Zirconia Toughened Alumina Reticulated Foam Filters

Quarterly Report
October 1 - December 31, 1997

By
Kenneth Buthcer

Work Performed Under Contract No.: DE-FG26-97FT34161

For
U.S. Department of Energy
Office of Fossil Energy
Federal Energy Technology Center
P.O. Box 880
Morgantown, West Virginia 26507-0880

By
Selee Corporation
700 Shepherd Street
Hendersonville, North Carolina 28792

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
I. Progress Summary

Work during this period focused on making foam and membrane samples from the ceria zirconia toughened alumina developed in our previous SBIR program. After some adjustment very strong samples which have reasonably good working characteristics. The initial pressure drop measurements through the membrane suggest that it will need to be made with a more open structure.

II. Progress by Task

Referring to the tasks in the statement of work on page 15 of the project proposal:

Task 1 - NEPA Compliance - The documentation was prepared and submitted for this determination.

Task 2 - Filter Element Development - Ceramic foam bars were produced to confirm that high modulus of rupture could be achieved at low density. MOR’s exceeded 800 psi at a density of 16-18% of theoretical.

Design of the forming die was also started.

Task 3 - Membrane development- Initial samples made with the ceria zirconia alumina had severe cracks upon drying. This problem was overcome by increasing the boehmite component of the slurry at the expense of calcined alumina. This greatly increased the green strength and eliminated cracking while leaving the final fired composition unchanged.

An air flow measurement rig was constructed and initial samples tested. Initial tubular samples with porous membranes had flow rates much lower than desired:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Density, %</th>
<th>Flow rate at 6 mbar, l/min/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 0.3 l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>0.006</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.085</td>
</tr>
</tbody>
</table>

Clearly, the membrane must be made with a lower resistance. We will experiment with lower density, lower thickness and increased pore-to-pore connections.
III. Financial Status

The attached table show costs incurred through December 1.

Kenneth Butcher