td>
<td>1130 8 161 0.23</td>
<td>115</td>
<td>9 15.1 0.24</td>
<td>115</td>
</tr>
</tbody>
</table>

(a) t = time, h = sludge height, T = normalized time value = t*v_{wet}/h_0, H = h/h_0.

(a) Data were normalized according to a formula suggested by G.T. MacLean, SGN Eurisys Services Corp., personal communication, 1996. The formula is given in Table 5.12.
Figure 5.6. Settling Data From the S-101 Caustic Leaching Test

Figure 5.7. Normalized Settling Data From the S-101 Caustic Leaching Test
6.0 Tank S-111 Enhanced Sludge Washing Test

This section presents the results of the ESW test performed on Hanford Tank S-111 sludge. The sludge sample used in this test was received at PNNL on December 5, 1996; the 222-S laboratory ID for this sample was S96T005106, and the jar number was 11150.

6.1 Experimental

Figure 6.1 summarizes the experimental procedure used in the S-111 ESW test. When the sludge was mixed in water for the initial sampling, the sludge particles partitioned between those that were readily mixed and heavier particles that stayed near the bottom of the vial. Hence, it was impossible to withdraw aliquots that would be representative of the entire sludge sample. Because of this, no samples were taken for the untreated sludge. Due to this complication, the procedure used deviated somewhat from the standard baseline ESW test procedure. In this test, the sludge was first washed with dilute sodium hydroxide solution. Two successive caustic leaching steps were then performed; as the S-111 is a REDOX sludge, extended leaching times were used to assess the kinetics of Al dissolution. To determine the leaching volumes, it was assumed that 35 wt% of the material left after the initial washing steps would remain undissolved after caustic leaching. The weight of the wet-washed sludge was 3.074 g; thus it was estimated that a leaching slurry of ~19 mL would yield 5 wt% solids in the first leaching step and a leaching slurry of ~95 mL would give 1 wt% solids in the second leaching step. Following the second caustic leaching step, the leached sludge was washed with 0.01 M NaOH/0.01 M NaNO₂. Settling rates for the solids could not be determined because the heavier solids settled very rapidly, and the liquid phase generally could not be clearly distinguished from the solid phase as the smaller solids settled.

6.2 Results and Discussion

Table 6.1 presents the concentrations of most of the nonradioactive sludge components in each process stream, Table 6.2 presents the concentrations of those components in the untreated S-111 sludge, and Table 6.3 presents the distribution of those sludge components between the various process streams. The values presented in Table 6.3 are not adjusted for material contained in the interstitial liquid, but rather represent the amount of each component contained in the liquid that was decanted in a given step (or in the residual solid).

Excluding Na, the most abundant metallic element in the S-111 sludge was Al; the as-received (wet) sludge sample contained 16.0 wt% Al. The Al was largely water-insoluble, with only 10% being removed by dilute hydroxide washing. However, caustic leaching was very effective at dissolving the Al. As was the case with S-104 (Section 3.0) and S-101 (Section 5.0) sludges, kinetics played an important role in determining the amount of Al removed from the S-111 sludge by caustic leaching. After a total of 10 h of leaching at 100°C, the Al concentration in the first leaching step was 20,500 µg/mL. The Al concentration had increased to 37,200 µg/mL after a total of 143 h of leaching at 100°C, representing
Figure 6.1. Schematic Representation of the S-111 ESW Test

(a) The volume of liquid remaining in the leaching vessel was estimated to be 4.7 mL by subtracting the weight of the dried leached solids (0.077 g) from the total weight of the material still in the leaching vessel (5.446 g) and dividing by the solution density (1.135 g/mL).
10 M NaOH (28 mL) and water (64 mL) → Cautic Leach 2
Mix 60 h, 100°C, cool, gravity settle, decant

Solution F
80.4 mL Decanted
12.0 Interstitial
2.5 M OH⁻

Solids

Wash 1
Mix 0.5 h, room temp., centrifuge, decant

Wash 2
Mix 0.5 h, room temp., centrifuge, decant

Wash 3
Mix 0.5 h, room temp., sample slurry

Wash 3 (cont.)
Centrifuge, decant

Dry solids at 105°C
0.077 g

(b) The volume of liquid remaining in the leaching vessel was estimated to be 12.0 mL by subtracting the weight of the dried leached solids (0.077 g) from the total weight of the material still in the leaching vessel (13.734 g) and dividing by the solution density (1.136 g/mL).

Wash 1 Liquid Mix 0.5 h, room temp., centrifuge, decant

Wash 2 Liquid Mix 0.5 h, room temp., Liquid .. Solution F 54.9 mL

Wash 3 (cont.) Liquid Sample H (0.50 g slurry)

Wash 3 (cont.) Liquid Sample I (0.30 g slurry)

(c) Final weight of dried solids was adjusted for that removed in samples H and I.

Figure 6.1. (contd)
Table 6.1. Concentrations of the Nonradioactive S-111 Sludge Components in the Various Process Streams

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Wash Solution</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL</td>
<td>Mass, µg<sup>10</sup></td>
<td>Conc., µg/mL</td>
<td>Mass, µg</td>
<td>Conc., µg/g</td>
</tr>
<tr>
<td>Ag</td>
<td>< 0.13125</td>
<td>7.4</td>
<td>< 0.125</td>
<td>10</td>
<td>< 0.125</td>
</tr>
<tr>
<td>Al</td>
<td>1806</td>
<td>14189</td>
<td>5</td>
<td>0.279</td>
<td>6</td>
</tr>
<tr>
<td>As</td>
<td>< 1.3125</td>
<td>106</td>
<td>1.9375</td>
<td>4</td>
<td>0.253</td>
</tr>
<tr>
<td>B</td>
<td>3.755</td>
<td>29.5</td>
<td>0.7285</td>
<td>1.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Ba</td>
<td>< 0.0525</td>
<td>4</td>
<td>0.0775</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Be</td>
<td>< 0.0525</td>
<td>4</td>
<td>0.0775</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Bi</td>
<td>< 0.0525</td>
<td>42</td>
<td>0.455</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Ca</td>
<td>2.52</td>
<td>200</td>
<td>4.96</td>
<td>1.25</td>
<td>1.3</td>
</tr>
<tr>
<td>Cd</td>
<td>< 0.07875</td>
<td>6</td>
<td>4.6655</td>
<td>0.24</td>
<td>105</td>
</tr>
<tr>
<td>Ce</td>
<td>< 1.08</td>
<td>89</td>
<td>1.55</td>
<td>0.25</td>
<td>1.2</td>
</tr>
<tr>
<td>Co</td>
<td>< 0.2035</td>
<td>21</td>
<td>0.6975</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Cr</td>
<td>81.585</td>
<td>6407</td>
<td>1215.2</td>
<td>32.1</td>
<td>13.7</td>
</tr>
<tr>
<td>Cu</td>
<td>< 0.13125</td>
<td>11</td>
<td>< 0.19375</td>
<td>0.27</td>
<td>0.125</td>
</tr>
<tr>
<td>Dy</td>
<td>< 0.2525</td>
<td>21</td>
<td>< 0.3875</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Eu</td>
<td>< 0.525</td>
<td>42</td>
<td>< 0.775</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Fe</td>
<td>0.957</td>
<td>28</td>
<td>1.055</td>
<td>20</td>
<td>0.35</td>
</tr>
<tr>
<td>K</td>
<td>72.45</td>
<td>560</td>
<td>17.05</td>
<td>35.5</td>
<td>0.35</td>
</tr>
<tr>
<td>La</td>
<td>< 0.2025</td>
<td>21</td>
<td>< 0.3875</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Li</td>
<td>< 0.1575</td>
<td>13</td>
<td>0.248</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Mg</td>
<td>< 0.525</td>
<td>42</td>
<td>3.41</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Mn</td>
<td>< 0.2625</td>
<td>21</td>
<td>0.806</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Mo</td>
<td>2.415</td>
<td>190</td>
<td>< 0.3875</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Na</td>
<td>15750</td>
<td>1236623</td>
<td>73625</td>
<td>143188</td>
<td>49500</td>
</tr>
<tr>
<td>Ni</td>
<td>< 0.525</td>
<td>42</td>
<td>0.945</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>P</td>
<td>237.3</td>
<td>18842</td>
<td>2.775</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Pb</td>
<td>< 0.525</td>
<td>42</td>
<td>0.775</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Fe</td>
<td>< 3.975</td>
<td>318</td>
<td>< 5.8125</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Rh</td>
<td>< 1.575</td>
<td>127</td>
<td>< 2.325</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Ru</td>
<td>5.775</td>
<td>467</td>
<td>8.325</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Sc</td>
<td>< 0.625</td>
<td>21</td>
<td>< 3.875</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Se</td>
<td>< 1.3125</td>
<td>106</td>
<td>< 1.9375</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Si</td>
<td>37.505</td>
<td>2982</td>
<td>82.15</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Sm</td>
<td>< 7.875</td>
<td>636</td>
<td>< 11.625</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Sr</td>
<td>< 0.07875</td>
<td>6</td>
<td>< 0.11623</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Te</td>
<td>< 7.875</td>
<td>636</td>
<td>< 11.625</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Th</td>
<td>5.25</td>
<td>424</td>
<td>38.75</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ti</td>
<td>< 0.13125</td>
<td>11</td>
<td>0.3565</td>
<td>0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>U</td>
<td>4.5885</td>
<td>388</td>
<td>10.0905</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>V</td>
<td>< 0.2625</td>
<td>21</td>
<td>< 0.3875</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>W</td>
<td>10.5</td>
<td>848</td>
<td>< 15.5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Y</td>
<td>< 0.2035</td>
<td>21</td>
<td>< 0.3875</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Zn</td>
<td>4.89</td>
<td>148</td>
<td>2.79</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Zr</td>
<td>< 0.2035</td>
<td>21</td>
<td>< 0.3875</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

(a) Includes mass in analytical sample
(b) The Na₂O fusion could not be done due to lack of sample. Therefore K and Ni data on the solids are not available.
(c) Mass of Na added in leaching and washing is subtracted.
Table 6.2. Concentrations of the Nonradioactive S-111 Sludge Components in the Untreated Sludge (a)

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration in Sludge, µg/g wet sludge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>$1 \times 10^1 \leq < 4 \times 10^1$</td>
</tr>
<tr>
<td>Al</td>
<td>$1 \times 10^2 \leq < 2 \times 10^2$</td>
</tr>
<tr>
<td>As</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>B</td>
<td>$3 \times 10^1 \leq < 4 \times 10^1$</td>
</tr>
<tr>
<td>Ba</td>
<td>$2 \times 10^1 \leq < 3 \times 10^1$</td>
</tr>
<tr>
<td>Be</td>
<td>< 2</td>
</tr>
<tr>
<td>Bi</td>
<td>$2 \times 10^1 \leq < 3 \times 10^1$</td>
</tr>
<tr>
<td>Ca</td>
<td>$1 \times 10^2 \leq < 2 \times 10^2$</td>
</tr>
<tr>
<td>Cd</td>
<td>$1 \times 10^1 \leq < 2 \times 10^1$</td>
</tr>
<tr>
<td>Ce</td>
<td>$< 3 \times 10^1$</td>
</tr>
<tr>
<td>Co</td>
<td>$1 \times 10^1 \leq < 2 \times 10^1$</td>
</tr>
<tr>
<td>Cr</td>
<td>3×10^2</td>
</tr>
<tr>
<td>Cu</td>
<td>$2 \times 10^1 \leq < 3 \times 10^1$</td>
</tr>
<tr>
<td>Dy</td>
<td>$< 2 \times 10^0$</td>
</tr>
<tr>
<td>Eu</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Fe</td>
<td>2×10^2</td>
</tr>
<tr>
<td>K</td>
<td>$> 2 \times 10^3$</td>
</tr>
<tr>
<td>La</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Li</td>
<td>$1 \times 10^1 \leq < 2 \times 10^1$</td>
</tr>
<tr>
<td>Mg</td>
<td>$1 \times 10^2 \leq < 2 \times 10^2$</td>
</tr>
<tr>
<td>Mn</td>
<td>$4 \times 10^1 \leq < 5 \times 10^1$</td>
</tr>
<tr>
<td>Mo</td>
<td>$2 \times 10^2 \leq < 3 \times 10^2$</td>
</tr>
<tr>
<td>Na</td>
<td>(b)</td>
</tr>
<tr>
<td>Nd</td>
<td>$5 \times 10^1 \leq < 2 \times 10^1$</td>
</tr>
<tr>
<td>Ni</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>P</td>
<td>$1 \times 10^2 \leq < 2 \times 10^2$</td>
</tr>
<tr>
<td>Pb</td>
<td>$3 \times 10^1 \leq < 4 \times 10^1$</td>
</tr>
<tr>
<td>Pd</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Rh</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Ru</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Sb</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Se</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Si</td>
<td>$6 \times 10^2 \leq < 8 \times 10^2$</td>
</tr>
<tr>
<td>Sn</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Sr</td>
<td>$3 \times 10^1 \leq < 4 \times 10^1$</td>
</tr>
<tr>
<td>Te</td>
<td>$< 4 \times 10^1$</td>
</tr>
<tr>
<td>Th</td>
<td>$8 \times 10^1 \leq < 2 \times 10^2$</td>
</tr>
<tr>
<td>Ti</td>
<td>$2 \times 10^1 \leq < 3 \times 10^1$</td>
</tr>
<tr>
<td>Tl</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>U</td>
<td>$< 1 \times 10^1$</td>
</tr>
<tr>
<td>V</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>W</td>
<td>$< 2 \times 10^1$</td>
</tr>
<tr>
<td>Y</td>
<td>3×10^1</td>
</tr>
<tr>
<td>Zn</td>
<td>$< 2 \times 10^1$</td>
</tr>
</tbody>
</table>

(a) Concentrations determined by summing the amount of component found in each process step and dividing by the amount of sludge used in the test component.

(b) Due to the amount of Na added in leaching and washing steps, the Na concentration in the untreated sludge could not be determined.

6.5
Table 6.3. Distribution of Nonradioactive S-111 Sludge Components Between the Various Process Streams

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Wash</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td><27</td>
<td>>14</td>
<td><26</td>
<td><17</td>
<td><17</td>
</tr>
<tr>
<td>Al</td>
<td>9</td>
<td>48</td>
<td>36</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>As</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>B</td>
<td>80<x<83</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td><4</td>
</tr>
<tr>
<td>Ba</td>
<td><16</td>
<td><6</td>
<td><15</td>
<td><10</td>
<td>>53</td>
</tr>
<tr>
<td>Be</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Bi</td>
<td><15</td>
<td>31<x<47</td>
<td>35<x<53</td>
<td><10</td>
<td><9</td>
</tr>
<tr>
<td>Ca</td>
<td>17<x<19</td>
<td>9</td>
<td><9</td>
<td>6<x<7</td>
<td>59<x<65</td>
</tr>
<tr>
<td>Cd</td>
<td><5</td>
<td>70<x<76</td>
<td>15<x<17</td>
<td><3</td>
<td>6<x<7</td>
</tr>
<tr>
<td>Ce</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Co</td>
<td><26</td>
<td>>17</td>
<td><24</td>
<td><17</td>
<td><16</td>
</tr>
<tr>
<td>Cr</td>
<td>18</td>
<td>66</td>
<td>12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cu</td>
<td><21</td>
<td><8</td>
<td>>44</td>
<td><14</td>
<td><13</td>
</tr>
<tr>
<td>Dy</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Eu</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Fe</td>
<td>7</td>
<td>5</td>
<td>38</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>K</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
</tr>
<tr>
<td>La</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Li</td>
<td><28</td>
<td>>11</td>
<td><26</td>
<td><18</td>
<td><17</td>
</tr>
<tr>
<td>Mg</td>
<td><17</td>
<td>27<x<48</td>
<td><16</td>
<td><11</td>
<td>29<x<52</td>
</tr>
<tr>
<td>Mn</td>
<td><4</td>
<td>3<x<4</td>
<td><4</td>
<td><3</td>
<td>86<x<96</td>
</tr>
<tr>
<td>Mo</td>
<td>>77</td>
<td><3</td>
<td><8</td>
<td><6</td>
<td><5</td>
</tr>
<tr>
<td>Na</td>
<td>(c)</td>
<td>(c)</td>
<td>(c)</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>Nd</td>
<td><26</td>
<td>12<x<37</td>
<td><25</td>
<td><17</td>
<td>20<x<63</td>
</tr>
<tr>
<td>Ni</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
</tr>
<tr>
<td>P</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pb</td>
<td><27</td>
<td><10</td>
<td><25</td>
<td><17</td>
<td>>20</td>
</tr>
<tr>
<td>Pd</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Pr</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Ra</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Rb</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Rh</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sc</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Si</td>
<td>47<x<48</td>
<td>25</td>
<td>15</td>
<td><2</td>
<td>12</td>
</tr>
<tr>
<td>Sn</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sr</td>
<td><17</td>
<td><7</td>
<td>27<x<41</td>
<td><11</td>
<td>38<x<59</td>
</tr>
<tr>
<td>Te</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Th</td>
<td><20</td>
<td>>36</td>
<td><19</td>
<td><13</td>
<td><12</td>
</tr>
<tr>
<td>Ti</td>
<td><25</td>
<td>17<x<47</td>
<td><23</td>
<td><16</td>
<td>19<x<53</td>
</tr>
<tr>
<td>Tl</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>U</td>
<td>27</td>
<td>15</td>
<td>10</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>V</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>W</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Y</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Zn</td>
<td>47</td>
<td>17</td>
<td>21</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Zr</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

(a) Analyte was below detection limit for all process streams.
(b) The Na2O fusion could not be done due to lack of sample. Therefore K and Ni data on the solids are not available.
(c) Percentage of Na in each solution could not be tracked because of Na added during testing.
nearly a 2-fold increase in the amount of Al dissolved. The solution decanted from the first leaching step contained 47% of the Al, but if the amount of dissolved Al in the interstitial liquid is included, a total of 59% of the Al was dissolved in the first leaching step.

The first caustic leaching solution was stable for up to 12 days, but a white precipitate had formed after 100 days. Based on published data for gibbsite solubility in aqueous NaOH (LaFemina 1995), the first caustic leaching solution was indeed supersaturated with respect to Al. At 25°C, the solubility for gibbsite is 0.25 m at 2.8 m Na (which was the Na concentration in the leaching solution). The Al concentration of 37,200 µg/mL reported in Table 6.1 corresponds to 1.21 m Al, which is nearly 5 times the thermodynamic solubility at 25°C. Interestingly, the gibbsite solubility is 1.4 m at 2.8 m Na and 100°C. Thus, it appears likely that Al removal in the first caustic leaching step was solubility limited.

Again, because the previous studies with S-104 and S-101 sludges indicated slow Al dissolution for REDOX sludges, the second leaching step for S-111 sludge was conducted for 60 h at 100°C, rather than the usual 5 h. The solution decanted after the second leaching step contained 36% of the Al. Accounting for carry-over of interstitial liquid from the first leaching step and that left in the interstitial liquid after decanting, 30% more Al dissolved in the second leaching step. The data indicate that another 1% of the Al dissolved in the final washing step, so the cumulative Al removal was virtually 100%.

Regarding the behavior of Cr, the initial dilute hydroxide washing removed only 18% of the Cr from the sludge. Spectrophotometry (UV/vis) indicated the presence of Cr(VI) in the dilute hydroxide wash solution, but the presence of Cr(III) could not be ruled out. Caustic leaching significantly increased the amount of Cr removed. The solution decanted in the first leaching step contained 66% of the Cr, but accounting for that contained in the interstitial liquid after decanting, 80% of the Cr was actually dissolved in the first leaching step. Little or no additional Cr dissolution occurred in the subsequent leaching and washing steps. The cumulative Cr removal was 98%. As with Al, kinetics played a significant role in the removal of Cr from the S-111 sludge. During the first leaching step, the Cr concentration increased from 185 µg/mL at 10 h of leaching to 1215 µg/mL at 143 h of leaching, representing nearly a 6.6-fold increase in the amount of Cr dissolved.

The UV/vis spectrum was recorded on a 100-fold dilution of the first caustic leaching solution. Again, UV/vis spectrophotometry indicated that the dissolved Cr was mostly Cr(VI), so the mechanism of Cr removal appeared to involve oxidation from Cr(III) to Cr(VI). The concentration of Cr determined spectrophotometrically as CrO$_4^{2-}$ was 1080 µg/mL, which is slightly less than the value of 1215 µg/mL determined by ICP/AES, but within the 15% experimental uncertainty in the ICP/AES measurement. It could not be determined if the 135 µg/mL difference was due to Cr(III) in solution or simply to analytical uncertainty. Based on the UV/vis spectrum, the Cr(III) concentration in the first leaching solution was less than 490 µg/mL. The spectrophotometric measurements were repeated 166 days after the first leaching solution had first been sampled. (a) In this case, the solution was not diluted before measuring the spectrum. Again, no Cr(III) was detected in the undiluted solution. For the undiluted solution, the

(a) As noted previously, a white precipitate (presumably aluminum hydroxide) had precipitated from the solution during this interval. The solution was filtered through a 0.2-µm membrane before measuring the spectrum.
detection limit for Cr(III) was 25 μg/mL. A 128-fold dilution was made so that the Cr(VI) concentration could be determined again; a value of 1200 μg Cr(VI)/mL was obtained. This value was even closer to the total Cr concentration determined by ICP/AES. But due to the uncertainties in the measurements, it was impossible to determine if this reflected a more accurate measurement, or if some Cr(III) was indeed originally in the leach solution that oxidized over the 166-day period. Also, evaporation could not be ruled out as a reason for the slight increase in the measured Cr(VI) concentration.

The P concentration in the S-111 sludge was quite low (< 0.2 wt % in the wet sludge). Virtually all of the P was removed by dilute hydroxide washing.

Table 6.4 presents the anion concentrations in the various process solutions. The data suggest that no further nitrate, nitrite, sulfate, phosphate, or chloride were removed after the initial dilute hydroxide washing step.

Table 6.5 presents the concentrations of various radioactive sludge components in each process stream, and Table 6.6 presents the distribution of those sludge components between the various process streams. Strontium-90 and 137Cs accounted for most of the activity in the sludge; the TRU content in the sludge was quite low—less than 0.016 μCi/g of wet sludge. About half of the 137Cs was removed by dilute hydroxide washing, and most of the rest was removed by caustic leaching. The 90Sr in the S-111 sludge displayed unusual behavior. The 90Sr concentration in the initial washing step was below the detection limit, which is usually the case for the alkaline Hanford sludges. However, appreciable 90Sr dissolved in the first, and especially, the second caustic leaching steps. The reason for this is not clear. Assuming the LLW glass form will contain 20 wt% Na2O (Orme et al. 1996) with a density of 2.7 metric tons/m³, the LLW form resulting from immobilization of only these solutions would be projected to contain 5 Ci 90Sr/m³. As current plans target a LLW form with less than 20 Ci 90Sr/m³, no 90Sr removal from the S-111 leaching and washing solutions would be required.

Table 6.4. Anion Concentrations in the Various S-111 Process Solutions

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH⁻</td>
<td>Not Determined</td>
<td>32,640</td>
<td>42,500</td>
<td>Not Determined</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>8,100</td>
<td>80</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>2,890</td>
<td>40</td>
<td><20</td>
<td>>80</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>670</td>
<td>30</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>1970</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>F⁻</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>270</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Br⁻</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
</tbody>
</table>

(a) Nitrite was added in this step as part of the washing solution (0.01 M NaOH/0.01 M NaNO₂).
Table 6.5. Concentrations of the Radioactive S-111 Sludge Components in the Various Process Streams

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Wash Solution</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µCi/mL</td>
<td>Activity, µCi</td>
<td>Conc., µCi/mL</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 2.00E-04</td>
<td>< 2.60E-04</td>
<td>< 4.00E-05</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>< 2.00E-04</td>
<td>< 2.60E-04</td>
<td>< 4.00E-05</td>
</tr>
<tr>
<td>241Am+238Pu</td>
<td>< 2.00E-04</td>
<td>< 2.60E-04</td>
<td>< 4.00E-05</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 3.00E-03</td>
<td>< 3.90E-03</td>
<td>< 6.00E-04</td>
</tr>
<tr>
<td>137Cs</td>
<td>2.96E+00</td>
<td>3.85E+00</td>
<td>1.29E-01</td>
</tr>
<tr>
<td>60Co</td>
<td>< 4.00E-05</td>
<td>< 5.20E-05</td>
<td>< 2.00E-05</td>
</tr>
<tr>
<td>199Eu</td>
<td>< 2.00E-04</td>
<td>< 2.60E-04</td>
<td>< 1.00E-04</td>
</tr>
<tr>
<td>152Eu</td>
<td>< 3.00E-03</td>
<td>< 3.90E-03</td>
<td>< 4.00E-04</td>
</tr>
<tr>
<td>90Sr</td>
<td>< 2.00E-02</td>
<td>< 2.60E-02</td>
<td>1.73E-02</td>
</tr>
<tr>
<td>99Tc</td>
<td>2.08E-03</td>
<td>2.70E-03</td>
<td>9.35E-04</td>
</tr>
</tbody>
</table>

Table 6.6. Distribution of Radioactive S-111 Sludge Components Between the Various Process Steams

<table>
<thead>
<tr>
<th>Component</th>
<th>Component Distribution, %<sup>99</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Wash Solution</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 1</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>< 1</td>
</tr>
<tr>
<td>241Am+238Pu</td>
<td>(a)</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 3</td>
</tr>
<tr>
<td>137Cs</td>
<td>48</td>
</tr>
<tr>
<td>60Co</td>
<td>< 1</td>
</tr>
<tr>
<td>152Eu</td>
<td>< 1</td>
</tr>
<tr>
<td>155Eu</td>
<td>< 4</td>
</tr>
<tr>
<td>90Sr</td>
<td>0</td>
</tr>
<tr>
<td>99Tc</td>
<td>9</td>
</tr>
</tbody>
</table>

(a) Analyte was below detection limit for all solutions.
The 99Tc behavior was also interesting. Only 9% of the 99Tc was removed in the initial dilute hydroxide washing step, but caustic leaching resulted in nearly complete 99Tc dissolution. This suggests that most of the 99Tc was either tied up with Al (as pertechnetate) and was released as the Al dissolved, or was present in a lower oxidation state and was oxidized to pertechnetate during the caustic leaching steps (much in the same way Cr was oxidized to Cr(VI) during the leaching steps).

6.2.1 Particle-Size Analysis

As explained in Section 6.1, we were not able to obtain a representative sample of the untreated sludge solids; thus particle-size measurements were only made on the leached solids. Figures 6.2 and 6.3 present the particle-size data for the leached S-111 sludge solids in terms of the number and volume distributions, respectively, both before and after sonicating for 5 min. Previous measurements with

![Graph of Particle Size Distribution](image)

Figure 6.2. Particle-Size Number Distribution for Treated S-111 Sludge Before (a) and After (b) Sonication
Hanford sludges usually indicated that sonicating breaks up some of the larger sludge particles (e.g., see the BY-108 results in Section 4.2). However, in the case of S-111, the volume distribution suggests that sonicating increased the mean particle size from 47.7 μm to 129 μm. Based on the number distribution, sonicating had little effect with the mean particle size being 1.8 μm before sonication and 1.6 μm after. The reason for this unusual behavior is unknown.

6.2.2 Microscopic Analysis

As with the particle-size measurement, only the leached S-111 solids were examined by TEM. Bayerite [Al(OH)₃] and boehmite (AlOOH) were major phases identified in the leached sludge (Figure 6.4). This observation is consistent with the ICP analysis of the residual sludge solids, which revealed Al to be the
most abundant metallic element besides Na (see Table 6.1). Although these were major phases in the leached solids, they represent a very small percentage of the mass of the untreated solids. A mixture of Fe, Cr, and Mn oxides were present in the leached S-111 solids (Figure 6.5). These elements can form a range of compounds with similar crystalline structure, such as MnFe$_2$O$_4$, FeCr$_2$O$_4$, Mn$_2$CrO$_4$, and Mn$_{1.5}$Cr$_{1.5}$O$_4$. The diffraction patterns obtained from the samples are consistent with these phases. Single-crystal UO$_3$ was also in the leached S-111 sludge solids.
Figure 6.5. Mixed Fe, Cr, and Mn Phases in Leached S-111 Sludge
7.0 Tank AN-104 Enhanced Sludge Washing Test

This section presents the results of the ESW test performed on Hanford Tank AN-104 sludge. The sludge sample used in this test was received at PNNL on February 6, 1997; the 222-S laboratory ID for this sample was S96T005974, and the jar number was 12039. This material was a composite from Core 164.

7.1 Experimental

Figure 7.1 summarizes the experimental procedure used in the AN-104 ESW test. The procedure was the same as the baseline ESW test procedure described previously (Lumetta et al. 1996). The mass of solid material remaining after washing portion B1 was very small and could not be measured with certainty. Hence, the weight percent of water-insoluble solids could not be determined, but clearly a large

Figure 7.1. Schematic Representation of the AN-104 ESW Test
percentage of the sludge solid was water soluble. Consequently, the volume of leaching solution required to yield a slurry with 5 wt% undissolved solids in the first leaching step (as called for by the baseline test procedure) was likely less than 1 mL. This volume was too small to work with. Because the volume of slurry available after the initial sampling was ~20 mL, 4.5 mL of 10 M NaOH were added, which should have given an initial hydroxide concentration of ~1.8 M. However, the measured free-hydroxide concentration after the first leaching step was 2.7 M; presumably the additional hydroxide was in the sludge to begin with. The volume for the second leaching step was kept the same as the first leaching step (~25 mL). The undissolved solids concentration in the both the first and second leaching slurries was 0.12 wt%.
Also as a consequence of the small amount of material left after washing and caustic leaching, the residues, as well as the untreated solids sample, were dissolved in their entirety for chemical and radiochemical analysis. An acid-dissolution procedure was used rather than the KOH and Na₂O₂ fusion procedures normally used for dissolving the sludge solids. In each case, the solid sample (the untreated material, the washed solids, or the leached solids) was treated with ~7 mL of aqua regia and evaporated to dryness at 100°C. The treatment with aqua regia was repeated, then the residues were dissolved and diluted to 15 mL with 0.1 M HCl.

7.2 Results and Discussion

7.2.1 Washing With Dilute NaOH

Interpreting the data from the dilute hydroxide washing of AN-104 sludge was complicated by the fact that very little residual solids remained after washing. To determine the amount of each component removed, the amount of each component in the washed and untreated solids was normalized to the amount of Fe present. The concentrations (gram of component/g of Fe) in the washed and untreated solids were then compared to determine how much of the component was removed by washing. This treatment of the data assumes that no appreciable amount of Fe is removed by dilute hydroxide washing. This assumption is supported by the fact that the Fe concentration in the wash solution was only 0.1 μg/mL. Table 7.1 summarizes the behavior of most of the nonradioactive sludge components during washing of the AN-104 sludge with 0.01 M NaOH. Sodium was essentially completely removed by washing with 0.01 M NaOH. Similarly, 99% of the Al and 98% of the P were removed by dilute hydroxide washing. These observations suggest that the AN-104 solids consist primarily of “salt cake,” which has been predicted from tank historical records (Agnew 1997). On the other hand, dilute hydroxide washing removed only 34% of the Cr.

Table 7.2 summarizes the behavior of the radioactive sludge components during washing of the AN-104 sludge with 0.01 M NaOH. Studies with most other Hanford tank sludges have consistently indicated that the TRU elements are very insoluble in 0.01 M NaOH. However, when analyzed as above in terms of radioactivity per gram of Fe in the washed versus the untreated solids, the AN-104 washing data suggested that a significant fraction (38 to 58%) of the TRU radioisotopes were removed from the sludge solids. But all Pu, Am, and Cm isotopes were below the detection limit in the wash solution. Assuming the LLW glass form will contain 20 wt% Na₂O (Orme et al. 1996), with a density of 2.7 metric tons/m³, the LLW form resulting from immobilizing only the wash solution would be projected to contain <3.1 nCi TRU/g. This would be within the 10 nCi/g NRC Class A LLW limit for TRU. Analyzing the data in terms of the maximum amount of a given isotope in the wash solution, versus the total amount present in the solids that were washed, indicated that <18% of the TRU elements (based on the total alpha activity) were washed. Similar observations were made for ⁶⁰Co, ⁹⁰Sr, and ¹⁵⁴,¹⁵⁵Eu. Both methods of analyzing the data indicated essentially complete removal of ¹³⁷Cs and ⁹⁹Tc by dilute hydroxide washing.
<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution Conc., g/mL</th>
<th>Washed Solids Conc., µg/mL</th>
<th>g/Fe</th>
<th>Untreated Solids Conc., µg/mL</th>
<th>g/Fe</th>
<th>Removed, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>< 0.0</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Al</td>
<td>951</td>
<td>30.4</td>
<td>3</td>
<td>791</td>
<td>288</td>
<td>99</td>
</tr>
<tr>
<td>As</td>
<td>< 0.3</td>
<td>< 0.25</td>
<td>< 0.5</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>B</td>
<td>1.3</td>
<td>0.11</td>
<td>23.7</td>
<td>9</td>
<td></td>
<td>(c)</td>
</tr>
<tr>
<td>Ba</td>
<td>< 0.0</td>
<td>0.53</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Be</td>
<td>< 0.0</td>
<td>0.02</td>
<td>< 0.02</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Bi</td>
<td>< 0.1</td>
<td>0.42</td>
<td>0.29</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Ca</td>
<td>1.2</td>
<td>26.8</td>
<td>18.2</td>
<td>7</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>< 0.0</td>
<td>1.35</td>
<td>0.66</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Ce</td>
<td>< 0.2</td>
<td>< 0.20</td>
<td>< 0.40</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Co</td>
<td>< 0.1</td>
<td>0.18</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Cr</td>
<td>10.7</td>
<td>164</td>
<td>75.5</td>
<td>27</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.93</td>
<td>0.67</td>
<td>0</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>Dy</td>
<td>< 0.1</td>
<td>< 0.05</td>
<td>< 0.10</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Eu</td>
<td>< 0.1</td>
<td>< 0.10</td>
<td>< 0.20</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Fe</td>
<td>0.1</td>
<td>9.08</td>
<td>2.75</td>
<td>1</td>
<td></td>
<td>(c)</td>
</tr>
<tr>
<td>K</td>
<td>154</td>
<td>< 2</td>
<td>188</td>
<td>68</td>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>< 0.1</td>
<td>0.34</td>
<td>0.22</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Li</td>
<td>0.6</td>
<td>0.04</td>
<td>0.63</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Mg</td>
<td>< 0.1</td>
<td>1.46</td>
<td>2.00</td>
<td>1</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>< 0.1</td>
<td>2.34</td>
<td>1.13</td>
<td>0</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Mo</td>
<td>1.9</td>
<td>< 0.05</td>
<td>1.37</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Na</td>
<td>10028</td>
<td>107</td>
<td>1940</td>
<td>3752</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>< 0.1</td>
<td>0.57</td>
<td>0.44</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Ni</td>
<td>0.2</td>
<td>10.5</td>
<td>6.77</td>
<td>2</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>56.0</td>
<td>2.09</td>
<td>36.80</td>
<td>13</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>< 0.1</td>
<td>3.58</td>
<td>2.00</td>
<td>1</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>< 0.8</td>
<td>< 0.8</td>
<td>< 1.5</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Rh</td>
<td>< 0.3</td>
<td>< 0.30</td>
<td>< 0.60</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Ru</td>
<td>< 1.2</td>
<td>< 1.1</td>
<td>< 2.2</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Sb</td>
<td>< 0.5</td>
<td>< 0.50</td>
<td>< 1.00</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Se</td>
<td>< 0.3</td>
<td>< 0.25</td>
<td>< 0.50</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Si</td>
<td>18.2</td>
<td>< 0.50</td>
<td>7.900</td>
<td>3</td>
<td>3</td>
<td>(c)</td>
</tr>
<tr>
<td>Sn</td>
<td>< 1.6</td>
<td>< 1.5</td>
<td>< 3.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Sr</td>
<td>< 0.0</td>
<td>0.14</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Te</td>
<td>< 1.6</td>
<td>< 1.5</td>
<td>< 3.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Th</td>
<td>< 1.1</td>
<td>< 1.0</td>
<td>< 2.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Ti</td>
<td>< 0.0</td>
<td>0.03</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
<tr>
<td>Tl</td>
<td>< 0.5</td>
<td>< 0.50</td>
<td>< 1.00</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>U</td>
<td>< 0.1</td>
<td>< 0.05</td>
<td>< 0.10</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>W</td>
<td>< 2.1</td>
<td>< 2</td>
<td>< 4.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Y</td>
<td>< 0.1</td>
<td>0.07</td>
<td>< 0.10</td>
<td>< 0.0</td>
<td>< 0.0</td>
<td>(c)</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>6.60</td>
<td>4.44</td>
<td>2</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>< 0.1</td>
<td>1.15</td>
<td>0.23</td>
<td>0</td>
<td>0</td>
<td>(c)</td>
</tr>
</tbody>
</table>

(a) Concentration in 15 mL solution obtained by dissolving the entire washed solids residue in acid.
(b) Concentration in 15 mL solution obtained by dissolving a 0.455-g portion of untreated solids in acid.
(c) Value not reliable because the concentration in either the washed or untreated solids was near the detection limit.
(d) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.
Table 7.2. Results of Tank AN-104 Sludge Washing: Radioactive Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>Washed Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration</td>
<td>Concentration</td>
</tr>
<tr>
<td></td>
<td>Conc., (\mu\text{Ci/mL})</td>
<td>Dissolved, (\mu\text{Ci/g Solids})</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 2.10E-04</td>
<td>< 7.24E-03</td>
</tr>
<tr>
<td>({239,240})Pu</td>
<td>< 2.10E-04</td>
<td>< 7.24E-03</td>
</tr>
<tr>
<td>({241})Am+(239)Pu</td>
<td>< 2.10E-04</td>
<td>< 7.24E-03</td>
</tr>
<tr>
<td>({244})Am(g)</td>
<td>< 2.10E-02</td>
<td>< 7.24E-01</td>
</tr>
<tr>
<td>(^{137})Cs</td>
<td>1.75E+01</td>
<td>6.05E+02</td>
</tr>
<tr>
<td>(^{60})Co</td>
<td>< 2.10E-04</td>
<td>< 7.24E-03</td>
</tr>
<tr>
<td>(^{152})Eu</td>
<td>< 9.45E-04</td>
<td>< 3.26E-02</td>
</tr>
<tr>
<td>(^{154})Eu</td>
<td>< 2.10E-02</td>
<td>< 7.24E-01</td>
</tr>
<tr>
<td>(^{90})Sr</td>
<td>< 2.10E-02</td>
<td>< 7.24E-01</td>
</tr>
<tr>
<td>(^{99})Tc</td>
<td>5.23E+03</td>
<td>1.80E-01</td>
</tr>
<tr>
<td>(^{248,244})Cm</td>
<td>< 2.10E-04</td>
<td>< 7.24E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Based on</th>
<th>Based on Amount in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., (\mu\text{Ci/mL})</td>
<td>Conc., (\mu\text{Ci/g})</td>
<td>(\mu\text{Ci/g Fe})</td>
<td>Wash Solution</td>
</tr>
<tr>
<td>Total Alpha</td>
<td>1.24E-03</td>
<td>4.09E-02</td>
<td>4.51E-04</td>
<td>38</td>
</tr>
<tr>
<td>({239,240})Pu</td>
<td>2.15E-04</td>
<td>7.09E-03</td>
<td>7.82E-05</td>
<td>58</td>
</tr>
<tr>
<td>({241})Am+(239)Pu</td>
<td>9.46E-04</td>
<td>3.12E-02</td>
<td>3.44E-04</td>
<td>48</td>
</tr>
<tr>
<td>(^{244})Am(g)</td>
<td>< 3.00E-02</td>
<td>< 9.89E-01</td>
<td>< 1.09E-02</td>
<td>(c)</td>
</tr>
<tr>
<td>(^{137})Cs</td>
<td>1.82E+01</td>
<td>6.00E+02</td>
<td>6.62E+00</td>
<td>100</td>
</tr>
<tr>
<td>(^{60})Co</td>
<td>1.07E-03</td>
<td>3.33E-02</td>
<td>3.89E-04</td>
<td>53</td>
</tr>
<tr>
<td>(^{152})Eu</td>
<td>3.71E-03</td>
<td>1.22E-01</td>
<td>1.33E-03</td>
<td>58</td>
</tr>
<tr>
<td>(^{154})Eu</td>
<td>< 2.00E-02</td>
<td>< 6.59E-01</td>
<td>< 7.27E-03</td>
<td>(c)</td>
</tr>
<tr>
<td>(^{90})Sr</td>
<td>1.48E+00</td>
<td>4.88E+01</td>
<td>5.38E-01</td>
<td>41</td>
</tr>
<tr>
<td>(^{99})Tc</td>
<td>4.47E-03</td>
<td>1.47E-01</td>
<td>1.63E-03</td>
<td>98</td>
</tr>
<tr>
<td>(^{248,244})Cm</td>
<td>7.85E-05</td>
<td>2.59E-03</td>
<td>2.85E-05</td>
<td>-137</td>
</tr>
</tbody>
</table>

(a) Concentration in 15 mL of solution obtained by dissolving the entire washed solids residue in acid.
(b) Concentration in 15 mL of solution obtained by dissolving a 0.455-g portion of untreated solids in acid.
(c) Value not reliable because the concentration in the untreated solids was below the detection limit.

7.2.2 Caustic Leaching

Table 7.3 presents the concentrations of most of the nonradioactive sludge components in each process stream, and Table 7.4 presents the distribution of those sludge components between the various process streams. The values presented in Table 7.4 are not adjusted for material contained in the interstitial liquid, but rather represent the amount of each component contained in the liquid that was decanted in a given step (or in the residual solid). For most of the minor sludge components, the data are not particularly meaningful due to the very small amount of those materials in the residual solids. However, the data are informative for the key components Al, Cr, P, and Na.
<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., ppm</td>
<td>Mass, mg/1</td>
<td>Conc., ppm</td>
<td>Mass, mg/1</td>
</tr>
<tr>
<td>Ag</td>
<td>< 3.75</td>
<td>< 81</td>
<td>< 0.16</td>
<td>< 4</td>
</tr>
<tr>
<td>Al</td>
<td>7260</td>
<td>156816</td>
<td>255</td>
<td>5006</td>
</tr>
<tr>
<td>As</td>
<td>< 37.59</td>
<td>< 810</td>
<td>< 1.63</td>
<td>< 36</td>
</tr>
<tr>
<td>B</td>
<td>< 7.50</td>
<td>< 162</td>
<td>< 0.33</td>
<td>< 7</td>
</tr>
<tr>
<td>Ba</td>
<td>< 1.500</td>
<td>< 32</td>
<td>< 0.665</td>
<td>< 1</td>
</tr>
<tr>
<td>Be</td>
<td>< 1.500</td>
<td>< 32</td>
<td>< 0.665</td>
<td>< 1</td>
</tr>
<tr>
<td>Bi</td>
<td>< 15.00</td>
<td>< 324</td>
<td>< 0.65</td>
<td>< 14</td>
</tr>
<tr>
<td>Ca</td>
<td>< 37.59</td>
<td>< 810</td>
<td>3.38</td>
<td>74</td>
</tr>
<tr>
<td>Cd</td>
<td>< 2.25</td>
<td>< 49</td>
<td>< 0.10</td>
<td>< 2</td>
</tr>
<tr>
<td>Ce</td>
<td>< 30</td>
<td>< 648</td>
<td>1.30</td>
<td>29</td>
</tr>
<tr>
<td>Co</td>
<td>< 7.50</td>
<td>< 162</td>
<td>< 0.33</td>
<td>< 7</td>
</tr>
<tr>
<td>Cr</td>
<td>162</td>
<td>3499</td>
<td>91</td>
<td>1965</td>
</tr>
<tr>
<td>Cu</td>
<td>< 3.75</td>
<td>< 81</td>
<td>0.72</td>
<td>16</td>
</tr>
<tr>
<td>Dy</td>
<td>< 7.50</td>
<td>< 162</td>
<td>< 0.33</td>
<td>< 7</td>
</tr>
<tr>
<td>Eu</td>
<td>< 15.00</td>
<td>< 324</td>
<td>< 0.65</td>
<td>< 14</td>
</tr>
<tr>
<td>Fe</td>
<td>< 3.8</td>
<td>< 81</td>
<td>0.6</td>
<td>12</td>
</tr>
<tr>
<td>K</td>
<td>1170</td>
<td>25272</td>
<td>33.8</td>
<td>744</td>
</tr>
<tr>
<td>La</td>
<td>< 7.50</td>
<td>< 162</td>
<td>< 0.33</td>
<td>< 7</td>
</tr>
<tr>
<td>Li</td>
<td>6.00</td>
<td>130</td>
<td>0.38</td>
<td>8</td>
</tr>
<tr>
<td>Mg</td>
<td>< 15.00</td>
<td>< 324</td>
<td>< 0.65</td>
<td>< 14</td>
</tr>
<tr>
<td>Mn</td>
<td>< 7.50</td>
<td>< 162</td>
<td>< 0.33</td>
<td>< 7</td>
</tr>
<tr>
<td>Mo</td>
<td>13.50</td>
<td>292</td>
<td>< 0.33</td>
<td>< 7</td>
</tr>
<tr>
<td>Na</td>
<td>128100</td>
<td>27669</td>
<td>74620</td>
<td>1641640</td>
</tr>
<tr>
<td>Nd</td>
<td>< 15.00</td>
<td>< 324</td>
<td>< 0.65</td>
<td>< 14</td>
</tr>
<tr>
<td>Ni</td>
<td>< 4.50</td>
<td>< 97</td>
<td>0.6</td>
<td>13</td>
</tr>
<tr>
<td>P</td>
<td>406</td>
<td>8770</td>
<td>12</td>
<td>261</td>
</tr>
<tr>
<td>Pb</td>
<td>< 15.00</td>
<td>< 324</td>
<td>2.34</td>
<td>51</td>
</tr>
<tr>
<td>Pd</td>
<td>< 112.20</td>
<td>< 2450</td>
<td>4.88</td>
<td>107</td>
</tr>
<tr>
<td>Rh</td>
<td>< 45.00</td>
<td>< 972</td>
<td>1.95</td>
<td>43</td>
</tr>
<tr>
<td>Ru</td>
<td>< 165.00</td>
<td>< 3564</td>
<td>7.15</td>
<td>157</td>
</tr>
<tr>
<td>Sb</td>
<td>< 75.00</td>
<td>< 1620</td>
<td>3.25</td>
<td>72</td>
</tr>
<tr>
<td>Se</td>
<td>< 37.50</td>
<td>< 810</td>
<td>1.63</td>
<td>36</td>
</tr>
<tr>
<td>Si</td>
<td>< 75</td>
<td>< 1620</td>
<td>57.5</td>
<td>1264</td>
</tr>
<tr>
<td>Sn</td>
<td>< 225.00</td>
<td>< 4860</td>
<td>0.75</td>
<td>215</td>
</tr>
<tr>
<td>Sr</td>
<td>< 2.25</td>
<td>< 49</td>
<td>0.10</td>
<td>2</td>
</tr>
<tr>
<td>Te</td>
<td>< 225.00</td>
<td>< 4860</td>
<td>9.75</td>
<td>215</td>
</tr>
<tr>
<td>Th</td>
<td>< 15.00</td>
<td>< 3240</td>
<td>6.5</td>
<td>143</td>
</tr>
<tr>
<td>Ti</td>
<td>< 3.75</td>
<td>< 81</td>
<td>0.16</td>
<td>4</td>
</tr>
<tr>
<td>Tl</td>
<td>< 7.50</td>
<td>< 1620</td>
<td>3.25</td>
<td>72</td>
</tr>
<tr>
<td>U<sup>a</sup></td>
<td>14.600</td>
<td>315</td>
<td>7.31</td>
<td>161</td>
</tr>
<tr>
<td>V</td>
<td>< 7.50</td>
<td>< 162</td>
<td>< 0.35</td>
<td>< 7</td>
</tr>
<tr>
<td>W</td>
<td>< 300</td>
<td>< 6480</td>
<td>13</td>
<td>286</td>
</tr>
<tr>
<td>Y</td>
<td>< 7.50</td>
<td>< 162</td>
<td>< 0.33</td>
<td>< 7</td>
</tr>
<tr>
<td>Zn</td>
<td>< 7.50</td>
<td>< 162</td>
<td>1.18</td>
<td>26</td>
</tr>
<tr>
<td>Zr</td>
<td>< 7.50</td>
<td>< 162</td>
<td>0.51</td>
<td>11</td>
</tr>
</tbody>
</table>

(a) Mass of material present in the solution denoted during the indicated step.
(b) Adjusted for the amount (2,772,570 ppm) of Na added as NaOH.
(c) Uranium was determined by laser fluorimetry; all other elements were determined by ICP/AES.
Table 7.4. Distribution of Nonradioactive AN-104 Sludge Components Between Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
<th>Leached Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td><93</td>
<td><4</td>
<td><1</td>
<td>>2</td>
</tr>
<tr>
<td>Al</td>
<td>96</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>As</td>
<td><94</td>
<td><4</td>
<td><1</td>
<td>>1</td>
</tr>
<tr>
<td>B</td>
<td><93</td>
<td><4</td>
<td><1</td>
<td>>2</td>
</tr>
<tr>
<td>Ba</td>
<td><47</td>
<td><2</td>
<td>0</td>
<td>>50</td>
</tr>
<tr>
<td>Be</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Bi</td>
<td><89</td>
<td><4</td>
<td><1</td>
<td>>6</td>
</tr>
<tr>
<td>Ca</td>
<td><34</td>
<td>3 < x < 5</td>
<td>1</td>
<td>62 < x < 94</td>
</tr>
<tr>
<td>Cd</td>
<td><35</td>
<td><2</td>
<td>0</td>
<td>>63</td>
</tr>
<tr>
<td>Ce</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Co</td>
<td><89</td>
<td><4</td>
<td><1</td>
<td>>6</td>
</tr>
<tr>
<td>Cr</td>
<td>39</td>
<td>22</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>Cs</td>
<td><65</td>
<td>13 < x < 37</td>
<td>3 < x < 7</td>
<td>19 < x < 56</td>
</tr>
<tr>
<td>Dy</td>
<td><94</td>
<td><4</td>
<td><1</td>
<td>>1</td>
</tr>
<tr>
<td>Eu</td>
<td><94</td>
<td><4</td>
<td><1</td>
<td>>1</td>
</tr>
<tr>
<td>Fe</td>
<td><11</td>
<td>2</td>
<td>0</td>
<td>87 < x < 98</td>
</tr>
<tr>
<td>K</td>
<td>97</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>La</td>
<td><84</td>
<td><4</td>
<td><1</td>
<td>>12</td>
</tr>
<tr>
<td>Li</td>
<td>93</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mg</td>
<td><90</td>
<td><4</td>
<td><1</td>
<td>>6</td>
</tr>
<tr>
<td>Mn</td>
<td><50</td>
<td><2</td>
<td>0</td>
<td>>48</td>
</tr>
<tr>
<td>Mo</td>
<td>>97</td>
<td><2</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td>Na</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>70</td>
</tr>
<tr>
<td>Nd</td>
<td><85</td>
<td><4</td>
<td><1</td>
<td>>10</td>
</tr>
<tr>
<td>Ni</td>
<td><15</td>
<td>2</td>
<td>1</td>
<td>82 < x < 97</td>
</tr>
<tr>
<td>P</td>
<td>97</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pb</td>
<td><78</td>
<td>12 < x < 57</td>
<td>1</td>
<td>9 < x < 43</td>
</tr>
<tr>
<td>Pd</td>
<td><86</td>
<td><4</td>
<td><1</td>
<td>>9</td>
</tr>
<tr>
<td>Rh</td>
<td><94</td>
<td><4</td>
<td><1</td>
<td>>1</td>
</tr>
<tr>
<td>Ru</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sb</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Se</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Si</td>
<td><55</td>
<td>43 < x < 94</td>
<td>3 < x < 6</td>
<td>0</td>
</tr>
<tr>
<td>Sn</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Sr</td>
<td><73</td>
<td><3</td>
<td><1</td>
<td>>23</td>
</tr>
<tr>
<td>Te</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Th</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Ti</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>U</td>
<td>28</td>
<td>14</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>V</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>W</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Y</td>
<td><92</td>
<td><4</td>
<td><1</td>
<td>>3</td>
</tr>
<tr>
<td>Zn</td>
<td><57</td>
<td>9 < x < 21</td>
<td>3 < x < 7</td>
<td>31 < x < 72</td>
</tr>
<tr>
<td>Zr</td>
<td><60</td>
<td>4 < x < 10</td>
<td><1</td>
<td>36 < x < 90</td>
</tr>
</tbody>
</table>

(a) Analyte was below detection limit for all process streams.
(b) Amount of Na in residue was determined by comparing the amount of Na in the untreated solid to that in the leached solid.
Since dilute hydroxide washing removed 99% of the Al, it was not surprising that caustic leaching removed Al efficiently. Leaching with caustic appeared to remove most of the small Al fraction not readily removed by dilute hydroxide washing. The Al in the caustic-leached solids represented only 0.3% of the total Al. Accounting for the Al in the interstitial liquid after decanting the first leaching solution, all of the Al dissolution occurred in the first leaching step. Similarly, caustic leaching helped to remove the small amount of water-insoluble P present in the AN-104 sludge, with only 0.3% of the P remaining in the residue. Again, the P that was removed was dissolved in the first leaching step. The 7% residual Na was likely due to incomplete washing of the added sodium from the leached solids.

Caustic leaching significantly improved Cr removal. The cumulative Cr removal was 63% for the caustic leaching and subsequent washing steps. Hence, caustic leaching nearly doubled the amount of Cr removed from the AN-104 sludge (only 34% was removed by dilute hydroxide washing). In this case, significant Cr was dissolved in the second leaching step. Accounting for the interstitial liquid volumes, 41% of the Cr dissolved during the first leaching step, while 22% dissolved in the second leaching step.

The data were also analyzed in terms of grams of component per gram of Fe in the untreated and caustic-leached solids (Table 7.5). The results of this analysis were in general agreement with those in Table 7.4, except that higher Cr and Na removals were indicated.

Table 7.6 summarizes the mass recoveries achieved for the various elements analyzed by ICP/AES and for U, which was determined by laser fluorimetry. For the minor components, the mass recoveries tended to be poor, which was likely because the residual solids contained only a small amount of these elements. Mass recoveries for Cr, Na, and U were all good. But those for Al, Fe, and P were somewhat high.

Table 7.7 presents the concentrations of the various anions in each process solution. Also listed are the amount of each anion in solution as a function of the amount of sludge solids treated. For the most part, the quantity of the anions in solution during the caustic leaching and subsequent washing steps were the same as those in the dilute hydroxide washing step; i.e., caustic leaching did not result in significantly improved removal. However, the amount of sulfate dissolved increased by ~ 25% upon leaching with caustic, suggesting some improved removal for that component.

Table 7.5. Results of AN-104 Caustic Leaching Based on Iron Normalization Procedure

<table>
<thead>
<tr>
<th>Component</th>
<th>Leached Solids</th>
<th>Untreated Solids</th>
<th>Removed, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL (a)</td>
<td>g/g Fe</td>
<td>Conc., µg/mL (b)</td>
</tr>
<tr>
<td>Al</td>
<td>33.3</td>
<td>1</td>
<td>791</td>
</tr>
<tr>
<td>Cr</td>
<td>215</td>
<td>5</td>
<td>75.5</td>
</tr>
<tr>
<td>Fe</td>
<td>42.4</td>
<td>1</td>
<td>2.75</td>
</tr>
<tr>
<td>Na</td>
<td>53.0</td>
<td>1</td>
<td>10400</td>
</tr>
<tr>
<td>P</td>
<td>1.64</td>
<td>0</td>
<td>36.8</td>
</tr>
</tbody>
</table>

(a) Concentration in 15 mL of solution obtained by dissolving the entire washed solids residue in acid.
(b) Concentration in 15 mL of solution obtained by dissolving a 0.455-g portion of untreated solids in acid.

7.8
Table 7.6. Concentrations of the Nonradioactive AN-104 Sludge Components in the Initial Sludge Solids: Results of the Caustic Leaching Portion of the Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Summation Method(b)</th>
<th>Direct Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>< 21</td>
<td>2</td>
</tr>
<tr>
<td>Al</td>
<td>40031</td>
<td>26077</td>
</tr>
<tr>
<td>As</td>
<td>< 212</td>
<td>< 16</td>
</tr>
<tr>
<td>B</td>
<td>< 43</td>
<td>781</td>
</tr>
<tr>
<td>Ba</td>
<td>8 < x < 17</td>
<td>10</td>
</tr>
<tr>
<td>Be</td>
<td>< 8</td>
<td>< 1</td>
</tr>
<tr>
<td>Bi</td>
<td>5 < x < 89</td>
<td>10</td>
</tr>
<tr>
<td>Ca</td>
<td>383 < x < 582</td>
<td>600</td>
</tr>
<tr>
<td>Cd</td>
<td>22 < x < 34</td>
<td>22</td>
</tr>
<tr>
<td>Ce</td>
<td>< 168</td>
<td>< 13</td>
</tr>
<tr>
<td>Co</td>
<td>3 < x < 45</td>
<td>4</td>
</tr>
<tr>
<td>Cr</td>
<td>2189</td>
<td>2489</td>
</tr>
<tr>
<td>Cu</td>
<td>10 < x < 30</td>
<td>22</td>
</tr>
<tr>
<td>Dy</td>
<td>< 42</td>
<td>< 3</td>
</tr>
<tr>
<td>Eu</td>
<td>< 84</td>
<td>< 7</td>
</tr>
<tr>
<td>Fe</td>
<td>159 < x < 179</td>
<td>91</td>
</tr>
<tr>
<td>K</td>
<td>6376 < x < 6399</td>
<td>6198</td>
</tr>
<tr>
<td>La</td>
<td>6 < x < 48</td>
<td>7</td>
</tr>
<tr>
<td>Li</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td>Mg</td>
<td>5 < x < 89</td>
<td>66</td>
</tr>
<tr>
<td>Mn</td>
<td>38 < x < 80</td>
<td>37</td>
</tr>
<tr>
<td>Mo</td>
<td>38 < x < 80</td>
<td>45</td>
</tr>
<tr>
<td>Na</td>
<td>42884</td>
<td>342857</td>
</tr>
<tr>
<td>Nd</td>
<td>9 < x < 93</td>
<td>15</td>
</tr>
<tr>
<td>Ni</td>
<td>138 < x < 162</td>
<td>223</td>
</tr>
<tr>
<td>P</td>
<td>2224</td>
<td>1213</td>
</tr>
<tr>
<td>Pb</td>
<td>22 < x < 102</td>
<td>66</td>
</tr>
<tr>
<td>Pd</td>
<td>< 689</td>
<td>< 49</td>
</tr>
<tr>
<td>Rh</td>
<td>< 255</td>
<td>< 20</td>
</tr>
<tr>
<td>Ru</td>
<td>< 925</td>
<td>< 73</td>
</tr>
<tr>
<td>Sb</td>
<td>< 420</td>
<td>< 33</td>
</tr>
<tr>
<td>Se</td>
<td>< 210</td>
<td>< 16</td>
</tr>
<tr>
<td>Si</td>
<td>329 < x < 728</td>
<td>260</td>
</tr>
<tr>
<td>Sn</td>
<td>< 1261</td>
<td>< 99</td>
</tr>
<tr>
<td>Sr</td>
<td>4 < x < 16</td>
<td>3</td>
</tr>
<tr>
<td>Te</td>
<td>< 1261</td>
<td>< 99</td>
</tr>
<tr>
<td>Th</td>
<td>< 841</td>
<td>< 66</td>
</tr>
<tr>
<td>Ti</td>
<td>< 21</td>
<td>2</td>
</tr>
<tr>
<td>Tl</td>
<td>< 420</td>
<td>< 33</td>
</tr>
<tr>
<td>U</td>
<td>274</td>
<td>262</td>
</tr>
<tr>
<td>V</td>
<td>< 42</td>
<td>< 3</td>
</tr>
<tr>
<td>W</td>
<td>< 1681</td>
<td>< 132</td>
</tr>
<tr>
<td>Y</td>
<td>< 43</td>
<td>< 3</td>
</tr>
<tr>
<td>Zn</td>
<td>30 < x < 70</td>
<td>146</td>
</tr>
<tr>
<td>Zr</td>
<td>27 < x < 67</td>
<td>8</td>
</tr>
</tbody>
</table>

(a) The value was determined by summing the amount of a given component in the caustic leaching solutions, the subsequent washing solutions, and the leached solids; the total concentration was then determined by dividing the sum by the amount of solids processed.
Table 7.7. Anion Concentrations in the Various AN-104 Process Solutions

<table>
<thead>
<tr>
<th>Component</th>
<th>Wash Solution</th>
<th>First Leach Solution</th>
<th>Second Leach Solution</th>
<th>Final Wash Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µg/mL</td>
<td>µg/g sludge solids<sup>a</sup></td>
<td>Conc., µg/mL</td>
<td>µg/g sludge solids<sup>a</sup></td>
</tr>
<tr>
<td>OH<sup>-</sup></td>
<td>Not Determined</td>
<td>46,100</td>
<td>N/A<sup>b</sup></td>
<td>48,600</td>
</tr>
<tr>
<td>NO<sub>3</sub><sup>-</sup></td>
<td>4,950</td>
<td>1,072</td>
<td>30,000</td>
<td>158,824</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>2,800</td>
<td>95,573</td>
<td>17,000</td>
<td>90,000</td>
</tr>
<tr>
<td>PO<sub>4</sub><sup>3-</sup></td>
<td>140</td>
<td>8,829</td>
<td><750</td>
<td><3980</td>
</tr>
<tr>
<td>SO<sub>4</sub><sup>-</sup></td>
<td>500</td>
<td>17,245</td>
<td>4000</td>
<td>21,176</td>
</tr>
<tr>
<td>F<sup>-</sup></td>
<td>41</td>
<td>1,414</td>
<td><375</td>
<td><1990</td>
</tr>
<tr>
<td>Cl<sup>-</sup></td>
<td>195</td>
<td>6,726</td>
<td>1300</td>
<td>6,882</td>
</tr>
<tr>
<td>Br<sup>-</sup></td>
<td><25</td>
<td><860</td>
<td><375</td>
<td><1990</td>
</tr>
</tbody>
</table>

^a Amount of component in solution per gr m of sludge solids processed.
^b Hydroxide added as NaOH.
^c Nitrite was added in this step as part of the washing solution (0.01 M NaOH/0.01 M NaNO₂).

Table 7.8 presents the concentrations of various radioactive sludge components in each process stream, and Table 7.9 presents the distribution of those sludge components between the various process streams. As was the case with the dilute NaOH wash, ¹³⁷Cs and ⁹⁹Tc were the primary radioisotopes detected in the leach and wash solutions; however, some ⁹⁰Sr was also detected in the two caustic leaching solutions. Comparable to what was observed for the dilute NaOH wash, caustic leaching removed 99% of the ⁹⁹Tc and virtually all of the ¹³⁷Cs. The amount of ⁹⁰Sr in the caustic leaching solutions is not expected to present a problem. Assuming the LLW glass form will contain 20 wt% Na₂O, with a density of 2.7 metric tons/m³, the resulting LLW form would be projected to contain 0.35 Ci ⁹⁰Sr/m³, which is well within the NRC Class C LLW limit of 7000 Ci/m³ and the current planning target of 20 Ci/m³.

Table 7.10 summarizes the mass recoveries achieved for the various radionuclides during the caustic leaching portion of the test. Excellent mass recoveries were obtained for ¹³⁷Cs and ⁹⁰Sr, but that for ⁹⁹Tc and the total alpha activity were high. The recovery for ^{241,244}Cm was very high, but this is a relatively minor component, and the high recovery is likely due to analytical uncertainty.
Table 7.8. Concentrations of the Radioactive AN-104 Sludge Components in the Various Process Streams During Caustic Leaching

<table>
<thead>
<tr>
<th>Component</th>
<th>Conc., Activity,</th>
<th>Activity,</th>
<th>Conc., Activity,</th>
<th>Activity,</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc., µCi/mL</td>
<td>µCi/g</td>
<td>Conc., µCi/mL</td>
<td>µCi/g</td>
</tr>
<tr>
<td>First Leach Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Alpha</td>
<td>< 5.00E-04</td>
<td>< 1.08E-02</td>
<td>< 1.17E-04</td>
<td>< 2.57E-03</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>< 5.00E-04</td>
<td>< 1.08E-02</td>
<td>< 1.17E-04</td>
<td>< 2.57E-03</td>
</tr>
<tr>
<td>241Am+238Pu</td>
<td>< 5.00E-04</td>
<td>< 1.08E-02</td>
<td>< 1.17E-04</td>
<td>< 2.57E-03</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>< 1.00E-01</td>
<td>< 2.16E+00</td>
<td>< 1.17E-02</td>
<td>< 2.57E-01</td>
</tr>
<tr>
<td>137Cs</td>
<td>1.09E+02</td>
<td>2.35E+03</td>
<td>3.89E+00</td>
<td>8.55E+01</td>
</tr>
<tr>
<td>60Co</td>
<td>< 4.00E-03</td>
<td>< 8.64E-02</td>
<td>< 2.60E-04</td>
<td>< 5.72E-03</td>
</tr>
<tr>
<td>154Eu</td>
<td>< 8.00E-03</td>
<td>< 1.73E-01</td>
<td>< 5.20E-04</td>
<td>< 1.14E-02</td>
</tr>
<tr>
<td>155Eu</td>
<td>< 8.00E-02</td>
<td>< 1.73E+00</td>
<td>< 7.80E-03</td>
<td>< 1.72E-01</td>
</tr>
<tr>
<td>90Sr</td>
<td>1.15E-01</td>
<td>2.48E+00</td>
<td>6.63E-02</td>
<td>1.46E+00</td>
</tr>
<tr>
<td>96Tc</td>
<td>3.83E-02</td>
<td>8.27E-01</td>
<td>1.11E-03</td>
<td>2.45E-02</td>
</tr>
<tr>
<td>243,244Cm</td>
<td>< 5.00E-04</td>
<td>< 1.08E-02</td>
<td>< 1.17E-04</td>
<td>< 2.57E-03</td>
</tr>
</tbody>
</table>

Second Leach Solution				
Total Alpha	< 4.40E-06	< 1.26E-04	< 8.16E+00	< 2.61E-01
239,240Pu	< 4.40E-06	< 1.26E-04	< 6.56E-01	< 2.10E-02
241Am+238Pu	< 4.40E-06	< 1.26E-04	< 4.62E+00	< 1.48E-01
241Am(g)	< 5.50E-04	< 1.57E-02	< 3.41E+00	< 1.09E-01
137Cs	1.98E-01	5.66E+00	2.93E-00	9.38E-02
60Co	< 3.30E-05	< 9.44E-04	< 3.41E+00	< 1.09E-01
154Eu	< 5.30E-05	< 1.57E-03	< 1.11E+01	3.56E-01
155Eu	< 3.30E-04	< 9.44E-03	< 1.03E+01	3.30E-01
90Sr	< 2.20E-05	< 6.29E-04	< 5.72E+03	1.83E+02
96Tc	6.63E-05	1.90E-03	1.98E-01	6.35E-03
243,244Cm	< 4.40E-06	< 1.26E-04	2.88E+00	9.21E-02

Final Wash Solution				
Total Alpha	< 4.40E-06	< 1.26E-04	< 8.16E+00	< 2.61E-01
239,240Pu	< 4.40E-06	< 1.26E-04	< 6.56E-01	< 2.10E-02
241Am+238Pu	< 4.40E-06	< 1.26E-04	< 4.62E+00	< 1.48E-01
241Am(g)	< 5.50E-04	< 1.57E-02	< 3.41E+00	< 1.09E-01
137Cs	1.98E-01	5.66E+00	2.93E-00	9.38E-02
60Co	< 3.30E-05	< 9.44E-04	< 3.41E+00	< 1.09E-01
154Eu	< 5.30E-05	< 1.57E-03	< 1.11E+01	3.56E-01
155Eu	< 3.30E-04	< 9.44E-03	< 1.03E+01	3.30E-01
90Sr	< 2.20E-05	< 6.29E-04	< 5.72E+03	1.83E+02
96Tc	6.63E-05	1.90E-03	1.98E-01	6.35E-03
243,244Cm	< 4.40E-06	< 1.26E-04	2.88E+00	9.21E-02

Leached Solids				
Total Alpha	< 4.40E-06	< 1.26E-04	< 8.16E+00	< 2.61E-01
239,240Pu	< 4.40E-06	< 1.26E-04	< 6.56E-01	< 2.10E-02
241Am+238Pu	< 4.40E-06	< 1.26E-04	< 4.62E+00	< 1.48E-01
241Am(g)	< 5.50E-04	< 1.57E-02	< 3.41E+00	< 1.09E-01
137Cs	1.98E-01	5.66E+00	2.93E-00	9.38E-02
60Co	< 3.30E-05	< 9.44E-04	< 3.41E+00	< 1.09E-01
154Eu	< 5.30E-05	< 1.57E-03	< 1.11E+01	3.56E-01
155Eu	< 3.30E-04	< 9.44E-03	< 1.03E+01	3.30E-01
90Sr	< 2.20E-05	< 6.29E-04	< 5.72E+03	1.83E+02
96Tc	6.63E-05	1.90E-03	1.98E-01	6.35E-03
243,244Cm	< 4.40E-06	< 1.26E-04	2.88E+00	9.21E-02

(a) Activity of radioisotope present in the solution decanted during the indicated step.
Table 7.9. Concentrations of the Radioactive Components in the Initial AN-104 Sludge Solids as Determined From the Caustic Leaching Portion of the Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Component Distribution, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Leach Solution</td>
</tr>
<tr>
<td>Total Alpha</td>
<td><4</td>
</tr>
<tr>
<td>239,240Pu</td>
<td><31</td>
</tr>
<tr>
<td>241Am,239Pu</td>
<td><7</td>
</tr>
<tr>
<td>241Am(g)</td>
<td><85</td>
</tr>
<tr>
<td>137Cs</td>
<td>96</td>
</tr>
<tr>
<td>60Co</td>
<td><43</td>
</tr>
<tr>
<td>154Eu</td>
<td><32</td>
</tr>
<tr>
<td>155Eu</td>
<td><77</td>
</tr>
<tr>
<td>90Sr</td>
<td>1</td>
</tr>
<tr>
<td>99Tc</td>
<td>96</td>
</tr>
<tr>
<td>243,244Cm</td>
<td><10</td>
</tr>
</tbody>
</table>

Table 7.10. Anion Concentrations in the Various AN-104 Process Solutions

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration in Initial Solids, µCi/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Alpha</td>
<td>0.064 < x < 0.067</td>
</tr>
<tr>
<td>239,240Pu</td>
<td>0.0051 < x < 0.0085</td>
</tr>
<tr>
<td>241Am,239Pu</td>
<td>0.036 < x < 0.040</td>
</tr>
<tr>
<td>241Am(g)</td>
<td>0.027 < x < 0.623</td>
</tr>
<tr>
<td>137Cs</td>
<td>5.99E+02</td>
</tr>
<tr>
<td>60Co</td>
<td>0.027 < x < 0.049</td>
</tr>
<tr>
<td>154Eu</td>
<td>0.087 < x < 0.133</td>
</tr>
<tr>
<td>155Eu</td>
<td>5.49E-01</td>
</tr>
<tr>
<td>90Sr</td>
<td>4.58E+01</td>
</tr>
<tr>
<td>99Tc</td>
<td>2.11E-01</td>
</tr>
<tr>
<td>243,244Cm</td>
<td>0.023 < x < 0.026</td>
</tr>
</tbody>
</table>

(a) The value was determined by summing the amount of a given component in the caustic leaching solutions, the subsequent washing solutions, and the leached solids; the total concentrations was then determined by dividing the sum by the amount of sludge solids processed.

7.12
7.2.3 Particle-Size Analysis

Figure 7.2 presents the particle-size data for the untreated and treated AN-104 sludge solids in terms of the number distributions, and Figure 7.3 presents the data in terms of the volume distributions. Caustic leaching resulted in rather minor changes in the particle-size distributions. The number distributions indicated the mean particle size decreased from 1.47 \(\mu \text{m} \) to 1.01 \(\mu \text{m} \) during caustic leaching. On the other hand, the volume distributions indicated an increase in the mean particle size from 4.08 \(\mu \text{m} \) to 6.03 \(\mu \text{m} \). The particle-size measurements were repeated after an ultrasonic field was applied. This resulted in only minor changes in the particle-size distributions.

Figure 7.2. Particle-Size Number Distributions for Untreated (a) and Treated (b) AN-104 Sludge
Figure 7.3. Particle-Size Volume Distributions for Untreated (a) and Treated (b) AN-104 Sludge

7.2.4 Microscopic Analysis

The TEM analysis indicated that the untreated AN-104 sludge solids were mainly a mixture of amorphous particles, with Na, Al, Cr, and Si being the dominant elements present (Figure 7.4). Some Fe- and Zr-containing nanoparticles were also present in small quantities. This assessment agrees with the ICP/AES analysis, except that the ICP/AES analysis detected relatively little Si (see Table 7.6). In the untreated solids, Cr-containing particles were fine amorphous particles, mixed with fine particles containing Al and Na (likely sodium aluminate) (Figure 7.5). Al and Si species with clay-like (or film-like) morphologies were also observed in the untreated solids (Figure 7.6).
Figure 7.4. Transmission Electron Micrograph and EDS Spectrum of the Mixed Cr and Al Phases in the Untreated AN-104 Solids
Figure 7.5. Transmission Electron Micrograph and EDS Spectrum of the Untreated AN-104 Solids
Figure 7.6. Transmission Electron Micrograph and EDS Spectrum of the Clay-Like Al/Si Phase in the Untreated AN-104 Solids

The TEM analysis of the caustic-leached solids indicated that a significant fraction of the Cr remained in the solids. It also suggested that the Si content was reduced and that Al and Na were almost eliminated. Again, these observations are consistent with the ICP/AES analysis (Table 7.3), except for the presence of Si in the leached solids. The ICP/AES analysis indicated little or no Si in the leached solids. The Cr in the leached solids appeared to be mixed with very fine silica particles (Figure 7.7). It is not clear whether these fine silica particles were present before leaching (but undetected in the TEM analysis) or if they formed during the leaching (or subsequent cooling) step.

Some of the Cr in the leached solids was associated with Ca in amorphous particles (Figure 7.8). The only crystalline material identified in either the untreated or caustic-leached solids was a U-containing phase (Figure 7.9). This phase was UO₂ or U₃O₇, or a mixture of both.
Figure 7.7. Transmission Electron Micrograph and EDS Spectrum of the Mixed Cr and Si Phases in the Caustic-Leach AN-104 Solids
Figure 7.8. Transmission Electron Micrograph and EDS Spectrum of the Mixed Cr and Ca Phase in the Caustic-Leached AN-104 Solids

Figure 7.9. Transmission Electron Micrograph and EDS Spectrum of the Crystalline Uranium-Containing Particles in the Caustic-Leached AN-104 Solids
8.0 Discussion

This section presents a review of the key ESW test to date. This discussion is organized in terms of the behavior of the specific sludge components Al, Cr, P, Na, and radionuclides. Observations concerning particle size are also discussed.

8.1 Aluminum

Table 8.1 summarizes the amounts of Al removed by dilute hydroxide washing (simple wash) and by caustic leaching (ESW). The reader should bear in mind that the experimental procedure from one tank sludge to the next was not necessarily the same, as the standard baseline ESW test procedure has evolved over the last few years. In all cases, the caustic leaching steps were performed at 100°C, with cooling to ambient temperature before sampling. The solids-to-liquid ratios and the caustic concentrations may vary from test-to-test. In spite of the differing experimental conditions, some general observations can be made. First, dilute hydroxide washing was generally ineffective at removing Al from the tank sludges. The exceptions to this were the sludges from the SORWT group 3 tanks and Tank BX-109. Second, caustic leaching was generally effective at removing Al. In the case of REDOX sludges (SORWT groups 1, 4, and 24), extended leaching times significantly improved Al removal. For example, when S-104 was subjected to two successive 5-h caustic leaches, only 38% of the Al was removed. But when leaching was carried out for more than three days, 99% of the Al was removed. Similar improved removals were observed for S-101 and S-111 sludges upon extending leaching (see Sections 5.1 and 6.1). Only three groups of sludges displayed consistently low (< 50%) Al removal: SORWT groups 7, 16, and 20. Finally, the Al removal data generally indicate good agreement for tanks within a given SORWT group.

Table 8.2 summarizes the Al-containing phases that have been identified in the Hanford tank sludges by microscopic examination coupled with X-ray diffraction techniques. Clearly, the sludges contain a variety of chemical species containing Al. Boehmite is the dominant Al-containing species in the REDOX sludges. As mentioned in the previous paragraph, this boehmite can largely be removed by caustic leaching, provided adequate leaching times and temperatures are employed. Microscopic examinations have suggested that species such as Al(OH)$_3$ (amorphous or crystalline), Al$_2$O$_3$$\cdot$$xH_2$O, and AlPO$_4$ are readily removed by caustic leaching, even at relatively short leaching times. If any of these species do remain after a short leaching time, it is not unreasonable to presume that more would be removed with longer leaching times. As might be expected, the aluminosilicate minerals appear to be the most difficult of the Al-containing species to dissolve by caustic leaching, but it can be inferred from analyses of the leaching solutions that some fraction of the aluminosilicates is also likely dissolved by caustic leaching.

(a) SORWT refers to “sort on radioactive waste type,” which is a statistical method for grouping the Hanford single-shell tanks (Hill, Anderson, Simpson 1995).
Table 8.1. Aluminum Removal As a Function of Waste Type

<table>
<thead>
<tr>
<th>Tank</th>
<th>SORWT Group<sup>20</sup></th>
<th>Primary</th>
<th>Secondary</th>
<th>Initial, wt.%<sup>20</sup></th>
<th>Simple Wash<sup>20</sup></th>
<th>ESW<sup>20</sup></th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-101<sup>20</sup></td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>14.7</td>
<td>12</td>
<td>96</td>
<td>(g)</td>
</tr>
<tr>
<td>S-107</td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>20.5</td>
<td>8</td>
<td>73</td>
<td>(h)</td>
</tr>
<tr>
<td>S-111<sup>20</sup></td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>16</td>
<td>10</td>
<td>100</td>
<td>(g)</td>
</tr>
<tr>
<td>BY-104</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>1.88</td>
<td>65</td>
<td>98</td>
<td>(h)</td>
</tr>
<tr>
<td>BY-110</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>3.37</td>
<td>94</td>
<td>96</td>
<td>(h)</td>
</tr>
<tr>
<td>BY-108</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>1.26</td>
<td>63</td>
<td>71</td>
<td>(g)</td>
</tr>
<tr>
<td>S-104</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>15.0</td>
<td>2</td>
<td>38</td>
<td>(i)</td>
</tr>
<tr>
<td>S-104<sup>20</sup></td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>15.3</td>
<td>2</td>
<td>99</td>
<td>(g)</td>
</tr>
<tr>
<td>SX-108</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>9.02</td>
<td>6</td>
<td>29</td>
<td>(h)</td>
</tr>
<tr>
<td>BX-105</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>30.5</td>
<td>2</td>
<td>100</td>
<td>(j)</td>
</tr>
<tr>
<td>BX-109</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>0.14</td>
<td>61</td>
<td>97</td>
<td>(k)</td>
</tr>
<tr>
<td>B-201</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>0.81</td>
<td>0</td>
<td>25</td>
<td>(l)</td>
</tr>
<tr>
<td>B-202</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>0.26</td>
<td><3</td>
<td>19</td>
<td>(l)</td>
</tr>
<tr>
<td>C-107</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>8.70</td>
<td>1</td>
<td>78</td>
<td>(h)</td>
</tr>
<tr>
<td>T-107</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>5.67</td>
<td>4</td>
<td>78</td>
<td>(j)</td>
</tr>
<tr>
<td>U-110</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>18.0</td>
<td>1</td>
<td>82</td>
<td>(l)</td>
</tr>
<tr>
<td>B-106</td>
<td>12</td>
<td>1C</td>
<td>TBP</td>
<td>0.73</td>
<td>28</td>
<td>86</td>
<td>(m)</td>
</tr>
<tr>
<td>BX-107</td>
<td>12</td>
<td>1C</td>
<td>TBP</td>
<td>3.50</td>
<td>1</td>
<td>68</td>
<td>(l)</td>
</tr>
<tr>
<td>C-108</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>15.1</td>
<td>3</td>
<td>94</td>
<td>(j)</td>
</tr>
<tr>
<td>C-109</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>16.1</td>
<td>8</td>
<td>81</td>
<td>(n)</td>
</tr>
<tr>
<td>C-112</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>3.09</td>
<td>34</td>
<td>85</td>
<td>(n)</td>
</tr>
<tr>
<td>B-110</td>
<td>16</td>
<td>2C</td>
<td>5-6</td>
<td>0.29</td>
<td>0</td>
<td>18</td>
<td>(n)</td>
</tr>
<tr>
<td>B-111</td>
<td>16</td>
<td>2C</td>
<td>5-6</td>
<td>0.30</td>
<td>0</td>
<td>2</td>
<td>(i)</td>
</tr>
<tr>
<td>C-103</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>14.0</td>
<td>0</td>
<td>48</td>
<td>(i)</td>
</tr>
<tr>
<td>C-106</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>4.85</td>
<td>24</td>
<td>47</td>
<td>(o)</td>
</tr>
<tr>
<td>T-104</td>
<td>Ungrouped</td>
<td>1C</td>
<td>N/A</td>
<td>5.35</td>
<td>1</td>
<td>64</td>
<td>(j)</td>
</tr>
<tr>
<td>T-111</td>
<td>15</td>
<td>2C</td>
<td>224</td>
<td>0.49</td>
<td>0</td>
<td>13</td>
<td>(i)</td>
</tr>
<tr>
<td>B-104</td>
<td>Ungrouped</td>
<td>2C</td>
<td>EB</td>
<td>0.25</td>
<td>6</td>
<td>63</td>
<td>(k)</td>
</tr>
<tr>
<td>TY-104</td>
<td>22</td>
<td>TBP</td>
<td>1C-F</td>
<td>4.28</td>
<td>9</td>
<td>63</td>
<td>(k)</td>
</tr>
</tbody>
</table>
Table 8.1. (contd)

<table>
<thead>
<tr>
<th>Tank</th>
<th>SORWT</th>
<th>Waste Types<sup>(b)</sup></th>
<th>Initial, wt %<sup>(c)</sup></th>
<th>Removed, %</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group<sup>(a)</sup></td>
<td>Primary</td>
<td>Secondary</td>
<td>Simple Wash<sup>(d)</sup></td>
<td>ESW<sup>(e)</sup></td>
</tr>
<tr>
<td>SX-113</td>
<td>24</td>
<td>R</td>
<td>DIA</td>
<td>2.12</td>
<td>0</td>
</tr>
<tr>
<td>C-104</td>
<td>Ungrouped</td>
<td>CW</td>
<td>OWW</td>
<td>6.32</td>
<td>9</td>
</tr>
<tr>
<td>C-105</td>
<td>Ungrouped</td>
<td>TBP</td>
<td>SR-WASH</td>
<td>27.2</td>
<td>0</td>
</tr>
<tr>
<td>AN-104</td>
<td>N/A</td>
<td>DSSF</td>
<td></td>
<td>2.61</td>
<td>99</td>
</tr>
<tr>
<td>SY-103</td>
<td>N/A</td>
<td>CC</td>
<td></td>
<td>4.70</td>
<td>9</td>
</tr>
</tbody>
</table>

^(a) Based on a statistical method of grouping single-shell tanks (Hill, Anderson, and Simpson 1995)

^(b) 5-6 = High-level B Plant waste from bottom of Section 5

224 = Lanthanum fluoride decontamination waste

1C = First bismuth phosphate decontamination cycle waste

2C = Second bismuth phosphate decontamination cycle waste

CC = Complex concentrate

CW = Cladding waste

DIA = Diatomaceous earth

DSSF = Double-shell slurry feed

EB = Evaporator bottoms

ITS = In-tank solidification

F = Ferrocyanide-scavenged waste

OWW = Organic solvent wash from PUREX

R = High-level REDOX waste

SRS = Strontium leached sludge

SR-WASH = Particulates from Sr wash of PUREX wastes in the AR vault

TBP = Tributyl phosphate waste

^(c) Based on dry weight of sludge solids, except for S-111, which is on a wet-sludge basis

^(d) Simple washing refers to washing with dilute NaOH (0.01 to 0.1 M)

^(e) Enhanced sludge washing (ESW) refers to high caustic (~3 M) leaching followed by washing with dilute NaOH

^(f) Extended leaching time used

^(g) This work

^(h) Lumetta et al. 1996

⁽ⁱ⁾ Rapko, Lumetta, Wagner 1995

^(j) Temer and Villarreal 1995

^(k) Temer and Villarreal 1996

^(l) Lumetta and Rapko 1994

^(m) D.J. Temer. 1997. Personal communication. Los Alamos National Laboratory, Los Alamos, New Mexico

⁽ⁿ⁾ Compositional data from Colton 1995, percent removal data from Lumetta and Rapko 1994

^(o) Lumetta, Wagner, Hoopes, and Steele 1996
Table 8.2. Aluminum-Containing Phases Identified in Hanford Sludges

<table>
<thead>
<tr>
<th>Phase</th>
<th>Tank</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(O)OH (boehmite)</td>
<td>S-101</td>
<td>This report</td>
</tr>
<tr>
<td></td>
<td>S-104</td>
<td>This report</td>
</tr>
<tr>
<td></td>
<td>S-107</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>S-111</td>
<td>This report</td>
</tr>
<tr>
<td></td>
<td>SX-108</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td>Al(O)OH (diaspore)</td>
<td>S-101</td>
<td>This report</td>
</tr>
<tr>
<td>Al(OH)₃(am)</td>
<td>BX-107</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>C-106</td>
<td>Lumetta, Wagner, Hoopes, Steele 1996</td>
</tr>
<tr>
<td></td>
<td>SY-103</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>T-104</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Al(OH)₃(crystalline)</td>
<td>BX-107</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>BX-113</td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td>C-105</td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td>C-112</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>S-101</td>
<td>This report</td>
</tr>
<tr>
<td></td>
<td>S-111</td>
<td>This report</td>
</tr>
<tr>
<td></td>
<td>SY-103</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Al₂O₃·xH₂O(crystalline)</td>
<td>BY-104</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>C-107</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>SX-108</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>SY-103</td>
<td>Rapko et al. 1996</td>
</tr>
<tr>
<td>AlPO₄</td>
<td>BX-107</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>T-104</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Aluminosilicate(am)</td>
<td>AN-104</td>
<td>This report</td>
</tr>
<tr>
<td></td>
<td>BX-107</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>BY-104</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>C-106</td>
<td>Lumetta, Wagner, Hoopes, Steele 1996</td>
</tr>
<tr>
<td></td>
<td>C-107</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>S-101</td>
<td>This report</td>
</tr>
<tr>
<td></td>
<td>S-107</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>SX-108</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>T-104</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Aluminosilicate(crystalline)</td>
<td>B-111</td>
<td>Rapko et al. 1996</td>
</tr>
<tr>
<td></td>
<td>BX-107</td>
<td>Rapko et al. 1996</td>
</tr>
<tr>
<td></td>
<td>T-104</td>
<td>Rapko et al. 1996</td>
</tr>
<tr>
<td>Ca₃Al₂O₆</td>
<td>SX-108</td>
<td>Lumetta et al. 1996</td>
</tr>
</tbody>
</table>

(a) D.J. Temer, '997. Personal communication. Los Alamos National Laboratory, Los Alamos, New Mexico
8.2 Chromium

Table 8.3 summarizes the amounts of Cr removed by dilute hydroxide washing and by caustic leaching. Here the trends are much less clear than with Al. There is considerable variability in the amount of Cr removed both by simple washing and by caustic leaching, even within the various SORWT groups. As has been indicated throughout this report, the Cr in the wash and leach solutions is invariably present as Cr(VI). Hence, the Cr removal is likely sensitive to the REDOX chemistry (i.e., the presence of oxidants) of the waste itself and of the washing or leaching solutions. The results of the S-101 and S-111 tests suggest that kinetics can also play a role in the efficacy of Cr removal (see Sections 5.1 and 6.1).

Table 8.4 summarizes the Cr-containing phases that have been identified in the Hanford tank sludges by microscopic examination coupled with X-ray diffraction techniques. As with Al, a variety of chemical species containing Cr are present in the sludges. In many cases, the Cr is bound up with other transition metals in spinel-type structures. It might be difficult to dissolve the Cr contained in such species, even under oxidative conditions, because the structure of these mineral phases would physically prevent the oxidant from reaching the Cr. For cases where Cr is bound up in Al hydroxides, such as in SY-103, caustic leaching would dissolve the Al hydroxide matrix and should expose the Cr to any oxidants present. Indeed, although caustic leaching removed only 12% of the Cr from SY-103 sludge (Rapko, Lumetta, and Wagner 1995), treating the caustic-leached SY-103 sludge with permanganate or ozone removed ~90% of the remaining Cr (Rapko, Lumetta, and Wagner 1996).

8.3 Phosphorus

Table 8.5 summarizes the amounts of P removed by dilute hydroxide washing and by caustic leaching. Simple washing removes very different amounts of P, even within the various SORWT groups. But agreement in the P removal for tanks within a given group generally improves after caustic leaching. For many of the tank sludges investigated to date, P removal by caustic leaching exceeds 90%. Only for BY-110, SX-108, B-201, B-202, and C-109 did P removal fall below 50%

Microscopy studies have revealed several P-containing species in the Hanford sludges (Table 8.6). The microscopy data have indicated that the chemical behavior for these phosphate species appears to be normal. For example, the calcium phosphate phases are typically not affected by caustic leaching. Evidence for the type of metathesis reaction depicted in Equation 1.3 was found for the C-112 sludge. Microscopic examination of the C-112 sludge revealed a uranium-rich phosphate phase with diameters on the order of several μm. Caustic leaching caused these particles to break up into nm-sized particles, and the P was removed (LaFemina 1995). This suggests that the uranium phosphate was converted to uranium hydroxide, and the P was removed as Na₃PO₄. Sodium phosphate is easily removed by dilute hydroxide washing, provided adequate wash solution is used to sufficiently lower the Na activity (Rapko et al. 1996).
Table 8.3. Chromium Removal As a Function of Waste Type

<table>
<thead>
<tr>
<th>Tank</th>
<th>SORWT Group</th>
<th>Primary</th>
<th>Secondary</th>
<th>Initial, wt %<sup>6</sup></th>
<th>Simple Wash<sup>6</sup></th>
<th>ESW<sup>6</sup></th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-101<sup>6</sup></td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>0.71</td>
<td>44</td>
<td>89</td>
<td>(g)</td>
</tr>
<tr>
<td>S-107</td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>0.60</td>
<td>24</td>
<td>53</td>
<td>(h)</td>
</tr>
<tr>
<td>S-111<sup>6</sup></td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>0.37</td>
<td>18</td>
<td>98</td>
<td>(g)</td>
</tr>
<tr>
<td>BY-104</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>0.51</td>
<td>69</td>
<td>71</td>
<td>(h)</td>
</tr>
<tr>
<td>BY-110</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>0.37</td>
<td>47</td>
<td>48</td>
<td>(h)</td>
</tr>
<tr>
<td>BY-108</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>0.04</td>
<td>49</td>
<td>43</td>
<td>(g)</td>
</tr>
<tr>
<td>S-104</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>0.41</td>
<td>90</td>
<td>97</td>
<td>(i)</td>
</tr>
<tr>
<td>S-104<sup>6</sup></td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>0.45</td>
<td>94</td>
<td>99</td>
<td>(g)</td>
</tr>
<tr>
<td>SX-108</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>0.79</td>
<td>71</td>
<td>78</td>
<td>(h)</td>
</tr>
<tr>
<td>BX-105</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>0.05</td>
<td>52</td>
<td>96</td>
<td>(j)</td>
</tr>
<tr>
<td>BX-109</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>0.03</td>
<td>36</td>
<td>81</td>
<td>(k)</td>
</tr>
<tr>
<td>B-201</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>0.73</td>
<td>37</td>
<td>56</td>
<td>(l)</td>
</tr>
<tr>
<td>B-202</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>1.12</td>
<td>21</td>
<td>29</td>
<td>(l)</td>
</tr>
<tr>
<td>C-107</td>
<td>10</td>
<td>IC</td>
<td>CW</td>
<td>0.12</td>
<td>34</td>
<td>48</td>
<td>(h)</td>
</tr>
<tr>
<td>T-107</td>
<td>10</td>
<td>IC</td>
<td>CW</td>
<td>0.07</td>
<td>42</td>
<td>61</td>
<td>(j)</td>
</tr>
<tr>
<td>U-110</td>
<td>10</td>
<td>IC</td>
<td>CW</td>
<td>0.1</td>
<td>60</td>
<td>82</td>
<td>(l)</td>
</tr>
<tr>
<td>B-106</td>
<td>12</td>
<td>IC</td>
<td>TBP</td>
<td>0.07</td>
<td>12</td>
<td>78</td>
<td>(m)</td>
</tr>
<tr>
<td>BX-107</td>
<td>12</td>
<td>IC</td>
<td>TBP</td>
<td>0.23</td>
<td>21</td>
<td>29</td>
<td>(i)</td>
</tr>
<tr>
<td>C-108</td>
<td>13</td>
<td>TBP-F</td>
<td>IC</td>
<td>0.06</td>
<td>76</td>
<td>80</td>
<td>(j)</td>
</tr>
<tr>
<td>C-109</td>
<td>13</td>
<td>TBP-F</td>
<td>IC</td>
<td>0.03</td>
<td>80</td>
<td>85</td>
<td>(n)</td>
</tr>
<tr>
<td>C-112</td>
<td>13</td>
<td>TBP-F</td>
<td>IC</td>
<td>0.04</td>
<td>48</td>
<td>88</td>
<td>(n)</td>
</tr>
<tr>
<td>B-110</td>
<td>16</td>
<td>2C</td>
<td>S-6</td>
<td>0.23</td>
<td>10</td>
<td>52</td>
<td>(n)</td>
</tr>
<tr>
<td>B-111</td>
<td>16</td>
<td>2C</td>
<td>S-6</td>
<td>0.31</td>
<td>27</td>
<td>52</td>
<td>(i)</td>
</tr>
<tr>
<td>C-103</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>0.16</td>
<td>2</td>
<td>11</td>
<td>(i)</td>
</tr>
<tr>
<td>C-106</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>0.06</td>
<td>2</td>
<td>32</td>
<td>(o)</td>
</tr>
<tr>
<td>T-104</td>
<td>Ungrouped</td>
<td>IC</td>
<td>N/A</td>
<td>0.21</td>
<td>17</td>
<td>27</td>
<td>(j)</td>
</tr>
<tr>
<td>T-111</td>
<td>15</td>
<td>2C</td>
<td>224</td>
<td>0.45</td>
<td>24</td>
<td>63</td>
<td>(i)</td>
</tr>
<tr>
<td>B-104</td>
<td>Ungrouped</td>
<td>2C</td>
<td>EB</td>
<td>0.12</td>
<td>3</td>
<td>72</td>
<td>(k)</td>
</tr>
<tr>
<td>TY-104</td>
<td>22</td>
<td>TBP</td>
<td>1C-F</td>
<td>0.38</td>
<td>72</td>
<td>86</td>
<td>(k)</td>
</tr>
<tr>
<td>Tank</td>
<td>Group(^{(a)})</td>
<td>Primary</td>
<td>Secondary</td>
<td>Initial, wt %(^{(b)})</td>
<td>Simple Wash(^{(d)})</td>
<td>Enhanced Sludge Washing (^{(e)})</td>
<td>References</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>SX-113</td>
<td>24</td>
<td>R</td>
<td>DIA</td>
<td>0.01</td>
<td>2</td>
<td>40</td>
<td>(m)</td>
</tr>
<tr>
<td>C-104</td>
<td>Ungrouped</td>
<td>CW</td>
<td>OWW</td>
<td>0.23</td>
<td>13</td>
<td>52</td>
<td>(m)</td>
</tr>
<tr>
<td>C-105</td>
<td>Ungrouped</td>
<td>TBP</td>
<td>SR-WASH</td>
<td>0.07</td>
<td>81</td>
<td>86</td>
<td>(m)</td>
</tr>
<tr>
<td>AN-104</td>
<td>N/A</td>
<td>DSSF</td>
<td></td>
<td>0.25</td>
<td>34</td>
<td>63</td>
<td>(g)</td>
</tr>
<tr>
<td>SY-103</td>
<td>N/A</td>
<td>CC</td>
<td></td>
<td>1.30</td>
<td>5</td>
<td>12</td>
<td>(i)</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Based on a statistical method of grouping single-shell tanks (Hill, Anderson, and Simpson 1995)
\(^{(b)}\) 5-6 = High-level B Plant waste from bottom of Section 5
224 = Lanthanum fluoride decontamination waste
1C = First bismuth phosphate decontamination cycle waste
2C = Second bismuth phosphate decontamination cycle waste
CC = Complex concentrate
CW = Cladding waste
DIA = Diatomaceous earth
DSSF = Double-shell slurry feed
EB = Evaporator bottoms
ITS = In-tank solidification
F = Ferrocyanide-scavenged waste
OWW = Organic solvent wash from PUREX
R = High-level REDOX waste
SRS = Strontium leached sludge
SR-WASH = Particulates from Sr wash of PUREX wastes in the AR vault
TBP = Tributyl phosphate waste
\(^{(c)}\) Based on dry weight of sludge solids, except for S-Ill, which is on a wet-sludge basis
\(^{(d)}\) Simple washing refers to washing with dilute NaOH (0.01 to 0.1 M)
\(^{(e)}\) Enhanced sludge washing (ESW) refers to high caustic (~3 M) leaching followed by washing with dilute NaOH
\(^{(f)}\) Extended leaching time used
\(^{(g)}\) This work
\(^{(h)}\) Lumetta et al. 1996
\(^{(i)}\) Rapko, Lumetta, Wagner 1995
\(^{(j)}\) Temer and Villarreal 1995
\(^{(k)}\) Temer and Villarreal 1996
\(^{(l)}\) Lumetta and Rapko 1994
\(^{(m)}\) DJ Temer. 1997. Personal communication. Los Alamos National Laboratory, Los Alamos, New Mexico
\(^{(n)}\) Compositional data from Colton 1995, percent removal data from Lumetta and Rapko 1994
\(^{(o)}\) Lumetta, Wagner, Hoopes, and Steele 1996
Table 8.4. Chromium-Containing Phases Identified in Hanford Sludges

<table>
<thead>
<tr>
<th>Phase</th>
<th>Tank</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi${34}$CrO${60}$</td>
<td>B-111</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Cr(O)OH (grimsdite)</td>
<td>BY-110</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td>Al/Cr(OH)$_3$(am)a</td>
<td>SY-103</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>NaAlO$_2$/Cr(OH)$_3$(am)b</td>
<td>AN-104</td>
<td>This report</td>
</tr>
<tr>
<td>Ca/Cr Phase</td>
<td>AN-104</td>
<td>This report</td>
</tr>
<tr>
<td>Fe(Cr,Fe)$_2$O$_4$ (donathite)</td>
<td>BY-104</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td>FeCr$_2$O$_4$</td>
<td>S-111</td>
<td>This report</td>
</tr>
<tr>
<td>Mn$_2$CrO$_4$</td>
<td>S-111</td>
<td>This report</td>
</tr>
<tr>
<td>Mn${1.5}$Cr${1.5}$O$_4$</td>
<td>S-111</td>
<td>This report</td>
</tr>
</tbody>
</table>

a Cr associate with amorphous Al hydroxide.

b Cr associate with amorphous Sodium Aluminate.
Table 8.5. Phosphorus Removal As a Function of Waste Type

<table>
<thead>
<tr>
<th>Tank</th>
<th>SORWT Group(4)</th>
<th>SORWT Initial, wt</th>
<th>Waste Types(6)</th>
<th>Removed, %</th>
<th>Simple Wash(6)</th>
<th>ESW(6)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-101(5)</td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>0.23</td>
<td>87</td>
<td>97</td>
<td>(g)</td>
</tr>
<tr>
<td>S-107</td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>0.20</td>
<td>>91</td>
<td>98</td>
<td>(h)</td>
</tr>
<tr>
<td>S-111(5)</td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>0.2</td>
<td>100</td>
<td>-</td>
<td>(g)</td>
</tr>
<tr>
<td>BY-104</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>0.31</td>
<td>93</td>
<td>95</td>
<td>(h)</td>
</tr>
<tr>
<td>BY-110</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>0.56</td>
<td>19</td>
<td>23</td>
<td>(h)</td>
</tr>
<tr>
<td>BY-108</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>2.35</td>
<td>73</td>
<td>70</td>
<td>(g)</td>
</tr>
<tr>
<td>S-104</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td><0.02</td>
<td>-</td>
<td>-</td>
<td>(i)</td>
</tr>
<tr>
<td>S-104(6)</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>0.002</td>
<td>>44</td>
<td>>58</td>
<td>(g)</td>
</tr>
<tr>
<td>SX-108</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>0.12</td>
<td>9</td>
<td>37</td>
<td>(h)</td>
</tr>
<tr>
<td>BX-105</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>0.09</td>
<td>91</td>
<td>100</td>
<td>(j)</td>
</tr>
<tr>
<td>BX-109</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>4.50</td>
<td>76</td>
<td>96</td>
<td>(k)</td>
</tr>
<tr>
<td>B-201</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>1.25</td>
<td>8</td>
<td>26</td>
<td>(l)</td>
</tr>
<tr>
<td>B-202</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>1.00</td>
<td>28</td>
<td>44</td>
<td>(j)</td>
</tr>
<tr>
<td>C-107</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>0.95</td>
<td>69</td>
<td>94</td>
<td>(h)</td>
</tr>
<tr>
<td>T-107</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>5.42</td>
<td>85</td>
<td>99</td>
<td>(j)</td>
</tr>
<tr>
<td>U-110</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>1.1</td>
<td>90</td>
<td>>98</td>
<td>(l)</td>
</tr>
<tr>
<td>B-106</td>
<td>12</td>
<td>1C</td>
<td>TBP</td>
<td>5.21</td>
<td>60</td>
<td>94</td>
<td>(m)</td>
</tr>
<tr>
<td>BX-107</td>
<td>12</td>
<td>1C</td>
<td>TBP</td>
<td>5.60</td>
<td>20</td>
<td>93</td>
<td>(l)</td>
</tr>
<tr>
<td>C-108</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>5.95</td>
<td>75</td>
<td>80</td>
<td>(j)</td>
</tr>
<tr>
<td>C-109</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>2.54</td>
<td>30</td>
<td>42</td>
<td>(n)</td>
</tr>
<tr>
<td>C-112</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>4.91</td>
<td>44</td>
<td>84</td>
<td>(n)</td>
</tr>
<tr>
<td>B-110</td>
<td>16</td>
<td>2C</td>
<td>5-6</td>
<td>3.93</td>
<td>42</td>
<td>98</td>
<td>(n)</td>
</tr>
<tr>
<td>B-111</td>
<td>16</td>
<td>2C</td>
<td>5-6</td>
<td>4.10</td>
<td>43</td>
<td>91</td>
<td>(i)</td>
</tr>
<tr>
<td>C-103</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>0.50</td>
<td>27</td>
<td>66</td>
<td>(i)</td>
</tr>
<tr>
<td>C-106</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>0.21</td>
<td>66</td>
<td>68</td>
<td>(o)</td>
</tr>
<tr>
<td>T-104</td>
<td>Ungrouped</td>
<td>1C</td>
<td>N/A</td>
<td>6.68</td>
<td>26</td>
<td>55</td>
<td>(j)</td>
</tr>
<tr>
<td>T-111</td>
<td>15</td>
<td>2C</td>
<td>224</td>
<td>2.60</td>
<td>50</td>
<td>72</td>
<td>(i)</td>
</tr>
<tr>
<td>B-104</td>
<td>Ungrouped</td>
<td>2C</td>
<td>EB</td>
<td>3.46</td>
<td>45</td>
<td>99</td>
<td>(k)</td>
</tr>
<tr>
<td>TY-104</td>
<td>22</td>
<td>TBP</td>
<td>1C-F</td>
<td>4.04</td>
<td>83</td>
<td>98</td>
<td>(k)</td>
</tr>
</tbody>
</table>
Table 8.5. (contd)

<table>
<thead>
<tr>
<th>Tank</th>
<th>SORWT</th>
<th>Waste Types (b)</th>
<th>Initial, wt %<sup>(6)</sup></th>
<th>Removed, %<sup>(6)</sup></th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
<td>Secondary</td>
<td></td>
<td>Simple Wash<sup>(6)</sup></td>
</tr>
<tr>
<td>SX-113</td>
<td>24</td>
<td>R</td>
<td>DIA</td>
<td>< 0.01</td>
<td>--</td>
</tr>
<tr>
<td>C-104</td>
<td>Ungrouped</td>
<td>CW</td>
<td>OWW</td>
<td>0.63</td>
<td>27</td>
</tr>
<tr>
<td>C-105</td>
<td>Ungrouped</td>
<td>TBP</td>
<td>SR-WASH</td>
<td>0.20</td>
<td>100</td>
</tr>
<tr>
<td>AN-104</td>
<td>N/A</td>
<td>DSSF</td>
<td></td>
<td>0.12</td>
<td>98</td>
</tr>
<tr>
<td>SY-103</td>
<td>N/A</td>
<td>CC</td>
<td></td>
<td>0.78</td>
<td>74</td>
</tr>
</tbody>
</table>

(a) Based on a statistical method of grouping single-shell tanks (Hill, Anderson, and Simpson 1995)
(b) 5-6 = High-level B Plant waste from bottom of Section 5
224 = Lanthanum fluoride decontamination waste
1C = First bismuth phosphate decontamination cycle waste
2C = Second bismuth phosphate decontamination cycle waste
CC = Complex concentrate
CW = Cladding waste
DIA = Diatomaceous earth
DSSF = Double-shell slurry feed
EB = Evaporator bottom
ITS = In-tank solidification
F = Ferrocyanide-scavenged waste
OWW = Organic solvent wash from PUREX
R = High-level REDOX waste
SRS = Strontium leached sludge
SR-WASH = Particulates from Sr wash of PUREX wastes in the A vault
TBP = Tributyl phosphate waste
(c) Based on dry weight of sludge solids, except for S-111, which is on a wet-sludge basis
(d) Simple washing refers to washing with dilute NaOH (0.01 to 0.1 M)
(e) Enhanced sludge washing (ESW) refers to high caustic (~3 M) leaching followed by washing with dilute NaOH
(f) Extended leaching time used
(g) This work
(h) Lumetta et al. 1996
(i) Rapko, Lumetta, Wagner 1995
(j) Temer and Villarreal 1995
(k) Temer and Villarreal 1996
(l) Lumetta and Rapko 1994
(m) DJ Temer, 1997 Personal communication. Los Alamos National Laboratory, Los Alamos, New Mexico
(n) Compositional data from Colton 1995, percent removal data from Lumetta and Rapko 1994
(o) Lumetta, Wagner, Hoce, and Steele 1996

8.10
Table 8.6. Phosphorus-Containing Phases Identified in Hanford Sludges

<table>
<thead>
<tr>
<th>Phase</th>
<th>Tank</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlPO₄</td>
<td>B-111</td>
<td>Rapko et al. 1996</td>
</tr>
<tr>
<td></td>
<td>BX-107</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>T-104</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Bi/Fe Phosphate</td>
<td>T-111</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Ca₃(PO₄)₂₋ₓ(PO₄)ₓ(OH)ₓ(x=8 or 9)</td>
<td>BY-104</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>BY-110</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td></td>
<td>T-111</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Ca₅Sr₁₀₋₆(PO₄)₆(OH)₆(x=8 or 9)</td>
<td>BY-108</td>
<td>This report</td>
</tr>
<tr>
<td>C₆P₀₄</td>
<td>C-112</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>La₄(P₂O₇)₃</td>
<td>T-111</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>Pb₃(OH)(PO₄)₃</td>
<td>C-107</td>
<td>Lumetta et al. 1996</td>
</tr>
<tr>
<td>Na₃PO₄</td>
<td>B-111</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>BX-107</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>T-104</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td></td>
<td>T-111</td>
<td>LaFemina 1995</td>
</tr>
<tr>
<td>U Phosphate</td>
<td>C-112</td>
<td>LaFemina 1995</td>
</tr>
</tbody>
</table>

8.4 Sodium

The minimum sludge pretreatment that would be applied at Hanford is dilute hydroxide washing. The goal of such washing would be to remove most of the Na from the waste. Thus, it is of interest to examine the effectiveness of dilute hydroxide washing at removing Na. Because of the significant additions of Na during caustic leaching tests, it is difficult to quantify how much Na is actually removed from the waste by caustic leaching. Hence, this discussion will focus only on the Na behavior in dilute hydroxide washing.

Table 8.7 summarizes the amount of Na removed by dilute hydroxide washing. In some cases, the percent Na removal could not be determined because of the nature of the experiment. Hence, some of the tanks listed in Tables 8.1, 8.3, and 8.5 are absent from Table 8.7. Except for U-110, Na removal was always greater than 70%; even with U-110, it was close to 70%. Greater than 90% of the Na was removed for over half of the tanks listed.
Table 8.7. Sodium Removal By Dilute Hydroxide Washing As a Function of Waste Type

<table>
<thead>
<tr>
<th>Tank</th>
<th>Group</th>
<th>Primary</th>
<th>Secondary</th>
<th>Initial, wt</th>
<th>Removed, %</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-101</td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>18</td>
<td>97</td>
<td>(d)</td>
</tr>
<tr>
<td>S-107</td>
<td>1</td>
<td>R</td>
<td>EB</td>
<td>16</td>
<td>93</td>
<td>(e)</td>
</tr>
<tr>
<td>BY-110</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>29</td>
<td>98</td>
<td>(e)</td>
</tr>
<tr>
<td>BY-108</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>21</td>
<td>96</td>
<td>(d)</td>
</tr>
<tr>
<td>S-104</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>18</td>
<td>96</td>
<td>(d)</td>
</tr>
<tr>
<td>SX-108</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>23</td>
<td>96</td>
<td>(e)</td>
</tr>
<tr>
<td>BX-109</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>20</td>
<td>96</td>
<td>(f)</td>
</tr>
<tr>
<td>B-201</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>10</td>
<td>73</td>
<td>(g)</td>
</tr>
<tr>
<td>U-110</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>11</td>
<td>69</td>
<td>(g)</td>
</tr>
<tr>
<td>B-106</td>
<td>12</td>
<td>1C</td>
<td>TBP</td>
<td>20</td>
<td>95</td>
<td>(h)</td>
</tr>
<tr>
<td>C-109</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>11</td>
<td>76</td>
<td>(i)</td>
</tr>
<tr>
<td>C-112</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>20</td>
<td>73</td>
<td>(i)</td>
</tr>
<tr>
<td>B-110</td>
<td>16</td>
<td>2C</td>
<td>5-6</td>
<td>23</td>
<td>96</td>
<td>(j)</td>
</tr>
<tr>
<td>C-106</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>23</td>
<td>82</td>
<td>(j)</td>
</tr>
<tr>
<td>B-104</td>
<td>Ungrouped</td>
<td>2C</td>
<td>EB</td>
<td>25</td>
<td>93</td>
<td>(f)</td>
</tr>
<tr>
<td>SX-113</td>
<td>24</td>
<td>R</td>
<td>DIA</td>
<td>0.2</td>
<td>73</td>
<td>(h)</td>
</tr>
<tr>
<td>C-104</td>
<td>Ungrouped</td>
<td>TBP</td>
<td>SR-WASH</td>
<td>5.3</td>
<td>78</td>
<td>(h)</td>
</tr>
<tr>
<td>C-105</td>
<td>Ungrouped</td>
<td>TBP</td>
<td>SR-WASH</td>
<td>5.3</td>
<td>78</td>
<td>(h)</td>
</tr>
</tbody>
</table>

(a) Based on a statistical method of grouping single-shell tanks (Hill, Anderson, and Simpson 1995)
(b) 5-6 = High-level B Plant waste from bottom of Section 5
224 = Lanthanum fluoride decontamination waste
1C = First bismuth phosphate decontamination cycle waste
2C = Second bismuth phosphate decontamination cycle waste
CC = Complex concentrate
CW = Cladding waste
DIA = Diatomaceous earth
EB = Evaporator bottoms
ITS = In-tank solidification
F = Ferrocyanide-scavenged waste
OWW = Organic solvent wash from PUREX
R = High-level REDOX waste
SRS = Strontium leached sludge
SR-WASH = Particulates from Sr wash of PUREX wastes in the AR vault
TBP = Tributyl phosphate waste

(c) Based on dry weight of sludge solids
(d) This work
(e) Lumetta et al. 1996
(f) Temer and Villmeal 1996
(g) Lumetta and Rapko 1994
(h) DJ Temer, 1997. Personal communication. Los Alamos National Laboratory, Los Alamos, New Mexico
(i) Compositional data from Colton 1995, percent removal data from Lumetta and Rapko 1994
(j) Lumetta, Wagner, Hoopes, Steele 1996

8.12
8.5 Radionuclides

In general, only ^{137}Cs and ^{99}Tc display appreciable solubility in the alkaline washing and leaching solutions. This is what would be expected based on the solubility of simple Cs and TcO$_4^-$ salts. However, in many cases, only a relatively small fraction of the ^{137}Cs is removed from the sludge solids by dilute-hydroxide washing (Table 8.8). For example, ≤5% of the ^{137}Cs is removed from Tanks BY-108, U-110, C-109, C-112, T-104, and SX-113 by dilute-hydroxide washing. Leaching with caustic generally improves the removal of ^{137}Cs from the sludges; in many cases, the amount of ^{137}Cs removed dramatically increases (e.g., BY-108, C-108, C-109, C-112, and SX-113). One possible explanation for this behavior is that the ^{137}Cs is tied up in one or more mineral forms that act as ion exchangers. Upon raising the Na ion concentration, the Cs is "eluted" from the ion exchanger.

Interestingly, wastes in Tanks BY-108, C-108, C-109, and C-112 were scavenged with ferrocyanide to precipitate the ^{137}Cs as NaCsNiFe(CN)$_6$ or Cs$_2$NiFe(CN)$_6$. The Cs being present would explain the ^{137}Cs behavior during washing and caustic leaching as the nickel ferrocyanide salts in these wastes. Recent studies have shown that Na$_2$NiFe(CN)$_6$ decomposes by both radiolytic and hydrolytic mechanisms under conditions that would be expected in the Hanford tanks, and it has been suggested that these pathways would have led to a reduction in the overall ferrocyanide concentrations in the sludges (Lilga et al. 1995). However, the cesium nickel ferrocyanide salts are less soluble in aqueous NaOH (Bryan et al. 1993; Lilga et al. 1995), so their decomposition might be slower than the Na analog. Indeed, ferrocyanide has been detected in actual C-109 and C-112 sludges at levels close to 1 wt% (Bryan et al. 1995).

The increased removal of ^{137}Cs upon caustic leaching is actually an undesirable feature of ESW. It would be preferable for the ^{137}Cs to remain in the solids, which would be immobilized as HLW. Because much of the ^{137}Cs partitions to the wash and leach solutions, it will likely need to be removed from these solutions before LLW immobilization (see below).

Table 8.9 presents projected radionuclide concentrations in the LLW that would be produced by immobilizing the combined washing and leaching solutions from the various ESW tests. The projected concentrations are based on a waste form that contains 20 wt% Na$_2$O and has a density of 2.7 MT/m3 (Orme et al. 1996). The values listed in Table 8.9 should be used only as indicators rather than definitive values for the radionuclide concentrations in the LLW because the test conditions used (NaOH concentrations, solution-to-solids ratios, etc.) were not necessarily the optimal process conditions.

The projected ^{137}Cs contents are well below the NRC Class C LLW limit of 4,600 Ci/m3, but in most cases it is well above the proposed guideline of 3 Ci/m3 for the immobilized LLW product from the proposed private processing facilities. Hence, it appears likely that ^{137}Cs will need to be removed from the combined washing and leaching solutions before LLW immobilization. For the vast majority of the tanks, the projected TRU concentrations in the LLW fall below the 0.1 μCi/g limit for Class C LLW. The tanks with potential of coming close to this limit include C-103 and C-106. Likewise, the projected ^{90}Sr concentrations are below the NRC Class C limit of 7,000 Ci/m3 and in most cases are well below the proposed guideline of 20 Ci/m3 for the immobilized LLW product from the proposed private processing facilities. The exception to this is C-103, which is near the 20 Ci/m3 ^{90}Sr guideline. The proposed
Table 8.3. Cesium-137 Removal As a Function of Waste Type

<table>
<thead>
<tr>
<th>Tank Code</th>
<th>SORWT Group(6)</th>
<th>Primary</th>
<th>Secondary</th>
<th>Initial, μCi/g(6)</th>
<th>Simple Wash(6)</th>
<th>ESW(6)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY-104</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>84</td>
<td>100</td>
<td>100</td>
<td>(b)</td>
</tr>
<tr>
<td>BY-110</td>
<td>3</td>
<td>TBP-F</td>
<td>EB-ITS</td>
<td>181</td>
<td>98</td>
<td>100</td>
<td>(b)</td>
</tr>
<tr>
<td>S-104</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>91.6</td>
<td>90</td>
<td>98</td>
<td>(i)</td>
</tr>
<tr>
<td>SX-108</td>
<td>4</td>
<td>R</td>
<td>N/A</td>
<td>45</td>
<td>63</td>
<td>87</td>
<td>(b)</td>
</tr>
<tr>
<td>BX-105</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>58.6</td>
<td>97</td>
<td>100</td>
<td>(j)</td>
</tr>
<tr>
<td>BX-109</td>
<td>5</td>
<td>TBP</td>
<td>CW</td>
<td>25.30</td>
<td>54</td>
<td>100</td>
<td>(k)</td>
</tr>
<tr>
<td>B-201</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>2.3</td>
<td>17</td>
<td>25</td>
<td>(n)</td>
</tr>
<tr>
<td>B-202</td>
<td>7</td>
<td>224</td>
<td>N/A</td>
<td>0.11</td>
<td>52</td>
<td>76</td>
<td>(j)</td>
</tr>
<tr>
<td>C-107</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>127</td>
<td>13</td>
<td>70</td>
<td>(b)</td>
</tr>
<tr>
<td>T-107</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>15.6</td>
<td>25</td>
<td>91</td>
<td>(j)</td>
</tr>
<tr>
<td>U-110</td>
<td>10</td>
<td>1C</td>
<td>CW</td>
<td>22</td>
<td>5</td>
<td>10</td>
<td>(l)</td>
</tr>
<tr>
<td>B-106</td>
<td>12</td>
<td>1C</td>
<td>TBP</td>
<td>59.3</td>
<td>51</td>
<td>100</td>
<td>(m)</td>
</tr>
<tr>
<td>BX-107</td>
<td>12</td>
<td>1C</td>
<td>TBP</td>
<td>38.1</td>
<td>17</td>
<td>94</td>
<td>(i)</td>
</tr>
<tr>
<td>C-108</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>614</td>
<td>4</td>
<td>99</td>
<td>(j)</td>
</tr>
<tr>
<td>C-109</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>950</td>
<td>5</td>
<td>98</td>
<td>(n)</td>
</tr>
<tr>
<td>C-112</td>
<td>13</td>
<td>TBP-F</td>
<td>1C</td>
<td>1360</td>
<td>5</td>
<td>98</td>
<td>(n)</td>
</tr>
<tr>
<td>B-110</td>
<td>16</td>
<td>2C</td>
<td>5-6</td>
<td>35</td>
<td>48</td>
<td>92</td>
<td>(n)</td>
</tr>
<tr>
<td>B-111</td>
<td>16</td>
<td>2C</td>
<td>5-6</td>
<td>372</td>
<td>52</td>
<td>95</td>
<td>(i)</td>
</tr>
<tr>
<td>C-103</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>236</td>
<td>20</td>
<td>44</td>
<td>(i)</td>
</tr>
<tr>
<td>C-106</td>
<td>20</td>
<td>SRS</td>
<td>SR-WASH</td>
<td>681</td>
<td>38</td>
<td>60</td>
<td>(o)</td>
</tr>
<tr>
<td>T-104</td>
<td>Ungrouped</td>
<td>1C</td>
<td>N/A</td>
<td>2.39</td>
<td>0</td>
<td>69</td>
<td>(j)</td>
</tr>
<tr>
<td>T-111</td>
<td>15</td>
<td>2C</td>
<td>224</td>
<td>1.16</td>
<td>25</td>
<td>66</td>
<td>(i)</td>
</tr>
<tr>
<td>B-104</td>
<td>Ungrouped</td>
<td>2C</td>
<td>EB</td>
<td>9.44</td>
<td>36</td>
<td>99</td>
<td>(k)</td>
</tr>
<tr>
<td>TY-104</td>
<td>22</td>
<td>TBP</td>
<td>1C-F</td>
<td>128</td>
<td>41</td>
<td>54</td>
<td>(k)</td>
</tr>
</tbody>
</table>

8.14
Table 8.8. (contd)

<table>
<thead>
<tr>
<th>Tank</th>
<th>Group<sup>(a)</sup></th>
<th>Primary</th>
<th>Secondary</th>
<th>Initial, (\mu \text{Ci/g}<sup>(c)</sup>)</th>
<th>Simple Wash<sup>(d)</sup></th>
<th>ESW<sup>(e)</sup></th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX-113</td>
<td>24</td>
<td>R</td>
<td>DIA</td>
<td>45.5</td>
<td>3</td>
<td>88</td>
<td>(m)</td>
</tr>
<tr>
<td>C-104</td>
<td>Ungrouped</td>
<td>CW</td>
<td>OWW</td>
<td>174</td>
<td>56</td>
<td>100</td>
<td>(m)</td>
</tr>
<tr>
<td>C-105</td>
<td>Ungrouped</td>
<td>TBP</td>
<td>SR-WASH</td>
<td>293</td>
<td>54</td>
<td>92</td>
<td>(m)</td>
</tr>
<tr>
<td>AN-104</td>
<td>N/A</td>
<td></td>
<td>DSSF</td>
<td>600</td>
<td>100</td>
<td>100</td>
<td>(g)</td>
</tr>
<tr>
<td>SY-103</td>
<td>N/A</td>
<td></td>
<td>CC</td>
<td>361</td>
<td>97</td>
<td>100</td>
<td>(i)</td>
</tr>
</tbody>
</table>

(a) Based on a statistical method of grouping single-shell tanks (Hill, Anderson, and Simpson 1995)
(b) 5-6 = High-level B Plant waste from bottom of Section 5
224 = Lanthanum fluoride decontamination waste
1C = First bismuth phosphate decontamination cycle waste
2C = Second bismuth phosphate decontamination cycle waste
CC = Complex concentrate
CW = Cladding waste
DIA = Diatomaceous earth
DSSF = Double-shell slurry feed
EB = Evaporator bottoms
ITS = In-tank solidification
F = Ferrocyanide-scavenged waste
OWW = Organic solvent wash from PUREX
R = High-level REDOX waste
SRS = Strontium leached sludge
SR-WASH = Particulates from Sr wash of PUREX wastes in the AR vault
TBP = Tributyl phosphate waste

(c) Based on dry weight of sludge solids, except for S-111, which is on a wet-sludge basis
(d) Simple washing refers to washing with dilute NaOH (0.01 to 0.1 M)
(e) Enhanced sludge washing (ESW) refers to high caustic (–3 M) leaching followed by washing with dilute NaOH
(f) Extended leaching time used
(g) This work
(h) Lumetta et al. 1996
(i) Rapko, Lumetta, Wagner 1995
(j) Temer and Villarreal 1995
(k) Temer and Villarreal 1996
(l) Lumetta and Rapko 1994
(m) DJ Temer. 1997. Personal communication. Los Alamos National Laboratory, Los Alamos, New Mexico
(n) Compositional data from Colton 1995, percent removal data from Lumetta and Rapko 1994
(o) Lumetta, Wagner, Hoopes, and Steele 1996
Table 8.9. Projected Radionuclide Content for LLW From Immobilization of Combined Wash and Leach Solutions

<table>
<thead>
<tr>
<th>Tank</th>
<th>Na2O (g)</th>
<th>µCi/g</th>
<th>LLW Total, µCi/m²</th>
<th>LLW, 137Cs, Ci/m²</th>
<th>LLW, 90Sr, Ci/m²</th>
<th>LLW, 98Te, Ci/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN-104</td>
<td>4.522</td>
<td><1.35E-02</td>
<td><4.42E-04</td>
<td>2.44E+03</td>
<td>3.94E+00</td>
<td>8.53E-01</td>
</tr>
<tr>
<td>B-104</td>
<td>7.552</td>
<td><4.93E-02</td>
<td><9.66E-04</td>
<td>5.54E+01</td>
<td>2.93E+00</td>
<td><9.13E-03</td>
</tr>
<tr>
<td>B-106</td>
<td>7.284</td>
<td><1.50E-02</td>
<td><3.05E-04</td>
<td>2.15E+02</td>
<td>1.18E+01</td>
<td><7.75E-01</td>
</tr>
<tr>
<td>B-111</td>
<td>2.197</td>
<td><1.73E-03</td>
<td><1.17E-04</td>
<td>1.48E+03</td>
<td>2.69E+02</td>
<td>3.30E-01</td>
</tr>
<tr>
<td>B-202</td>
<td>0.727</td>
<td><2.75E-02</td>
<td><5.60E-04</td>
<td>1.95E-01</td>
<td>1.07E-01</td>
<td>3.11E-01</td>
</tr>
<tr>
<td>BX-105</td>
<td>4.935</td>
<td><2.58E-01</td>
<td><7.74E-04</td>
<td>5.46E+02</td>
<td>4.42E+01</td>
<td><6.92E+00</td>
</tr>
<tr>
<td>BX-107</td>
<td>2.666</td>
<td><3.46E-03</td>
<td><1.92E-04</td>
<td>1.50E+02</td>
<td>2.25E+01</td>
<td>1.61E-01</td>
</tr>
<tr>
<td>BX-109</td>
<td>3.416</td>
<td><2.20E-02</td>
<td><9.53E-04</td>
<td>6.04E-01</td>
<td>7.07E-00</td>
<td><4.08E-01</td>
</tr>
<tr>
<td>BY-104</td>
<td>17.04</td>
<td><3.74E-02</td>
<td><3.25E-04</td>
<td>4.82E+04</td>
<td>1.13E+03</td>
<td><7.15E+00</td>
</tr>
<tr>
<td>BY-108</td>
<td>12.83</td>
<td><6.60E-02</td>
<td><7.61E-04</td>
<td>1.48E+04</td>
<td>4.60E+02</td>
<td>2.90E+01</td>
</tr>
<tr>
<td>BY-110</td>
<td>4.785</td>
<td><1.63E-02</td>
<td><5.04E-04</td>
<td>8.10E+02</td>
<td>2.09E+01</td>
<td>1.75E+00</td>
</tr>
<tr>
<td>C-103</td>
<td>1.492</td>
<td>5.22E-01</td>
<td>5.18E-02</td>
<td>8.74E+01</td>
<td>7.34E+01</td>
<td>1.97E+01</td>
</tr>
<tr>
<td>C-104</td>
<td>19.22</td>
<td><4.52E-02</td>
<td><3.48E-04</td>
<td>7.28E+02</td>
<td>1.51E+01</td>
<td><2.33E+00</td>
</tr>
<tr>
<td>C-105</td>
<td>2.717</td>
<td><8.80E-02</td>
<td><4.79E-03</td>
<td>6.77E+02</td>
<td>9.96E+00</td>
<td><1.63E+00</td>
</tr>
<tr>
<td>C-106</td>
<td>2.497</td>
<td><1.73E+00</td>
<td><1.03E+01</td>
<td>1.97E+03</td>
<td>3.16E+02</td>
<td><1.62E+00</td>
</tr>
<tr>
<td>C-107</td>
<td>7.557</td>
<td>6.46E-01</td>
<td>1.26E+02</td>
<td>3.63E+02</td>
<td>1.92E+01</td>
<td>2.23E+01</td>
</tr>
<tr>
<td>C-108</td>
<td>3.12</td>
<td><4.76E-01</td>
<td><2.26E-02</td>
<td>3.84E+03</td>
<td>4.92E+02</td>
<td><8.80E+01</td>
</tr>
<tr>
<td>S-101</td>
<td>10.81</td>
<td><5.84E-02</td>
<td><8.00E-04</td>
<td>6.60E+02</td>
<td>2.44E+01</td>
<td>1.10E+01</td>
</tr>
<tr>
<td>S-104</td>
<td>9.774</td>
<td><7.18E-02</td>
<td><1.09E-03</td>
<td>4.26E+02</td>
<td>1.74E+01</td>
<td><7.93E+00</td>
</tr>
<tr>
<td>S-107</td>
<td>14.34</td>
<td><1.12E-02</td>
<td><1.16E-04</td>
<td>4.63E+02</td>
<td>1.29E+01</td>
<td><2.13E+00</td>
</tr>
<tr>
<td>S-111</td>
<td>7.326</td>
<td><3.35E-02</td>
<td><6.77E-04</td>
<td>7.62E+00</td>
<td>4.16E-01</td>
<td>8.40E+00</td>
</tr>
<tr>
<td>SX-108</td>
<td>24.45</td>
<td><8.10E-02</td>
<td><4.90E-04</td>
<td>2.41E+03</td>
<td>3.93E+01</td>
<td>9.54E+00</td>
</tr>
<tr>
<td>SX-113</td>
<td>10.81</td>
<td><7.77E-02</td>
<td><1.06E-03</td>
<td>6.39E+01</td>
<td>2.36E+00</td>
<td>2.90E+00</td>
</tr>
<tr>
<td>SY-103</td>
<td>2.545</td>
<td>7.42E-02</td>
<td>4.31E-03</td>
<td>2.38E+03</td>
<td>3.74E+02</td>
<td>1.77E+01</td>
</tr>
<tr>
<td>T-104</td>
<td>1.691</td>
<td><3.10E-03</td>
<td><2.71E-04</td>
<td>1.21E+00</td>
<td>2.86E-01</td>
<td><1.67E+00</td>
</tr>
<tr>
<td>T-107</td>
<td>3.652</td>
<td><1.80E-01</td>
<td><7.29E-03</td>
<td>7.89E+01</td>
<td>8.63E+00</td>
<td><8.21E-01</td>
</tr>
<tr>
<td>T-111</td>
<td>2.728</td>
<td><4.36E-03</td>
<td><2.37E-04</td>
<td>3.21E+00</td>
<td>4.70E-01</td>
<td><8.71E-02</td>
</tr>
<tr>
<td>TY-104</td>
<td>2.865</td>
<td><2.74E-01</td>
<td><1.42E-02</td>
<td>3.07E+02</td>
<td>4.28E+01</td>
<td><5.05E-01</td>
</tr>
</tbody>
</table>

(a) Total amount of component in combined process streams from ESW test: retrieval wash (where applicable) + first caustic leach + second caustic leach + final wash

(b) Assumes LLW waste form contains 20 wt% Na₂O, and has a density of 2.7 MT/m³
guideline for 99Tc is 0.3 Ci/m3 for the immobilized LLW product from the proposed private processing facilities. For the vast majority of the tanks, the projected 99Tc concentrations in the immobilized LLW are within this guideline. The tanks with the potential of coming close to or exceeding this limit include B-111, BY-104, and SY-103.

8.6 Particle Size

Table 8.10 summarizes the particle-size data for selected Hanford tank sludges. This list only includes measurements made at PNNL in FY 1996 and FY 1997. These measurements were all made using a Microtrac 7 X 100 particle-size analyzer (Leeds & Northrup, North Wales, Pennsylvania) with the particles being slurried in water for the measurement. Measurements made at PNNL before FY 1996 were made on slurries prepared using 1:1 glycerin/water, so those measurements are not directly comparable to the more recent measurements. Although water slurries were used for particle-size measurements at LANL, the instrument used there only measured particles up to 10 μm; so the LANL measurements also are not directly comparable to the recent measurements at PNNL.

The particle-size data in Table 8.10 are presented in terms of both the number and volume distributions. Three key pieces of information are presented: 1) the mean particle diameter, 2) the particle diameter for which 95% of the particles are larger (5th percentile), and 3) the particle diameter for which 95% of the particles are smaller (95th percentile). Based on the number distributions, the mean particle sizes were generally less than 1 μm. Exceptions to this were the untreated AN-104 sludge and the leached S-111 sludge. The unusual behavior of the untreated S-111 solids was noted earlier in this report. The untreated S-111 material contained very large particles with the appearance of sand. These particles were so heavy that it was not possible to homogenize the sample to get a representative aliquot for analysis. It is likely that the untreated S-111 sludge had mean particle sizes larger than 1 μm as well. The volume distributions indicated more of a spread in the mean particle diameter, but they were generally less than 10 μm. Again, the leached S-111 sludge was an exception.

In terms of the number distributions, ESW had relatively little impact on the mean particle diameters. The volume distributions generally indicated a decrease in the mean particle diameter, with dramatic decreases being seen for BY-104 and S-107. Interestingly, the mean particle size (based on the volume distribution) increased upon leaching AN-104 sludge.

Sonicating the samples usually resulted in minor decreases in the mean particle diameters. Inspection of the histograms indicated these decreases were generally due to break up of the largest particles in the samples. Once again, the leached S-111 sludge proved an exception to this, highlighting the unusual behavior of the particles in this particular sludge. The mean particle diameter, based on the volume distribution, nearly tripled after the sample had been sonicated. The reason for this behavior is not known.
Table 8.10. Summary of Particle Size Data

<table>
<thead>
<tr>
<th>Tank</th>
<th>Number Distribution</th>
<th>Volume Distribution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Percentile(a)</td>
<td>95th Percentile(b)</td>
</tr>
<tr>
<td>AN-104 - Untreated</td>
<td>1.47</td>
<td>0.8</td>
<td>2.34</td>
</tr>
<tr>
<td>AN-104 - Leached(b)</td>
<td>1.19</td>
<td>0.55</td>
<td>2.19</td>
</tr>
<tr>
<td>AN-104 - Leached</td>
<td>1.01</td>
<td>0.45</td>
<td>2.37</td>
</tr>
<tr>
<td>AN-104 - Leached(b)</td>
<td>0.74</td>
<td>0.35</td>
<td>1.88</td>
</tr>
<tr>
<td>BY-104 - Untreated</td>
<td>0.68</td>
<td>0.35</td>
<td>1.35</td>
</tr>
<tr>
<td>BY-104 - Leached</td>
<td>0.82</td>
<td>0.38</td>
<td>1.6</td>
</tr>
<tr>
<td>BY-104 - Leached(b)</td>
<td>0.70</td>
<td>0.38</td>
<td>1.31</td>
</tr>
<tr>
<td>BY-108 - Untreated</td>
<td>0.31</td>
<td>0.18</td>
<td>0.78</td>
</tr>
<tr>
<td>BY-108 - Leached</td>
<td>0.31</td>
<td>0.18</td>
<td>0.62</td>
</tr>
<tr>
<td>BY-108 - Leached(b)</td>
<td>0.34</td>
<td>0.18</td>
<td>0.75</td>
</tr>
<tr>
<td>BY-108 - Leached(b)</td>
<td>0.34</td>
<td>0.18</td>
<td>0.75</td>
</tr>
<tr>
<td>BY-110 - Untreated</td>
<td>0.52</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>BY-110 - Leached</td>
<td>0.39</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>BY-110 - Leached(b)</td>
<td>(c)</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>S-101 - Untreated</td>
<td>0.51</td>
<td>0.25</td>
<td>1.21</td>
</tr>
<tr>
<td>S-101 - Leached</td>
<td>0.32</td>
<td>0.18</td>
<td>0.74</td>
</tr>
<tr>
<td>S-104 - Untreated</td>
<td>0.29</td>
<td>0.18</td>
<td>0.61</td>
</tr>
<tr>
<td>S-104 - Leached(b)</td>
<td>0.2</td>
<td>0.12</td>
<td>0.36</td>
</tr>
<tr>
<td>S-104 - Leached</td>
<td>0.31</td>
<td>0.18</td>
<td>0.74</td>
</tr>
<tr>
<td>S-107 - Untreated</td>
<td>0.58</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>S-107 - Leached</td>
<td>0.48</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>S-107 - Leached(b)</td>
<td>0.13</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>S-111 - Leached</td>
<td>1.79</td>
<td>1.0</td>
<td>3.25</td>
</tr>
<tr>
<td>S-111 - Leached(b)</td>
<td>1.62</td>
<td>1.0</td>
<td>2.94</td>
</tr>
<tr>
<td>SX-108 - Untreated</td>
<td>0.61</td>
<td>0.31</td>
<td>1.21</td>
</tr>
<tr>
<td>SX-108 - Leached(b)</td>
<td>0.25</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>SX-108 - Leached</td>
<td>0.32</td>
<td>0.18</td>
<td>0.68</td>
</tr>
<tr>
<td>SX-108 - Leached(b)</td>
<td>0.28</td>
<td>(c)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

(a) 95% of the particles have diameters larger than this value
(b) 95% of the particles have diameters smaller than this value
(c) Sample sonicated for 5 minutes
(d) Data not available
(e) This work
(f) Lumetta et al. 1996
8.7 Conclusions

The following are the key conclusions from the work presented in this report.

• Chromium(III) hydroxide can dissolve in high caustic solutions at room temperature, but heating such solutions precipitates guyanaite, syn (CrOOH), which does not readily redissolve in aqueous caustic media. Thus, caustic leaching in and of itself (i.e., in the absence of oxidants) is not likely to remove much Cr from the Hanford tank sludges as Cr(III).

• However, additional Cr is often removed (as chromate) during caustic leaching, apparently because of some oxidative pathway.

• Dilute hydroxide washing was generally ineffective at removing Al from the tank sludges. The exceptions to this were the sludges from the SORWT group 3 tanks and Tank BX-109.

• Caustic leaching was generally effective at removing Al. Only three groups of sludges displayed consistently low (< 50%) Al removal—SORWT groups 7, 16, and 20.

• Extended caustic leaching (several days at 100°C) significantly improves Al removal (and in some cases Cr removal) from REDOX sludge when compared to previous testing methods, which used only 5-h leaching durations. This can be attributed to slow dissolution of boehmite. Nearly all of the Al was removed from the three REDOX sludges examined (S-101, S-104, and S-111) when longer leaching times were used.

• The Al removal data generally indicate good agreement for tanks within a given SORWT group.

• For many of the tank sludges investigated to date, caustic leaching removed more than 90% of the P. Only for BY-110, SX-108, B-201, B-202, and C-109 did P removal fall below 50%.

• Dilute hydroxide washing was generally effective at removing Na from the Hanford tank sludges. More than 90% of the Na was removed for over half of the tanks tested.

• Cesium-137 will likely need to be removed from the sludge washing and leaching solutions before these solutions are immobilized as LLW. The behavior of 137Cs in sludges from ferrocyanide-scavenged tanks suggests that the 137Cs might still be present as the cesium nickel ferrocyanide salt.

• The quantities of TRU, 90Sr, and 99Tc in the washing and leaching solutions are generally low, and removal of these isotopes from the LLW stream probably will not be necessary.

• Particle-volume distributions indicate that the mean particle diameters generally tend to decrease upon leaching with caustic. Sludge from AN-104 is an exception to this rule.
The behavior of the S-111 particles was unusual in several respects. These particles were much larger than those seen for other sludges, and the mean particle size increased dramatically when the sample was sonicated. For the other sludges measured, sonication tended to break up the larger particles, resulting in a slight decrease in the mean particle diameter.
9.0 References

9.2
Appendix A

Analytical Methods
Appendix A

Analytical Methods

This appendix describes the analytical methods used in the enhanced sludge washing tests. Portions of the sludge solids were analyzed before and after the dilute hydroxide washing and the caustic leaching treatments. The solid samples were solubilized for analysis by well established KOH and sodium peroxide fusion methods. The sodium peroxide fusion method was used to determine K and Ni and also gave a duplicate analytical result for the other sludge components. Throughout this report, the mean values are reported for those components determined through both fusion methods.

Samples of the dilute hydroxide wash, the first and second leach, and the final wash solutions were analyzed after acidification with HNO₃. Typically, samples were acidified within two or three days after the washing or leaching step was complete. The major metallic elements (Al, Bi, Cr, Fe, Na, etc.) as well as P and Si were determined by inductively coupled plasma/atomic emission spectroscopy (ICP/AES). Alpha spectroscopy was used to determine the TRU elements, and gamma spectroscopy was used to measure gamma-emitting radionuclides (e.g., ¹³⁷Cs, ¹⁵⁴Eu, and ¹⁵⁵Eu). Uranium concentrations were determined by laser fluorimetry. A proportional beta counter was used to determine ⁹⁰Sr and ⁹⁹Tc after chemical separation of these isotopes from the other radionuclides. Treatment with Ce(IV) ensured that all Tc was in the +7 oxidation state before chemical separation because the separation employed relied on the Tc being present as pertechnetate. Anions were determined by ion chromatography on solutions that were not acidified. Established procedures were used for all these analyses.

Particle-size measurements were made using a Microtrac 7 X100 particle-size analyzer (Leeds & Northrup, North Wales, Pennsylvania) with the particles being slurried in water for the measurement. Free-hydroxide concentrations in the caustic leach solutions were determined by titration with standard HCl, as described previously (Rapko, Lumetta, and Wagner 1995).

The transmission electron microscopy (TEM) samples were prepared by dispersing a drop of the sample slurry on TEM copper grids covered with carbon films. This work was performed using a JEOL 1200 analytical TEM operating at 120 kV. The analyses proceeded as follows: 1) the morphology, distribution, and sizes of the particles were evaluated by electron imaging; 2) the chemical compositions of the particles were identified by electron dispersive spectroscopy (EDS); 3) the crystal structures of the particles were studied by electron diffraction; and 4) the diffraction patterns were compared with the JCPS-EDD Database published by the International Center for Diffraction Data.

1 Methods used were from the Analytical Chemistry Laboratory (ACL) Procedure Compendium. PNL-MA-599. Analytical Chemistry Laboratory Department, Pacific Northwest National Laboratory, Richland, Washington.
Distribution

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSITE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DOE/Office of Scientific</td>
<td>Steven Agnew Los Alamos National Laboratory</td>
</tr>
<tr>
<td></td>
<td>and Technical Information</td>
<td>P.O. Box 1663</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Stop J586</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Alamos, NM 87545</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ed Beahm Oak Ridge National Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oak Ridge, TN 37831-6223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zane Egan Oak Ridge National Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oak Ridge, TN 37831-6223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dale D. Ensor Tennessee Technological</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Chemistry Department - Box 5055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cookeville, TN 38505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>David Geiser U.S. Department of Energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cloverleaf Bldg. 19901 Germantown Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germantown, MD 20874-1298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robert King Washington Department of Ecology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 47600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olympia, WA 98594-7600</td>
</tr>
<tr>
<td>ONSITE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DOE Richland Operations</td>
<td>R. Carreon K6-51</td>
</tr>
<tr>
<td></td>
<td>Office</td>
<td>J. A. Frey K8-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. A. Gilbert K6-51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. J. Glasper K8-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. E. Lamont S7-53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. S. Louie B4-55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. C. Vargas K8-50</td>
</tr>
</tbody>
</table>

Distr.1
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Pacific Northwest National Laboratory</th>
<th>Numatec Hanford Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>TFA Technical Team Office</td>
<td>D. L. Herting</td>
</tr>
<tr>
<td></td>
<td>Pacific Northwest National Laboratory</td>
<td>R. A. Kirkbride</td>
</tr>
<tr>
<td></td>
<td>Camille Vickery</td>
<td>R. M. Orme</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 999, K9-91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Richland, WA 99352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. L. Blanchard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. F. Bonner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. P. Brooks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. G. Colton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. C. Cosby</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. H. Delegard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. E. Kurath</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>G. J. Lumetta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. M. Rapko</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. L. Stewart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. J. Wagner</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Technical Report Files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science Applications International Corporation</td>
<td>Fluor Daniel Hanford, Inc.</td>
</tr>
<tr>
<td></td>
<td>D. J. Swanberg</td>
<td></td>
</tr>
</tbody>
</table>

Distr.2