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Dispersive Water Waves in One and Two Dimensions 

Darryl D. Holm* and Roberto A. Camassa 
Theoretical Division, Los Alamos National Laboratory 

Abstract 
This is the final report of a three-year, Laboratory-Directed Research and 
Development (LDRD) project at the Los Alamos National Laboratory (LANL). 
We derived and analyzed new shallow water equations for one-dimensional 
flows near the critical Froude number as well as related integrable systems of 
evolutionary nonlinear partial differential equations in one spatial dimension, 
while developing new directions for the mathematics underlying the integrability 
of these systems. In particular, we applied the spectrum generating equation 
method to create and study new integrable systems of nonlinear partial 
differential equations related to our integrable shallow water equations. We also 
investigated the solutions of these systems of equations on a periodic spatial 
domain by using methods from the complex algebraic geometry of Riemann 
surfaces. We developed certain aspects of the required mathematical tools in the 
course of this investigation, such as inverse scattering with degenerate 
potentials, asymptotic reduction of the angle representations, geometric singular 
perturbation theory, modulation theory and singularity tracking for completely 
integrable equations. We also studied equations that admit weak solutions, i.e., 
solutions with discontinuous derivatives in the form of corners or cusps, even 
though they are solutions of integmhle models, a property that is often 
incorrectly assumed to imply smooth solution behavior. In related work, we 
derived new shallow water equations in two dimensions for an incompressible 
fluid with a free surface that is moving under the force of gravity. These 
equations provide an estimate of the longtime asymptotic effects of slowly 
varying bottom topography and weak hydrostatic imbalance on the vertically 
averaged horizontal velocity, and they describe the flow regime in which the 
Froude number is small -- much smaller even than the small aspect ratio of the 
shallow domain. 

1 .  Background and Research Objectives 

evolution of fluid flows enable today's scientists to simulate events more accurately and more 
rapidly than ever before. An outstanding example of this is the large-scale, longtime, three- 
dimensional simulations of global ocean dynamics currently being planned and executed at Los 
Alamos on the Connection Machine. Beyond the problems of simulation, however, lie the 
problems of understanding a fluid dynamical system and choosing correct equations to model a 
given physical situation. Many fluid systems remain too intricate to fully understand, but 
modern methods of mathematical analysis and approximation theory can sometimes offer 
insight. Some of this insight is obtained by viewing fluid dynamics in a Hamiltonian 

New machine architectures and recent algorithms that numerically compute the time 
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framework, and in fact several recent advances in fluid dynamics share this perspective. Much 
of the value of these techniques lies in their applications, and these exist in a broad range of 
disciplines. 

In our work we used multiple-time-scale perturbation theory to derive new model 
equations for the longtime asymptotic behavior of dispersive shallow water flow over a 
varying bottom in one and two dimensions. In deriving these new equations we implemented 
an asymptotic expansion method that preserves the property of being Hamiltonian at each level 
of approximation. At the same time, this method preserves the (horizontal) particle-relabeling 
symmetry inherent in the Eulerian description of fluid dynamics. The Hamiltonian structure of 
the resulting equations was used to analyze their solutions for conservation laws, stability 
properties, as well as sensitivity to parameters, boundary conditions, and perturbations. 

2 .  Importance to LANL's Science and Technology Base and National R&D 
Needs 

Explicit equations that capture the longtime behavior of fluid flow in shallow domains 
are important for LANL's science and technology base in assessing the predictability of ocean 
dynamics in this fluid regime. The model equations we derived captured the longtime 
behavior of the original barotropic (vertically integrated) ocean dynamics equations, in one and 
two horizontal dimensions. For these model equations, we addressed questions that may be 
unanswerable for the full geophysical systems being numerically simulated. Such questions 
are the following: How do the small scales affect the large ones? What is a sensible level of 
resolution needed to capture the long-time behavior, after transients have died out? What are 
the effects of ignoring changes in elevation of the sea surface on the longtime behavior? What 
are the effects of driving and damping on the solutions of these model equations? Does better 
physics ( e g ,  including nonhydrostatic pressure contributions) lead to greater sensitivity of the 
model to input parameters? 

3 .  Scientific Approach and Accomplishments 

was the three-dimensional Euler equations for a stratified incompressible fluid with a free 
surface moving under the influence of gravity and an external pressure. (This is also the 
starting point for the full ocean-dynamics simulations.) Our Hamiltonian approach produced 
new approximate fluid equations for fluid motion in thin domains and provided a framework 
for analyzing these equations in (I) determining their conservation laws, (2) studying both the 
linear and nonlinear stability of their equilibrium solutions, and (3) establishing the time- 
asymptotic behavior of their nonequilibrium solutions. 

Our starting point in making structure-preserving, longtime asymptotic approximations 
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Our approach unified previously known approximate theories for shallow water flow 
and allowed comparisons among them, by placing them into the same Hamiltonian framework. 
This framework identifies the mathematical properties shared by these theories, while it 
distinguishes amongst them by the way they each approximate the kinetic energy of vertical 
motion in the Hamiltonian. (In particular, the standard shallow water theory ignores this 
energy; the classical Boussinesq theory approximates it by the surface vertical motion; and the 
recent Green-Naghdi theory obtains it by vertical integration of a solution ansae). That is, the 
several previously known approximate theories differ in their Hamiltonians in how they each 
model the kinetic energy due to vertical motion. The differences among the Hamiltonians result 
in differences in their corresponding equations, in how they describe wave dispersion and what 
conservation laws they possess. 

terms of different asymptotic order in the same equation. The dominant asymptotics we 
performed showed that solutions of this entire family of non-dominant equations have the same 
longtime asymptotic behavior, which is described by our unique dominant-asymptotic 
equation. Thus, we discovered the structural unity of these non-dominant theories and showed 
that our dominant-asymptotic equations possess a unique universal solution behavior, towards 
which all of these non-dominant theories approach at long times. 

These various theories involve non-dominant asymptotics, meaning that they retain 

We derived our dominant-asymptotic equations for two-dimensional, longtime, 
shallow-water dynamics by a multiple time-scale analysis. This analysis led to dominant- 
asymptotic equations that, remarkably, do possess a Hamiltonian structure that survived the 
multiple-time-scale approximation process. We then determined stability conditions for 
equilibrium solutions and analyzed particular vortex solutions for sensitivity to model 
parameters. 

Our Hamiltonian approach showed its power especially well in the one-dimensional 
asymptotics, by producing a new dispersive shallow water equation with many remarkable 
properties. For example, in one dimension our multiple time scale equations possess two 

Hamiltonian structures. This biHamiltonian property led to a recursion operator that produced 
an infinite number of conservation laws which led, in turn, to the exact analytical solution of 
the initial value problem for the one-dimensional case. So, our new equation has "soliton" 
solutions and is completely integrable as a Hamiltonian system. The framework for analyzing 
this equation involved one of the most beautiful mathematical developments in this century -- 
the theory of integrable, nonlinear, partial differential equations. The "phase space" for our 
solitons is the space of generalized functions with bounded derivative norm. The 
phenomenology of these solutions is very rich and includes formation of weak solutions: 
shocks that form in finite time, then develop into a train of solitons, each of which has a finite 
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jump in derivative at its peak. Subsequently these peaked solitons may collide, and when they 
do, they pass through each other in a fully nonlinear interaction, from which they emerge again 
as coherent entities. Because they are weak soIutions, our investigation of these peaked 
solitons required new advances in the mathematics of completely integrable Hamiltonian 
systems. 
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