Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor

PDF Version Also Available for Download.

Description

Calcium oxide injected in a slagging combustor react with the sulfur from coal combustion to form sulfur bearing particles, which are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, it must be drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re- evolution. The objective of this 36 month project was to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag. ... continued below

Physical Description

14 p.

Creation Information

Zauderer, B. August 13, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Calcium oxide injected in a slagging combustor react with the sulfur from coal combustion to form sulfur bearing particles, which are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, it must be drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re- evolution. The objective of this 36 month project was to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag. In the present quarterly reporting period, 3 days of combustor tests were performed, bringing the total number of tests performed to 19. Two of the test were a repeat of two tests performed in the previous quarter with a high, 37% ash, Indian coal. The high slag flow rate with that coal resulted in the highest observed sulfur retention to-date, namely 20% of the injected sulfur. In the present quarter, this test was repeated with the same coal feed rate but with 75% longer period of 2.4 hours. The total mineral matter injected was 635 lb/hr, compared to only 19.7 lb/hr of sulfur, of which 75% was from injected gypsum. However, despite excellent slag flow from the previous Indian coal tests, only 5.8% of the sulfur from the gypsum reported to the slag. Since substantial amounts slag remained on the combustor walls, it is concluded that still longer duration tests are required to establish equilibrium conditions. Current efforts are focused on finding a U.S. source of high ash coal to implement additional tests.

Physical Description

14 p.

Notes

OSTI as DE97054463

Medium: P; Size: 14 p.

Source

  • Other Information: PBD: 13 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97054463
  • Report No.: DOE/PC/95102--T8
  • Grant Number: AC22-95PC95102
  • DOI: 10.2172/614911 | External Link
  • Office of Scientific & Technical Information Report Number: 614911
  • Archival Resource Key: ark:/67531/metadc692433

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 13, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 7, 2017, 2:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zauderer, B. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor, report, August 13, 1997; Pittsburgh, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc692433/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.