Improved Design of the Omnidirectional Robotic Platform for Enhancement of Manufacturability and Commercialability

F. G. Pin

Date Published ---- September 1997

Prepared by the Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6194
managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract DE-AC05-96OR22464

Approved for public release; further dissemination unlimited
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
CRADA No. ORNL95-0338
with
Nomadic Technologies, Inc.
for
Improved Design of the Omnidirectional Robotic Platform
for Enhancement of Manufacturability and Commercialability

SUMMARY

The purpose of this Cooperative Research and Development Agreement (CRADA), between Oak Ridge National Laboratory (ORNL) and Nomadic Technologies, Inc. has been to produce an improved design of the Omnidirectional Holonomic Platform (OHP) that is easier to manufacture and more suitable for commercialization.

The OHP technology was developed by the ORNL. In 1993, it received an R&D-100 award and in 1994, a patent was accepted by the U.S. Patent Office in final form (#5,374,879). The technology involves a novel wheel system assembly which, through its corresponding control system, can provide rolling platforms with a full omnidirectional motion capability, including simultaneous and independently controlled rotational and translational degrees-of-freedom.

The objective of this project has been to pair ORNL’s knowledge of the OHP technology and Nomadic Technologies, Inc.’s experience in manufacturing and market-oriented robotic product development to produce and test an improved design of the OHP. The goal of the project has been to assemble two test-bed platforms based on the improved design. These platforms served as test-beds for engineering tests at ORNL and at Nomadic Technologies, Inc. and were incorporated into two test products of mobile manipulator robotic systems. The test products were submitted to user-acceptance tests at an alpha-customer facility, selected as Stanford University Robotics Laboratory.

The various tests and evaluations of the test products led to implementation of many upgrades in the OHP design, which was concluded to perform well with respect to future manufacturing for various applications. Although Nomadic Technologies, Inc. declined its licensing option of the OHP technology for robotics applications, several parallel activities, cross-fertilizing with this CRADA, were extremely successful. In particular, the OHP technology was licensed by a U.S. company for wheelchair applications.

ORNL P.O.C., François G. Pin, 423-574-6130, pin@ornl.gov
Final Report
on
CRADA No. ORNL95-0338
with
Nomadic Technologies, Inc.
for
Improved Design of the Omnidirectional Robotic Platform
for Enhancement of Manufacturability and Commercialability

1. INTRODUCTION

The purpose of this Cooperative Research and Development Agreement (CRADA), between Oak Ridge National Laboratory managed by Lockheed Martin Marietta Energy Research Corp. for the U.S. Department of Energy, and Nomadic Technologies, Inc. has been to produce an improved design of the Omnidirectional Holonomic Platform (OHP) that is easier to manufacture and more suitable for commercialization.

The OHP technology has been developed by the Oak Ridge National Laboratory (ORNL) [1],[2]. The technology involves a novel wheel system assembly which, through its corresponding control system, can provide rolling platforms with a full omnidirectional motion capability, including simultaneous and independently controlled rotational and translational degrees-of-freedom. In 1993, the OHP technology received an R&D-100 award and in 1994, a patent was accepted by the U.S. Patent Office in final form (#5,374,879) [3].

The objective of this project has been to pair ORNL's knowledge of the OHP technology and Nomadic Technologies, Inc.'s experience in manufacturing and market-oriented robotic product development to produce and test an improved design of the OHP. The goal of the project has been to assemble two test-bed platforms based on the improved design. These platforms would serve as test-beds for engineering tests at ORNL and at Nomadic Technologies, Inc. and for incorporation into test products of a mobile manipulator robotic system. The test products would be further submitted for user-acceptance tests through independent evaluations at an alpha-customer facility, selected as Stanford University Robotics Laboratory.

2. APPROACH

To accomplish the objectives of the project, three major tasks were defined, each involving various levels of activities from the partners.

Task 1: Establishment of Requirement for the Improved OHP

In this task the current capabilities of the OHP were reviewed and analyzed. Requirements for improving manufacturability (mechanical and control system), user-friendliness, interfaces, and compatibility with the proposed product were identified. Power requirements and motors adapted to the particular application were also identified.
Task 2: Fabrication and Testing of the Improved OHP

A new design incorporating all the improvements identified in Task 1 was developed and blueprints of this improved design were generated. Two new platforms were fabricated and engineering tests were performed.

Task 3: Incorporation of the Improved OHP in the Test Product

The improved platform technologies were incorporated into the proposed mobile manipulator robotic system test product and user- and market-acceptance studies were performed at Stanford University Robotics Laboratory.

3. MAJOR RESULTS

3.1. Design Improvements

Several design needs and improvements were identified during the review and analysis of the OHP and corresponding modifications were implemented as follows:

1. **Alignment of the ball within the yoke and proper bearing pre-load.**

 A mechanism was added to adjust the position of the ball’s tapered roller bearing cone to precisely position the ball within the yoke and set the proper pre-load for the bearings. The mechanism consists of a threaded collar on the ball shaft that is rotated to adjust the position. Each ball has two adjustable collars such that the pre-load and alignment can be set independently. A set screw mechanism is used to lock the adjustments in place.

2. **Improved yoke strength.**

 The yoke is now machined from a continuous piece of steel. This eliminates the weak spots caused by the previous screw fasteners.

3. **Improved attachment of the ball shaft.**

 The method for attaching the shaft to the yoke has been re-designed to make a wider attachment area that distributes the forces over a wider contact area. Strength and rigidity are improved. The tolerances of the mechanism are specified such that no adjustment mechanism is needed when fitting the shaft to the yoke.

4. **Simpler alignment of the gear train.**

 The shaft for the gears now have key slots carefully placed in the proper position such that no alignment is necessary after assembly.

5. **Access holes for motor alignment fasteners.**

 Access holes have been added so that the bolts holding the motor could be loosened to change the motor/gear alignment.
6. **Changed position for wheel pod fasteners.**

The bolts that attach the wheel pods to the vehicle chassis have been re-located such that they can be accessed from underneath the vehicle.

7. **Thicker rubber coating on the balls.**

The dimensions of the balls were changed to allow thicker rubber for improved wear, softer ride, and more traction.

3.2. Blueprints and Mobile Manipulator Test Product

Based on the above design improvements, a set of revised drawings was generated for the basic OHP technology sized for application to the test product. These blueprints are shown in Appendix A. Two OHP platforms were then developed for incorporation into the proposed test product shown in Fig. 1.

![Fig. 1. The two proposed mobile manipulator test products incorporating the OHP technology.](image)

3.3. User-Acceptance Tests and Evaluations

In addition to the successful evaluation of the improvements listed in Section 3.1, the evaluation of the test platforms by the Alpha Customer, Stanford University, led to the recommendation to increase the torques provided to the wheels. This was accomplished
on the test platforms by modifying the transmission ratios of the external gears that transmit motor torque to the wheels and coordinate the motion of the wheels in each assembly.

The enhanced test products, nicknamed Romeo and Juliet, have been extensively used at the Stanford University Robotics Laboratory [4]. In particular, the platforms’ holonomy permitted several experiments in multi-mobile manipulators holding common objects to be performed that otherwise would not have been feasible.

4. CONCLUSION AND SPIN-OFF

At the conclusion of the CRADA activities, Nomadic Technologies, Inc., evaluated their option for licensing the OHP technology for their family of mobile robot products. They elected to decline their licensing option, mostly on the basis of a non-favorable Cost Benefit Analysis including the licensing costs.

From a technical point of view and other licensing activities, this CRADA was extremely successful in its intended outcome of improving the OHP design toward manufacturability and durability for various applications. Parallel developments, which cross-fertilized with this CRADA, led to the licensing, in 1996, of the OHP technology to Cybertrax, Inc., a Florida-based company, for wheelchair application. The prototype wheelchair, completed in early 1997 is shown in Fig. 2. This prototype wheelchair was the main demonstration feature of the OHP technology that was selected as a 1997 Discover Magazine Award Finalist. Some of the announcement of this selection and text extracted from Discover magazine are shown in Appendix B.

5. REFERENCES

Fig. 2. Cybertrax, Inc., “Transrovr” prototype wheelchair using the OHP technology.
APPENDIX B

ANNOUNCEMENT AND TEXT RELATED TO THE 1997 DISCOVER AWARD FINALISTS SELECTION
TURN AND PIVOT ON THREE

Omnidirectional Vehicle Platform

Stephen Killough
Oak Ridge National Laboratory

For years, engineers have tried in vain to produce wheelchairs and loading vehicles that can swivel and slide into tight spaces, like an office chair on casters. Nothing worked—until Killough’s bizarre design gave it a whirl. A computer controls three pairs of perpendicularly arranged, variable-speed balloon wheels, so that at least one wheel of each pair touches the ground at any one time. The design is now being incorporated into motorized wheelchairs and bomb-loaders for fighter jets.
TURN AND PIVOT ON THREE
Oak Ridge National Laboratory’s
Omnidirectional Platform
INNOVATOR: STEPHEN KILLOUGH
Anyone who struggles to master parallel
car parking knows a plague at least as old as the
car: our glorious wheeled vehicles are
hellish to maneuver in tight
spaces. This mechanical glitch costs us dearly.
Within a forklift backing and forklift
in a warehouse, or a wheelchair zigzagging
through a narrow passage, or a forklift
zigzagging through a narrow passage, or a wheelchair
through a narrow passage, or a wheelchair
and you’ll see magnificent examples of wasted motion.

When Stephen Killough, a robotics
engineer at Oak Ridge National Labora-
tory, saw the ancient curse in wheeled
robots too, he came up with a
solution that is technically sweet, mathematically
elegant, and visually disconcerting.

His reasoning started with a simple
question: Why couldn’t a car simply
pivot like an office chair on casters
and slide sideways into a parking spot? Be-
cause, he knew, you’d need a mini-
imum of three casterlike wheels on
the floor, and each would re-
quire two motors: one to
drive its rotation and an-
other to make it pivot. Six
motors would be too un-
wieldy, complex, and expen-
sive. According to engineering
principles, Killough realized, you
should be able to manage with
only three independent motors.

but nobody had been able to figure
out how. Killough looked at the
ideas other inventors had
tried, including little rollers em-
bedded around the rim of a bigger
wheel, allowing it to roll sideways, but
they were all flawed in some crucial way.

While playing around with such em-
bedded rotations, however, he discovered an
ideal arrangement.

Picture a round plat-
form with three motors
underneath, each govern-
ing the motion of two
wheels that look like
miniature balloon tires.
The wheels in each pair
are mounted in a cage at
right angles to each other;
the motor can rotate the
cage so that one wheel
or the other is touching the
ground at any one time.

by configuring the three
pairs of wheels to allow
the same type of motion
found in three pivoting
casters, and by changing
the relative speeds of the
motors, Killough can
make his robotic plat-
form rotate, follow a
straight or curved path,
and even rotate while
moving forward.

After Killough nailed the mechanical
design, François Pin helped him control
the complicated choreography of the
wheels with a computer. There is no-
thing intuitively obvious about the ar-
rangement they must assume. “It’s al-
most like you have to trust the
mathematics that says it should work,”
says Killough. “It’s bizarre to
watch. It flabbergasts everybody. It’s like a taffy-
puller machine.”

In 1994 Killough and
Pin readied their
irst public demonstra-
tion: they strapped a pen
to their robot
and wrote cursive letters
on the floor.

This fluent mobility
led to a partnership
in January 1996 with Cybertrack Innov-
avive Technologies, a start-up company in
Tampa developing a new motorized
wheelchair. The U.S. Air Force will also
try out the platform to load bombs onto
fighter jets. But a forklift manufacturer
that sent people to look at it isn’t con-
vinced. “Customer acceptance,” Killough
reckons, “is going to make or break this
product.”
DISTRIBUTION LIST

1. Pamela L. Gorman, DOE ORNL Site Office, 4500N, MS-6269
3. David R. Hamrin, ORNL Laboratory Records, 4500N, MS-6285
4. Joseph N. Herndon, 7601, MS-6305
5. Stephen M. Killough, 7601, MS-6304
6. Ann J. Luffman, 5002, MS-6416
7. Carl E. Oliver, 4500-N, MS-6259
8. François G. Pin, 7601, MS-6305
9. Walter M. Polansky, Director, Advanced Energy Projects and Technology Research, DOE, 19901 Germantown Rd., Germantown, MD 20874-1290
10. Steven L. Schrock, 7601, MS-6304
11. Joyce Shepherd, 5002, MS-6416
13. Christine A. Valentine, Office of Technology Transfer Business, 701SCA, MS-8242
14. DOE, Work for Others, MS-G209
15-16. Office of Scientific and Technical Information (OSTI), P.O. Box 62, Oak Ridge, TN 37831