Computational methods for improving the resolution of subsurface seismic images. Final report

PDF Version Also Available for Download.

Description

The original goal is to devise computational methods for improving the resolution of subsurface seismic images. Initially the research emphasis was primarily on developing methods for efficient ray- theoretic modeling of acoustic waves in triangulated representations of media and on efficient means of modeling waves that travel sub- horizontally in horizontally layered media. Subsequent directions included new efficient methods for imaging the Earth`s subsurface (specifically, 3-D migration via the McClellan transformation, and squeezing dip movement (DMO) for depth-variable velocity), demonstrations of the importance of taking P-wave anisotrophy into account in migration and DMO, the development of algorithms for doing migration ... continued below

Physical Description

5 p.

Creation Information

Larner, K.L. December 31, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The original goal is to devise computational methods for improving the resolution of subsurface seismic images. Initially the research emphasis was primarily on developing methods for efficient ray- theoretic modeling of acoustic waves in triangulated representations of media and on efficient means of modeling waves that travel sub- horizontally in horizontally layered media. Subsequent directions included new efficient methods for imaging the Earth`s subsurface (specifically, 3-D migration via the McClellan transformation, and squeezing dip movement (DMO) for depth-variable velocity), demonstrations of the importance of taking P-wave anisotrophy into account in migration and DMO, the development of algorithms for doing migration and DMO in heterogeneous, anisotropic media, and the development of a methodology for the all-important step of deriving the anisotrophy parameters necessary for imaging of P-wave data.

Physical Description

5 p.

Notes

OSTI as DE97009217

Medium: P; Size: 5 p.

Source

  • Other Information: PBD: [1994]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97009217
  • Report No.: DOE/ER/14079--T1
  • Grant Number: FG02-89ER14079
  • DOI: 10.2172/543727 | External Link
  • Office of Scientific & Technical Information Report Number: 543727
  • Archival Resource Key: ark:/67531/metadc692378

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1994

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 13, 2017, 12:27 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Larner, K.L. Computational methods for improving the resolution of subsurface seismic images. Final report, report, December 31, 1994; United States. (digital.library.unt.edu/ark:/67531/metadc692378/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.