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ABSTRACT 

This preliminary report describes a variety of issues in turbulence 
transport analysis with particular emphasis on closure procedures 
that are nonlocal in wave-number and/or physical space. Anomalous 
behavior of the transport equations for large-scale parts of the 
turbulence spectrum are resolved by including the physical-space 
nonlocal interactions. Direct and reverse cascade processes in wave- 
number space are given a much richer potential for realistic description 
by the nonlocal formulations. The discussion also describes issues, 
many still not resolved, regarding new classes of self-similar form 
functions. 

I. INTRODUCTION 

A. Scope of the Study 
Turbulence occurs in many circumstances of fluid flow, being driven or sustained by 

the conversion of large-scale mean-flow energy to intermediate-scale fluctuational energy 
and dissipated by the entropy-increasing process of cascade to small scales, ultimately to 
the molecular level where it is manifested in the form of heat. 

Our principal goal is to describe nonlocal contributions to closure modeling in both 
physical and wave-number space and to show that nonlocality of processes lies at the heart 
of large-structure behavior in nonhomogeneous circumstances. 

A second goal is to record some preliminary ideas regarding the existence and 
usefulness of generic form functions and in particular to show the richness of possibilities 
for a wide variety of turbulent flows with nonhomogeneous, nonisotropic drive. These form 
functions may be exact or approximate, depending on circumstances to be described below. 
They are usually revealed in greatest clarity under circumstances that are described by 
self-similar combinations of the physical and spectral variables; but they may also occur to 
a significant level of approximation in localized regions that are continually approaching 
self-similarity despite the shifting nature of the mean-flow drive. 

The current work is focused on far subsonic flows with constant fluid density; collateral 
activities by our associates show that many of our results can be extended to flows with 
large variations in material density (e.g., two-phase material interpenetrations) or with 
large variations in stress-strain behavior. The starting point for analysis is the set of Navier- 
Stokes equations, for which we postulate complete relevance in our investigations. With 

1 



constant density, the dependent variables are pressure and velocity. These are assumed to 
be separable into mean and fluctuating parts (the Reynolds decomposition), described in 
this report by an overbar and a prime, respectively. Insertion of these symbols into the 
Navier-Stokes equations and averaging over an appropriate ensemble of realizations lead 
to  the well-known infinite set of transport equations for correlations of all orders. In this 
process we exploit the complete arbitrariness of choice as to which part of the dynamics 
is mean flow and which part is turbulence; indeed, we derive much useful guidance for 
closure modeling by shifting our viewpoint in this regard for several considerations to be 
described below. 

For most of the developments described in this report, we focus on fluid flows that are 
dominated by mean-flow shear, usually confined to a localized planar shear layer. Some 
discussion will also be presented on flows in which the free shear is only locally planar. 

With the establishment of global or local self-similar forms that reflect the nonisotropy 
of drive, we then use these forms to take moments of the spectral equations. Besnard, 
Harlow, Rauenzahn, and Zemach (1992, 1996) (the BHRZ approach) followed this 
procedure using the spectral form for homogeneous, isotropic turbulent decay and were 
thereby able to derive single-point turbulence transport equations for the Reynolds stress 
tensor and for the flux of that tensor through the inertial range of the spectrum. It thus 
became clear that the “dissipation” tensor in single-point turbulence transport theory 
actually represents the loss rate of the significant parts of the Reynolds stress components 
in spectral space, rather than the loss rate that results from molecular viscosity. (These 
two loss rates become equal only in special circumstances of equilibrium.) 

B. Closure Modeling 
The unmodeled turbulence transport equations are exact consequences of the Navier- 

Stokes equations. They form an infinite set that is intractable for problem solving; indeed, 
there is an unresolved question as to  whether the set is in principle convergent. On both 
accounts, it is necessary to find ways to close the set, i.e., to express the N + lSt-order 
correlations in terms of those of order N and lower. For both single-point and two- 
point (spectral) modeling, this challenge has been a central focus for numerous previous 
investigations. The techniques we use to accomplish closure are constrained by numerous 
requirements, for example, 

preservation of conservation (mass, momentum, and energy), 
0 correct dimensionality, 
0 Galilean invariance, 
0 proper tensor form (tensor invariance), 
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0 correct behavior of contracted forms, 
0 realizability, 
0 simplicity (as defined below), and 
0 consistency of source with circumstances. 

An example of this last requirement is the expression of closure in Reynolds stress 
transport that ensures the creation of isotropy, only, when the circumstances are isotropic. 

A somewhat more nebulous guide to closure modeling is furnished by the postulate 
that we call separation of processes, which we describe by example. Consider the triple 
correlation terms arising from the pressure-velocity correlation terms with Poisson-integral 
substitution for pressure. At least three processes are believed to be described by these 
terms: 

- cascade in k space, 
- diffusion in physical space, and 
- return to isotropy. 

The postulate means, in effect, that each physical process is described by a modeling 
term that relates only to that process. The postulate is extremely powerful and useful in 
enabling a systematic approach to modeling, and we invoke it on many occasions. 

The constraint of “simplicity” means the elimination of various higher spatial 
derivatives or products of lower derivatives from inclusion in a model that otherwise 
satisfies the other constraints. Motivated by a desire for tractability in problem solving, we 
usually can find no more justification for the constraint beyond the empirical observation 
that surprisingly good results can often be obtained from relatively “simple” closure 
formulations. 

Several closure techniques are the following: 
Based on the assumption of a quasi-normal distribution of fluctuations, fourth-order 
correlations are often expressed as products of second-order correlations. 
Closures for an Nth-order correlation are often accomplished through the derivation 
of its transport equation, the appending of a dissipation term proportional to the 
correlation, the neglect of both time variations and advection, and a very simple 
treatment of the N + lSt-order terms. In this way the Nth-order correlation emerges 
as a purely algebraic expression of the lower-order quantities. The famous Boussinesq 
approximation can be obtained in this fashion, and gradient-flux expressions for a 
variety of closures have likewise been derived. 
A useful closure guidance comes from the idea that the larger-scale part of the 
turbulence spectrum can be temporarily viewed as mean flow. Source terms for the 
small-scale part of the turbulence are then modeled from the “mean-flow” driving 
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terms, and the loss from the large-scale parts is equated to the gain to the small- 
scale part. The next step is to return to the viewpoint of considering the entire 
structure of scales to be turbulence and thus to use the derived source-sink model as 
a representation of cascade flux through wave-number space. 
Other closure modeling techniques are discussed in this report as the need arises. 

Some of them, especially those that describe nonlocal interactions in both spectral and 
physical space, are new and serve as the starting point for many of our investigations. 

C. Realizability 
It is useful to summarize some properties of the spectrally integrated Reynolds stress 

tensor, Rij, that are direct consequences of the structure of its definition. These properties 
give constraints to modeling; closures that lead to violations of these properties are not 
viable approximations to be used for realistic problem solving; these violations are called 
unrealizable. The constraints, while necessary, are by no means sufficient, insofar as the 
ensurance of precise representation is concerned. Much more powerful constraints will no 
doubt be discovered, based on concepts of generalized information entropy; these ideas are 
still under development. 

The properties that 
(Mathematical objectivity may also furnish useful constraints.) 
we summarize here are derived from the tensor structure 

Let ei be an arbitrary unit vector. Then 

With numerous possible choices of e j ,  one can derive, for example, 

2R12 2 - (R11 + R22) 

Rii  2 0 ,  R22 2 0 ,  R33 2 0  
det Rij 2 0 ,  

and any subdeterminant is likewise positive or zero. 

D. Nonlocality 
Purely local interactions are often the basis for describing transport influences on the 

evolution of Reynolds stress. In physical space these mean processes that affect Reynolds 
stress development occur only at the position under consideration. For an incompressible 
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fluid, however, pressure effects are communicated instantaneously from their source to 
other points th;oughout the fluid. The formal representation of this process is through the 
integral solution of a Poisson equation, by which the pressure is described by an integral 
over all space of the product of two velocity gradients. For turbulent transport of Reynolds 
stress, a key source comes from the ensemble average of correlations between fluctuations of 
pressure and velocity. In the derivation, the pressure fluctuations can be precisely described 
by the integral over all space of both the mean and fluctuating velocity components; 
multiplication of this formal expression by velocity fluctuations and ensemble averaging 
leads to terms that couple the Reynolds stress to mean-flow gradients to give a turbulence 
source from all other parts of the flow at each instant in time. Following the derivation 
of appropriate expressions for this physically nonlocal process, we shall demonstrate its 
consequences for low-wave-number (large structure) turbulence in terms of its relation to 
classic laminar instability problems, for which we resolve a seeming discrepancy between 
turbulence transport theory and the direct solution of the Navier-Stokes equations. 

In spectral space, local interactions refer to those in which activity associated with a 
particular wave number affects the evolution of Reynolds stress only at that same wave 
number. In colloquial terms, we often describe such processes by saying that a turbulent 
“eddy” only affects others of its same size. Previous investigators have long recognized 
the fallacy of this viewpoint. The Eddy-Damped, Quasi-Normal Markovian (EDQNM) 
approach, for example, introduces triad interactions by which the turbulence at wave 
number k is strongly influenced by the behavior at wave numbers p and q, constrained 
only by the requirement that p + q + k = 0, but otherwise summed over all other localities 
in wave-number space. Again in colloquial terms, we heuristically visualize 
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big eddies that spin up small ones or rotate them so as to alter their state of 
nonisotropy, , 

eddies of one size distorting eddies of another size so as to create those of a third size, 
small eddies sucking energy from large ones in the same way that turbulence sucks 
energy from a mean-flow shear, and 
eddy instability in a mean-flow shear that results in eddy pairs coalescing to form a 
distinctly larger eddy (the vortex pairing process). 
The formal derivation of terms that represent these and other nonlocal processes can 

only be given with partial rigor. Some key steps that we use in this report are roughly 
described as follows: 

0 Two-point correlation functions like the generalized Reynolds stress Rij(x,  r, t )  are 
often simplified by, in effect, retaining only the lowest terms in a Maclaurin expansion 
of the separation distance about r = 0. Retention of higher order terms results in 
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a variety of processes. Correlations arising out of the advective term, for example, 
exhibit a mean-flow-induced cascade, i.e., the distortion of turbulent structures that 
alters their size and thus the nature of the two-point correlations as functions of 
r. The third-order correlation terms arising from advection represent, in analogous 
fashion, the stretching effects of large-scale turbulent shear on the distortion of 
smaller-scale structures, which likewise create a Reynolds stress flux (cascade) in 
wave-number space. We refer to this process as second-point-induced cascade, for 
which the resemblance to mean-flow-shear-induced cascade is exploited in deriving its 
representation. These effects are clearly nonlocal in wave-number space. They also 
have implications for self-diffusion of turbulence or diffusion of a passive scalar in 
physical space. 

0 In a similar fashion we retain higher-order terms in the pressure-velocity correlations, 
which, through the integral Poisson solution, contain both second- and third-order 
correlation terms. The former couple to mean-flow gradients and, with retention of 
higher-order terms in the Maclaurin expansion, lead directly to  nonlocal turbulence 
creation in physical space. The latter lead directly to a generalization of representation 
for turbulent self-diffusion in physical space, in which the effective “eddy viscosity” 
receives nonlocal contributions from all wave numbers. 
A significant issue not resolved in this report is that of higher-order nonlocal effects 

that could come from the use of finite-domain Poisson-solver integrals for configurations 
that are only locally homogeneous. 
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E. Molecular Viscosity 
In most of this report we neglect the effects of molecular viscosity, whose presence 

is assumed to be manifested only by the conversion to heat of the turbulent energy that 
has cascaded to very high wave numbers. In single-point turbulence transport equations, 
the effects of viscosity are awkward to include, whereas in the two-point and spectral 
representations the effects can be included easily with no approximations. Thus, it 
is intriguing to ask if turbulence transport theory can be used successfully for solving 
interesting problems at low ’ Reynolds numbers. In particular, can we investigate the 

to heat (molecular-scale fluctuations) or to the intermediate state of turbulence? The 
existence of a critical Reynolds number for transition to turbulence and the dependence 
of that critical Reynolds number on the level of perturbation are issues that turbulence 
transport theory should, at least in principle, be capable of addressing. To realize this 
capability, however, the equations require another feature that most formulations lack, 

competing processes that convert mean-flow kinetic or potential energy either directly 

e 
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namely the ability to describe so-called laminar instability processes. We show in this 
report that this latter capability requires the inclusion of nonlocal processes in physical 
space. Potential flow theories for Kelvin-Helmholtz or Rayleigh-Taylor instabilities make 
crucial use of that nonlocality in the incorporation of inertial effects of fluid lying outside 
the immediate vicinity of the unstable interface. Turbulence transport theories that lack 
this capability accordingly create too much turbulence near the interface and too little 
away from the interface. For turbulence scales smaller than or comparable to the width 
of the perturbed region, W ,  there is little significance that is lost from the formulations 
as a result of this deficiency. For larger scales (IklW small) the turbulence transport error 
becomes very large, with significant consequences in regard to the small-wave-number 
effects on such features as self-similarity of the entire spectral evolution. 

With the inclusion of both the molecular viscosity and the nonlocality in physical 
space, turbulence transport theory should be able to address the features of critical 
Reynolds number and low-wave-number behavior, although much work remains to be done 
in this regard. 

F. Summary of Basic Equations 
Derivations of various forms for the spectral equations have been given by numerous 

authors. Our work is based especially on the forms presented by BHRZ, Clark (1992) and 
Clark and Zemach (1995). 

For a fluid with constant density, the starting point is the Navier-Stokes equations for 
a fluid with constant kinematic viscosity, 

With the standard Reynolds decomposition of flow variables into mean and fluctuating 
parts, 

I ua = ua + ui 

p = F + p ' ,  

it follows that 

and 
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in which the Reynolds stress is 

In this single-point form for the Reynolds stress, u: and us are both at the same point in 
physical space (and also at the same time). From the Navier-Stokes equations it is possible 
to derive a transport equation for this single-point Reynolds stress: 

in which 

In this form we can see various difficulties with single-point transport models. First is the 
introduction of several second-order correlations, which typically have been represented 
by various types of modeling approximations. Second is the appearance of a third- 
order correlation, u : u ~ u ~ ,  for which a transport equation could also be derived with 
the introduction of yet more unknown correlations. Third is the introduction of Dij, 

which has the dimensions of Reynolds stress divided by the square of distance. This 
last quantity is at the heart of single-point Reynolds stress modeling difficulties. How 
can we determine an appropriate measure of effective turbulence scale that can serve to 
characterize the dimension of distance that is introduced by Dij? Many authors [e.g., Daly 
and Harlow (1970)l identify the loss rate of Rij with viscous dissipation to heat, a fallacy 
that compounds the difficulty in determining an appropriate length scale. More recently 
it has been recognized that the loss rate of Rij is properly associated with a flux through 
the inertial range of wave-number space that can equal the dissipation rate only in very 
special circumstances. 

For this and various other reasons it has become apparent that effective turbulence 
transport modeling must come to grips with some measure of the size-scale structure of 
the fluctuations. Although the single-point Reynolds stress is sufficient to describe the 
effects of turbulence on the mean flow, the evolution of that Reynolds stress is much more 
satisfactorily described in terms of its two-point generalization, 
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for which a transport equation can be derived in the form given by BHRZ: 

where 5’ means that the enclosed expression is to be symmetrized by adding terms with 
i t) j ,  x1 - x2. The quantities on the right are defined by 

Azj (x1, x2) = v (v? + vi) Rij (x1, x2) , 

a 

Using Green’s theorem, we write, for an infinite domain, 

dx’ a a  
-- {2un(x’)Rmj(x’,x2) + Tmnj(x’yx2)) e pj (Xl ,X2)  = J 47r 1x1 - X‘I ax:, ax:, 

For some purposes [Oberlack and Peters (1993)l) it is convenient to introduce the variables 

and carry through the “spectral” developments completely in terms of the separation 
variable, r. For the analysis of nonlocal processes in physical space, this procedure is 
especially convenient, as described in another part of this report. For a truly spectral 
approach we introduce the Fourier transformation, 

4 k . r  
Rij (x, k) = e Rij (x + r/2, x - r/2)dr . J 

0 We also define 

9 



so that J &(x, k) dk is the turbulent kinetic energy per unit mass of the fluid. Note that 
the single-point Reynolds stress tensor that appears in the mean-flow equation is given by 

The two-point Reynolds stress transport equation can also be written in terms of x 
and r and Fourier transformed relative to the latter variable. The result can be expressed 
as 

where S now means the addition of like terms in which i and j are interchanged and k is 
replaced by -k. The expressions on the right are abbreviations for 

with Vp) operating on iii(x), and VI, operating on any function of k to its right. 
Tinj(x, k) is the Fourier transform of Tinj (x + i r ,  x - i r ) .  This equation is still an 
exact development from the Navier-Stokes equations. It serves as the starting point for a 
variety of approximate representations, including 

0 truncation of the series expansion for the 2 operator after some number of terms, 
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0 use of local approximations for parts of the integrands in Dij(x, k) and Gij(x, k), and 
0 insertion of EDQNM approximations for Tinj (x, k). 

With the first two of these, BHRZ obtained a form that contains significant spectral 

B 

e 
information. Using their numbering of terms for further reference we write 

s 

* 

a 

Note that the overbars have been dropped at this stage from the mean-flow velocity. 
From this equation, BHRZ derive a transport equation for Eij(x,k) by taking a 

suitable integral over angles in k space. For our initial purposes of examination of nonlocal 
closure models, an angularly averaged version of the equation has many advantages of 
simplicity and tractability for numerical testing. There are some significant losses, however, 
in working with the angularly integrated equation. In particular we lose the important 
relationship between nonisotropy in k space and nonisotropy in physical space, which, in 
some respects, makes the analysis conceptually simpler, although much more difficult in 
the mechanics of accomplishment. 
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It is not a straightforward 
BHRZ note that quantities like 
space, while others like 

process to perform the angular integrations in k space. 
-2vk2Rij(x, k) are trivially integrable over angles in k 

* * 

are not. They postulate a form for the integral based on the available tensors, 
considerations of dimensionality, and requirements for various contractions. Alternatively, 
we can look for self-similar forms that are functions of combinations of spectral and spatial 
variables, parameterized by functions of x and t only. BHRZ used this form-function 
approach in taking moments of their Eii (x, k) equation to arrive at single-point equations, 
but their form functions are those of purely isotropic homogeneous turbulence decay. 
Nevertheless, they succeeded in obtaining Rij - E i j  and k-E single-point models that show 
more clearly than ever before the origin of loss rate for Rij. Our goal is to obtain much 
more general form functions and to use them directly for moments in both the angular 
and magnitude integrals within k space. 

With operators 

1 v = v ( -2k2 + p 2 )  , 
and 

the BHRZ transport equation for Eij(x, k) is 

in which 

c 

* 
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are mean-flow coupling terms that all have vanishing contraction and accordingly give no 
contribution to the creation of overall turbulence energy, E = Eee. Also 

dk 00 m , ~  
is a model for the effective turbulence eddy viscosity. 
contraction constraints shows that 

The examination of various 

while c B ,  c D ,  c1, c2, and cm are five dimensionless constants yet to be specified. As 
discussed by Clark (1992)) there is reason to believe that the values of these constants 
should be related to the Kolmogorov constant, ck, by 

* 
and that 

C B  = 314 . 

* 

It is believed that CK is approximately 1.5. The value of C D  is less well determined; we 
resolve the matter somewhat by considering the important nonisotropic contributions that 
can occur in the turbulence self-diffusion near a free shear layer. 

The spatial diffusion T(Eij) contains a term 

a aEij 
- 8% (%) * 

There are both conceptual and practical difficulties with this particular formulation. 
Spatial diffusion approximates two very different processes. In the triple correlation term 
arising from advection, a -  

the flux should have complete symmetry among the indices i, j, and n; in the T operator 
this requirement is clearly violated. The pressure-velocity correlation term 

- (u;u;u$ ) 

ax, 
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depends on spatial variations in the i and j directions; such forms are not present in 
the expression for T. In addition to these conceptual difficulties, there is a practical one. 
With the particular diffusion term in T, the calculation of turbulence evolution in a free 
shear layer exhibits a striking sensitivity to the value of CD. For only one particular value 
can self-similarity be sustained; for any other value the solution degenerates because the 
turbulence diffuses either too slowly or too rapidly in comparison to the growth rate of the 
shear-layer width. The matter is discussed further in Chapter V. 

BHRZ discuss some motivations for splitting Eij into a diagonal part and a deviator 

Part, 

thereby obtaining the transport equations, 

The motivation for this split lies in its ability to describe the very different high-wave- 
number behaviors for E and &j, which vary in the self-similar inertial range as k - 5 / 3  and 
k-713, 

The terms in the transport equation for E exhibit their physical interpretations quite 
well. The left side of the equation describes changes of E along the mean motion of the 
fluid flow. V [ E ]  denotes the effects of molecular viscosity, combining the dissipation to 
heat (principally at high wave numbers, as indicated by the factor I C 2 )  and the diffusion 
of the turbulent energy. T[E] describes the transport of turbulence in both physical 
space (turbulence self-diffusion) and wave-number space (cascade, the true basis for loss 
of turbulence energy from low wave numbers). T[E] is presented in the form of models for 
the triple correlation terms that occur in both the advection and in the integral solution of 
the Poisson equation for pressure, which has been used in the pressure-velocity correlation 
terms. (These models are considerably altered and extended in the investigations described 
in this report.) The term - 2 E n m d u n l d ~ m  represents the source to turbulence energy from 
gradients in the mean-flow. Integration of this term over all values of IC gives the total 
source of turbulence energy, which is exactly conservative in consideration of the sink to 
mean-flow energy as described by the evolution equation for tii converted to a transport 
equation for &fie. The CF term in the E equation describes a lowest-order approximation 
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to the mean-flow-induced cascade of turbulence energy in k space. As written, this term 
represents the effects of eddy distortion by the mean flow, or in colloquial terms, the 
stretching of an eddy so as to thin it out to a smaller cross-section size. We describe a 
significant generalization of this term to include the nonlocal effects of large-eddy shears 
distorting the structure of small eddies and most particularly to the extreme limit of mean- 
flow free shears inducing the coalescence of smaller eddies (the vortex-pairing process). 
This last step of generalization requires the sorting out of a very specific process from the 
enormous number of complex nonlocal interactions represented by both the second- and 
third-order correlation functions. (It is worth noting that second-order correlations that 
couple to mean flow give a special case of nonlocal coupling in k space that is accompanied 
in both the advective and the pressure-velocity processes by third-order correlation terms 
representing turbulence coupling to larger eddies. Again, this observation is closely related 
to the concept that large structures can be characterized equally well as part of the 
turbulence or part of the mean flow, which is a concept we believe can be exploited to 
great advantage in the accomplishment of modeling.) 

The transport equation for &, the deviatoric part, has a directly analogous 
interpretation of terms. In addition that equation contains a cm term, which, in reference to 
the Eij transport equation, describes the tendency for return to isotropy; for the deviatoric 
part, this process is purely one of decay. As modeled here, the rate of return to isotropy 
depends only on the strength of the turbulence at the wave number in question; we show 
that this rate and others (e.g., of cascade) are much more appropriately determined as 
the sum of effects from all parts of k space. Note that whereas E has only a cascade 
decay (neglecting molecular viscosity), fiij has two decay processes, cascade and return to 
isotropy. 

This double decay has consequences for modeling the so-called dissipation tensor, ~ i j ,  

in single-point theories. Some authors [e.g., Daly and Harlow (1970) and Linn (1997)l 
have suggested that Eij be proportional to Rij while others claim that c i j  should have only 
diagonal components. Here we can see that the issue is related to the comparison between 
cascade flux rate (for the decay of E )  and return-to-isotropy rate (for the decay of l & j ) .  

As discussed in this report, both of these rates have nonlocal generalizations from which 
we can draw conclusions related to the modeling of cij .  

The next step in the evolution of equations is the determination of self-similar form 
functions to be used in performing moment integrals in k space and thus arriving at single- 
point models for practical calculations in science and engineering applications. BHRZ show 
an excellent example of this procedure based on the self-similar forms for homogeneous, 
isotropic turbulent decay. Their result is a particular form for the well-known heuristically 
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derived equations generally known as Rij - c i j  (and I C + )  models, which are not described 
in this introductory summary. With more general self-similar form functions, we derive 
moments that produce extensions to the Riy-Eij models for use with mean-flow drives that 
are strongly nonhomogeneous and nonisotropic. Comparisons among models are presented 
in another part of this report. 

G. The Boussinesq Approximation 
To estimate the tensor structure of the Reynolds stress, it is often convenient to 

use an approximate representation that bears a close resemblance to the Stokes tensor 
for molecular dynamics. In its simplest realization, this representation is constructed of 
“available” tensors, constrained by dimensionality and correctness of contractions. For the 
spectrally integrated Reynolds stress, Rij, the approximation is usually given in the form 

A heuristic derivation of this expression can be based on the full Reynolds stress transport 
equation, closed by modeling and spectrally integrated. That equation describes the 
various sources and sinks to time variations of Rij; during circumstances of rapid changes 
in drive, the terms contribute in varying proportions to dRij/at. As the drive settles to 
steady or self-similar form, the contributing terms tend more to balance each other than 
to feed the Reynolds stress growth. It is this balance (principally among shear creation, 
return to isotropy, and decay) that leads to the Boussinesq approximation. 

Similar balances for variable-density turbulence lead to analogous approximations, 
Steinkamp (1996) and Steinkamp, Clark, and Harlow (1995). 

These approximations can be extended to include some of the effects of time variations. 
The starting point is the Rij transport equation in the following form: 

w 

* 

I 

in which w is a constant, K = Rnn/2, and d/dt is the time derivative along the mean flow. 
Thus 

1 s dRij R . .  = -& 6.. - - - 
w&? dt Y 3 n 23 
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Substitute this equation into itself; the result is, to lowest order, 

Numerous previous studies have identified 

with w determined by 
2 
- M 0.09 
3w 

or, w M 7.4. Thus, the usual Boussinesq approximation is extended to approximate 
transient effects through modification of the diagonal part of the Reynolds stress tensor. 
Note that realizability is violated if the coefficient of Sij is negative. Indeed, this 
approximation requires 

for validity. 

d K  7.4Kz 
- << - d t  S 
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11. NONLOCAL PROCESSES IN WAVE-NUMBER SPACE 

A. Introductory Description 
Turbulent structures at specific length scales do not have a one-to-one correspondence 

with the structures at specific wave numbers. For heuristic conceptualization we 
nevertheless associate with profit the large-scale processes with small wave numbers and 
vice versa. 

Mean-flow free shear is an interesting feature that combines both large and small wave 
numbers, looking like a very large sharp-edged vortex, i.e., a transition from solid-body 
rotational flow inside to a fluid at rest outside. The sharp-edged transition is rich in high 
wave numbers; the large size gives some distinctive low wave number components. Thus 
the classic mean-flow source terms in the turbulence transport equations represent a special 
case of nonlocal interaction in k space, in which both very small (lkl + 0) and very large 
wave numbers interact with turbulence at a specific wave-number to enhance its energy. 

The actual large structures of what we would ordinarily identify as turbulence do 
not necessarily have the wave number properties of a free shear layer but, nevertheless, 
can interact with the turbulence at any specific wave number to transfer Reynolds stress 
strength to that wave-number, as described by triple-correlation terms from both the 
advection and pressure-velocity parts of the transport equation. Indeed, for each of the 
mean-flow coupling terms there is a corresponding triple-correlation term, which describes 
more generally the coupling from all other scales. The part that behaves like a mean-flow 
shear source to the turbulence can be modeled in a form that we call second-point direct 
cascade. It is only one of the nonlocal processes that we have modeled and tested in our 
investigations. Altogether there are six types that we have considered. 

1. Mean-flow-induced direct cascade, i.e., eddy distortion in mean-flow shear. 
2. Second-point direct cascade (eddy distortion and feeding from large-scale structures 

3. Mean-flow-induced reverse cascade (vortex pairing). 
4. Second-point-induced reverse cascade (vortex pairing in large-structure shear layers; 

also the part of the vortex distortion leading to smaller I C ) .  
5. Spontaneous reverse cascade (attraction of vortex pairs during parallel alignment- 

especially prominent in turbulence constrained to two dimensions). 
6. Nonlocal rates for local cascade models, local return-to-isotropy descriptions, and 

similar processes in which the rate contributions from all wave numbers determine the 
evolution at  any particular wave number. 

and depletion by feeding to small-scale structures). 
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Note that a special case of number 2 is the cascade associated with the idealized 
concept of the instability of momentarily aligned vortices even at the same scale, in which 
one of the pair is captured somewhere along its line by the other and pulled around 
in “hairpin” fashion. Note also that the mean-flow-induced reverse cascade is not a 
conservative process in wave-number space. 

The existence of a local (same-wave-number) contribution to each of these processes 
does not, however, justify its local representation in turbulence spectral transport 
equations. The success of local representations results from an entirely different concept, 
namely the strong tendency for the structure of turbulence to continuously approach self- 
similarity (“universality” of form), which enables the properties of the entire spectrum to 
be determined with surprising accuracy from the purely local properties of the spectrum. 
Chapter IV discusses these matters in more detail. 

The formal source to each of these nonlocal processes lies in higher-order terms in 
Maclaurin expansions about r = 0 and in the use of a completely nonlocal integrand in 
the double- and triple-correlation parts of the Green’s function solution for the pressure- 
velocity correlation terms. The EDQNM approach shows that triple-correlation terms 
can be approximated by integrals of triad interactions over all of wave-number space: 
structures at wave number p interact with those at wave number q to produce changes 
at wave number k, with the constraint that p + q + k = 0. For circumstances with 
significant nonhomogeneity and nonisotropy, however, the usual techniques of EDQNM 
are of questionable validity, although they have had a strong influence in guiding many 
parts of our investigations. 

Thus our procedure has been to postulate the forms for nonlocal models with due 
recognition of the numerous constraints that must be observed, as described in the 
Introduction. As we shall show, there is remarkably little freedom in the choice of models. 
Single-point k-6 and related models succeed as well as they do because of the stringent 
nature of these constraints. At the single-point k-c level of complexity, the dominant 
constraints are those of dimensionality and Galilean invariance, together with the more 
nebulous idea of involving only low-order derivatives and no products of derivatives. At the 
single-point Rij - Eij level, the constraint of proper tensor forms is added, together with 
the requirements of physical “cause and effect,’’ e.g., isotropic drive circumstances cannot 
produce nonisotropic turbulence. (But note a discussion by Clark (1992) that seems to 
contradict this constraint, in which “hidden” spectral components of nonisotropy can serve 
as a source for overall integral nonisotropy.) Progressively greater complexity (i.e., spectral 
models in k space or k space) would seem to increase the freedom of choice for the terms, 
but at each stage there are additional constraints that severely curtail that freedom. Thus 
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there is much optimism for the discovery of viable models through the route of constrained 
postulates. Also there is much incentive, in that the achievement of rigorous derivations 
is likely a long way off and even the approximate derivations like those of EDQNM have 
highly restricted applicability. 

B. Mean-Flow-Induced Direct Cascade and Reverse Cascade (Items 1 and 3) 
In the spectral derivation of a transport equation for Rij(x,  k, t ) ,  we note in the list. 

in Section 1I.A that the term (2b)-which is in the Reynolds stress transport equation in 
Section 1.F-describes a conservative flux in k space, driven by the mean flow gradient. 
For purely homogeneous shear, this term is exact; for any inhomogeneity in the mean flow 
shear, the term is only a lowest order approximation to the Maclaurin expansion in r. The 
entire expansion is, of course, highly complicated. 

Even though term (2b) is exact to that order in k space, the corresponding term 
in k space, modeled by the CF family of terms, cannot be expressed exactly except in 
circumstances of self-similarity of the spectral behavior. In the derivations of BHRZ the 
terms were modeled in a manner that relates modeling coefficients to those for the pressure- 
velocity coupling to mean flow. Heuristically we note that the overall structure for these 
modeled terms contains a form like 

where p is a dimensionless constant and C is a measure of the local mean flow strain rate. 
Note that this expression contains the lowest order terms from the expansion of 

as a power series in p. Thus, with no pretense at rigor, we are led to postulate a source 
term to Eij(x,  k )  transport of the form 

- ( I+  p)  { Ei, [(l + p)k]  
axn -1 8% + Ej, [(l + p)k] aGi 

and to explore the possibility that this term can describe the vortex pairing process in 
mean-flow free shear. In effect, this term is meant to be a crude representation of a 
triad interaction, in which “turbulence” with components that are important as k -, 0 
(the mean-flow free shear) couple with turbulence at wave number (1 + p ) k  to produce 
turbulence at k. 

This vortex-pairing process appears to be quite distinct from that described in item 5 
(spontaneous reverse cascade). The relationship to Leith’s (1990) stochastic backscatter 
has not yet been worked out. 
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The coefficient, 1 + p,  in this nonlocal version of mean-flow turbulence creation is 
determined in such a way that the integral over all values of k gives the same result as the 
creation rate with p = 0 (i.e., the local version, which is exactly conservative of energy in 
exchange with the mean flow). 

One can imagine generalizations of the terms 

in which the Eij values are all located also at (1 + p)k. The effective value of /-t may 
vary from one type of term to another. For p > 0 we purport to describe mean-flow-shear 
induced reverse cascade; for p < 0 the induced cascade is direct. The turbulence at a given 
wave number may experience both. An eddy that is contracted in one direction may be 
expanded in an orthogonal direction. The easiest way to extract relevant information in 
this regard is to consider the mean-flow-induced cascade in the local formulation with the 
CF terms. 

C. Second-Point Cascade (Items 2 and 4) 
Kraichnan and Spiegel (1962) have suggested an interesting approximation to the 

transfer of energy in isotropic turbulence, which we refer to as second-point cascade. We 
shall discuss here some consequences of this approach and its relationship to the localized 
formulation. 

The local cascade in k space has been described by a combination of advective and 
diffusive terms: 

We note that this form could be generalized to 

4 

9 
Integration of this latter form over all angles in k space gives the following result: 

When g(k) = 0, we recover exactly our model form in k space, with c1/c2 = 2, as mentioned 
in the Introduction and required for equilibrium of the equipartition spectrum. 
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The essence of second-point cascade is exemplified by its formulation for Eee(k) or 
simply E ( k ) .  Neglecting all the other contributions to the evolution of E ( k ) ,  we write the 
second-point terms as follows: 

It follows that 

Dimensionality and equilibrium of the equipartition spectrum have been L,iown by 
Kraichnan and Spiegel (1962) to be strong constraints on the structure of the r(p, k) 
function. If one writes the function as: 

and if n is chosen to be 11/4 and the weighting function, g(X), is chosen to equal g(l/X) 
as well as to satisfy 

g(x) < 0 (2-9) , 

then the equipartition spectrum E(k)  cx k2 will be an equilibrium spectrum. One may 
verify also that the inertial-range spectrum of Kolmogorov, E ( k )  cx k-s, will also be an 
equilibrium spectrum under the action of only inertial' forces. 

If one now inserts 

into the equation for d E ( k , t ) / d t ,  one finds that it can be written as: 

where we have replaced the variable, p ,  by p = Xk and then replaced the new variable, A, 
by 1 /X  in the second term. If one sets 

where 
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one finds the evolution equation of E ( k , t )  is given by 

When the width of g ( X )  << 1 ,  one can perform a Taylor series of the integrand about X = 1 
and re-express the result in terms of the moments, Mm, of g :  

00 

Mm = 1 dX (A - l ) "g (X)  . 

We thereby obtain the following result, retaining only the first two moments, 

which is conservative in k space and satisfies the requirement that the inertial range 
spectrum (in the absence of inertial forces) is an equilibrium solution. For this local 
approximation to  be valid, the first two moments must satisfy MI = 3M2/2. To 
demonstrate this result, we first note that we can replace the variable X by 1 /X  in the 
expression of the moment, M,, and thereby obtain 

However, 1/X"+2 can also be expressed as a Taylor series about X = 1: 

where the binomial coefficient is defined by: 

(m + I)! n! ' 

One thus obtains the following relation that must be satisfied by the moments of g:  

m + n + l  Mm = ( ) (-)mfnMm+n 
n = O  

Keeping only the leading order moments appropriate in the limit of a narrow distribution, 
g ,  we retain: 
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This result pairs the moments in the following manner for a sufficiently narrow distribution, 
9:  

(m 2, Mm+l, m = odd integer. 
2 

Mm= 

This also implies that an odd moment is always of the same order of magnitude as the 
next higher even moment. We utilize this result to insert M1 = 3M2/2 into our local 
approximation: 

This yields the local Leith (1967) model that has the property that the equipartition 
spectrum is an equilibrium spectrum! We observe also that it has both wavelike and 
diffusive contributions. 

If solutions of these equations settle down into generic forms that can be parameterized 
by, say, only two parameters, then, conceivably, in the presence of rapid transients the 
spectra can be modeled by linearly superposing these generic forms. If such proves to be 
the case, then only a finite number of parameters would be needed to model the evolution 
of rapid transients. These parameters could be determined by an equal number of spectral 
moments. 

Returning to the integral form of the equation, 
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we can discuss its properties by an alternative reduction procedure based on a special form 
for the coupling function, 

so that 

After performing some algebraic reductions, we can return to a more general form of r ( p ,  k) 
by introducing an appropriate weighting function, g( A) and integrating over all possible 
values of X from 0 to 00; the necessary relation is 

I 
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Our second-point contribution to the evolution of E(k)  becomes, for a single second 
point at kX,  

and it is easily shown that 

aE(V  - = E(Xk)F(Xk, k )  at 
- E ( k ) h  X ( k ,  ;) -; 

Our goal, now, is to demonstrate the relation between second-point cascade and the local 
cascade (c1 and c2 terms) of the BHRZ model. To accomplish the reduction of one to the 
other, we set X = 1 + E and expand as a power series in E .  After considerable manipulation 
and replacing E by X - 1, we find 

where 

Thus 

+ (A 2X - 1 ) 2  k2F(k,  k)?} 

plus terms proportional to (A - l)3. With proper choice to F(p ,  k) this expression becomes 
the local cascade form with wavelike and diffusive contributions (the c1 and c2 terms in 
the BHRZ model). The diffusive term has a positive definite coefficient if F ( k ,  k )  > 0. The 
wave-like part is negative for X < 1, describing (as expected) a rightward propagating wave 
in k space; likewise for X > 1 the wave propagates to the left (i.e., lower wave numbers). 
Note that the diffusive part propagates energy toward both lower and higher wave numbers, 
whereas the basic second-point formulation is unidirectional for a given value of A. It is 
tempting to give bidirectionality a physical interpretation, denoting the effects of both 
direct and reverse cascade; but this addition of physics is more reasonably associated with 
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a weighted sum of contributions from many X values, both greater or less than unity. The 
contributions from X < 1 then represent the effects of large eddies “feeding” smaller ones 
in analogy to the feeding process from mean-flow shear; the contributions from X > 1 may 
then represent spontaneous eddy coalescence, especially when the turbulence is constrained 
to two space dimensions. (For three-dimensional turbulence this reverse process may 
violate some sort of generalized entropy constraint, but this speculation remains to be 
explored. ) 

Multiplication of the expanded equation by a weighting function, g(X), and integrating 
results in the form 

in which 

A property of the BHRZ local-cascade model is that constancy of flux in both the c1 

and c2 terms results in the classic k-5 /3  spectrum of the inertial regime. Does the second- 
point formulation retain this property? To answer this question consider the dimensionally 
proper expression 

F(XIC, I C )  = Fok&qXk)  

so that 

Suppose that E ( k )  and E(Xk) both lie in a regime in which E ( k )  = Bokn. Then 

With n = -5/3 this expression vanishes, which thereby confirms that second-point cascade 
can preserve the classic behavior of the inertial regime. 

We can see a constraint on g(X) when we return to the integral second-point form. If 
g(X) = go, a constant, then with the above choice for F ( p ,  k ) ,  we get I 
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so that the integral second-point equation becomes 
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which is nonconvergent. It follows that g ( X )  must be more locally compact around X = 1, 
with specific constraints that depend on the choice of F(p,  k). 

Second-point cascade for Eij ( k )  is potentially somewhat richer in the choice of 
couplings from Xk to k, with the coupling from k to k/X following in conservative form. 
Whereas E may have an inertial range with k - 5 / 3  spectral form, the deviator part, Eij, is 
likely to fall off more rapidly in the inertial range, perhaps as k-7 /3  in many interesting 
circumstances. 

The direct generalization for Eij(k) of the above form for E(k )  is 

a E i j ( k )  = Lm Eij(p)I’(p, k) d p  - Lm Eij(k)I’(k,p) d p  at 

with the same (or another) form for l?(p,k) .  This form has the intuitively plausible 
justification that the transfer from p depends directly on the strength of Eij at that wave 
number. 

There is, however, a heuristic argument for another kind of second-point form. The 
guiding idea is based on the analogy to coupling from mean-flow shear, which, without 
modeling, can be written 

Thus the source to Eij(k) is proportional to the various components of Eij at wave number 
k, not at the wave number of the source (the mean-flow shear). The magnitudes of Eie 
components associated with diii/dxe are proportional to iieGe, so that we can estimate 

where k‘ is the wave number associated with the mean-flow free-shear-layer thickness. This 
line of reasoning then suggests second-point cascade coupling in the form 
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with 

and r0 (f) is a function similar to g(A) in describing the likely p values that couple to k .  
An even closer analogy can be made to the coupling to mean flow, in which we make 

the correspondence, 

so that 

in which (i t--) j )  means the same term with i and j interchanged, and 

This more general second-point cascade form violates our idea of the separation of 
processes, in that it produces both a transfer in k space and a redistribution of the tensor 
components. Its close analogy to mean-flow coupling, however, furnishes good incentive 
for investigating the properties of this model. 

Each of these models can be reduced to a corresponding single-second-point 
setting 

r0 (f) = 706 (f - A) ; 

form by 

and by expanding in a power series in (A - l), we can obtain a local approximation for 
each of these forms. 

D. Nonlocal Rates (Item 6) 

isotropy, for example in the Rotta formulation, is written 
Another class of nonlocality has local processes driven by nonlocal rates. Return to 

To lowest order, the local return to isotropy is proportional to the local departure 
therefrom, with a rate coefficient that depends only on the strength of turbulence at 
that wave number. Many investigators have recognized, however, that actions disruptive 
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to variations in strength among the turbulence components come from the randomizing 
effects of the turbulence at all scales. Various alternative rate coefficients have accordingly 
been proposed, of which two types are 

in which kl = k or kl = 00, and f ($) is a dimensionless function of its argument. 
Different forms emphasize the effects of different parts of the spectrum. Performing the 
integral before taking the square root, for example, gives an enhanced effect from the 
dominant parts of the E(k)  spectrum; this form was suggested by Herring (1993)) with 
f ($1 = 1. 

\ I  

Another type of nonlocal rate occurs in the expressions for second-point cascade. In 
exploiting the analogy to mean-flow shear coupling, we represented the nature of diii/axe 
in terms of Eie at a single wave number. Actually, a more effective representation would 
carry some measure of the full spectral richness of the large-eddy analogy to free shear, so 
that a variety of integral representations for F(Ak,  k )  could be proposed, much like those 
of the rate coefficient for return to isotropy. Even when the second-point formulation has 
been expanded as a power series in (A - l), the nonlocality can be conceived as persisting. 
Thus, the simplest version of this representation, 

-c1 k2 d m E i j  ( k )  + ~2 k3 Jm 
at 

could be extended to 

and numerous variants, including the presence of f in the integrands and a version 
with integration performed before taking the square root. 

The effective eddy viscosity (turbulence diffusion coefficient) is also an excellent 
candidate for nonlocal representation. The turbulence self-diffusion represents a very 
complicated combination of random-walk processes, derived from the stochastic effects of 
fluctuations from all scales. With the inclusion of passive or active materials in the fluid, 
the stochastic advective transport may include an ordered (wave-like) interpenetration as 
well as the disordered (diffusive) part [Steinkamp, Clark, and Harlow (1995)l. 
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The most effective part of the spectrum for the accomplishment of diffusion is 
associated with the largest scales of fluctuating motion. Indeed it is on this basis that 
the meaningful definition of single-point dissipation (associated with Eij, the dissipation 
tensor) is related to the flux of spectral Reynolds stress components from the small-wave- 
number (large-scale) part of the spectrum to the large-wave-number (small-scale) part of 
the spectrum, rather than the viscous dissipation from small scales to heat. 

Heuristic justification for the dominant importance of small-wave-number fluctuations 
is based on the random-walk formula for the mean expected displacement, D, that results 
from N steps of individual displacement with speed v acting over a time increment, S t ,  

D = v S t f i .  

Over a total elapsed time, T, we note that 6 t  = X / N ,  so that 

For a fixed v and a given total elapsed time, the fewer the steps the greater the expected 
displacement. Because each step is of length v T / N ,  we conclude that the larger the 
individual step the greater is D. For turbulence this means that the larger scales will give 
much more displacement in a given period of time than will be produced by the small 
scales. 

The simplest local representation for the turbulence diffusion coefficient, ut, is derived 
purely on the basis of dimensionality, 

although the relationship to the formula for D is clearly visible through the relation 
D = m. Rewriting the random-walk formula in the form D = d&, with Sx being 
the displacement per step, we are led to associate 

9 

ut = VSX . 

The correspondence with turbulence is v --$ &!? and 6x --$ l/k, which leads to the 
expression for vt as moderated by the dimensionless constant, CD. 

In BHRZ a nonlocal extension for' this coefficient is suggested in the form 
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Extending the integration to k = 00 sums contributions from wave numbers both smaller 
- and larger than the particular wave number of consideration. Can the contributions for 
large wave numbers be considered in analogy to the Brownian diffusion of particles by 
bombardment with molecules that are much smaller? 

4 

More general variants for vt include 

3L 

U 

and the extended Herring version, 

There is another variant to turbulent diffusion that is also potentially quite significant, 
namely the introduction of nonisotropic diffusion with a tensor diffusion coefficient, such 
that 

In violation of our postulate of the separation of processes, we could imagine a variety of 
versions in which the diffusive flux of Eij is driven by gradients of other components of 
the tensor. There are numerous variants, for example, 

and even 
dEij  d dEe j 

d t  dxi  dxm -vt,em- + (i * j) . - -- 

The proper choice among these possibilities is discussed in Chapter V. 
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111. NONLOCAL PROCESSES IN PHYSICAL SPACE 
Correlations between points that are separated in physical space enable the charac- 

0 The local (in physical space) interactions among structures at various scales (nonlocal 
in wave-number space). 

0 The instantaneous pressure-wave propagation of fluctuations from one point in 
physical space to another (nonlocal in physical space). 
The first of these is discussed in Chapter 11. The second is discussed in this chapter. 
For a fluid with constant density, the two processes that concern us in physical space 

are wave-like propagation, especially related to the nonlocal coupling between turbulence 
and mean flow, and the diffusion-like propagation arising from nonlocal coupling among 
turbulence structures at different positions. Again, we exploit the close relationship 
between two types of interactions, one of them with large structures that can be considered 
mean flow and the other with large structures that are considered to be the low-wave- 
number parts of the turbulence itself. The mean-flow-coupling part arises directly from 
the derivations and is easily expressed in the transport equations; the large-scale coupling 
emerges through the triple-correlation functions and is accordingly more obscure insofar 
as effective modeling is concerned, but is amenable to modeling guidance by analogy to 
the more transparent formulations for the mean-flow coupling. 

Modeling these nonlocal processes also receives much valuable assistance by the use of 
generic self-similar form functions, as discussed in Chapter IV. In essence, the concept of 
these form functions takes its validity from the continuous tendency for turbulence to adapt 
to its surroundings in ways that are highly constrained by the fundamental principles of 
available tensor forms, dimensionality, Galilean invariance, and by the ideas of generalized 
entropy (this last being described by realizability in its extremes of manifestation). 

Universal self-similar forms are at best an approximation to the real structure, and 
there are significant questions regarding their existence in rapidly changing external drive 
circumstances. Even in seemingly ideal surroundings there are issues of nonuniqueness 
that arise from the persistence of perturbations in the very-low-wave-number parts of the 
spectrum. But a particularly useful aspect of these form functions is that they do not 
require homogeneity for their existence; indeed the most significant and valuable form 
functions are those that arise with strongly nonhomogeneous, nonisotropic drivers, for 
example in free shear layers, strong mean-flow pressure gradients, the effects of nearby 
rigid walls, and the existence of large gradients in density. 

terization of two closely related nonlocal processes: 4 
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The classic example of generic form occurs in the idealized circumstances of 
homogeneous isotropic turbulence decay. The self-similar aspects are expressed by 

in which F is suitably normalized so that K ( t )  is the total turbulence energy per unit 
mass and L(t)  is a length scale for the dominant parts of the turbulence spectrum. BHRZ 
showed that F is easily determined, has a kV5l3  inertial range as predicted by Kolmogorov, 
and most especially is of great value for taking moments of the spectral transport equations 
to derive single-point models in the Rij - E i j  and k-e forms. 

It is the use of these forms for taking moments that makes them relevant to the 
considerations of this chapter. Nonlocal processes in physical space arise most prominently 
from the integral solution for pressure that appears in the pressure-velocity correlations. 
The generic forms can help us to derive expressions for these integrals that are highly 
tractable for modeling. 

An especially important nonlocal interaction in physical space is the remote coupling 
of turbulence creation to mean-flow gradients. We also discuss in this chapter the 
remote coupling of small-scale structures to large-scale structures, manifested as a nonlocal 
contribution to the turbulence self-diffusion. 

The coupling of turbulence to mean flow is usually described by local terms that 
conserve the overall transfer of energy from mean-flow shear to the fluctuations. In lkl 
space, the nonconservative coupling part is 

where the terms are all at position x and scalar wave number I C .  In addition there are 
conservative coupling terms, the cg and CF terms, which can also be written in local 
form (i.e., at position x). For homogeneous shears and for fine scale turbulence in a free 
shear layer of width W (such that LW > l), the local coupling expressions are good 
approximations. For kW < 1, however, the approximations are poor. 

Suppose, first that we consider only the nonconservative terms and are dealing with a 
homogeneous shear, say ii = ( U y / W )  XI. Then iii,j a z l i / a X j  = U/W6i16jz. Without the 
conservative terms, the above equation cannot have a solution that is exponential in time, 
say of the form Eij = E$ exp(wt), which is expected from the classic Kelvin-Helmholtz 
(KH) analysis for wave numbers small compared with W-'. If it did, we would find that 
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But this would imply that 

Hence there is 
solution of this 

-wEZo2 = 0 .  

no nontrivial time-exponential solution. Indeed one can show that the 
equation is given by 

The production of an exponential instability must depend on other terms. If we restrict 
ourselves to including solely the cB-terms, we obtain the following set of coupled equations: 

8Ell 4 2 - = ( - C B  - - C B ~  - 2 )  E12 , a i  3 3 

- 8E22 = (& - ,,,) 2 E12 , ai  

a i  3 
2 

-- aE33 - -+I3 + CB1)E12 , 

where i= Ut/W.  We use the values cgl = 8cg - 6 ,  cgz = -3cg + 11/5)  and cg = 16/21. 
I f  one takes the second time derivative of the last equation and then utilizes the first three 
equations, one finds the following results: 

aE22 - = -0.381 E12 , at' 
at -- 8E33 - -0.571Elz . 

These equations have exponentially growing solutions, varying as exp( 0.403 Ut/W).  For 
consistency, all that is required is (as is seen to be the case) that the signs of the right-hand 
sides of the last three equations must all be the same. The crucial point, however, is that 
the growth rate is independent of wave number, in contradiction to KH analysis. 
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We can also include the effects of the CF terms in this analysis, although they represent 
mode coupling, which is not present in the linearized Navier-Stokes equations. With the 
spectral behavior varying at kn for small wave numbers, the result for the square of the 
exponential growth coefficient is 

(CB - 1) [(27cg - 20) + (2 - 3cg) n] + (SCB - 6) (n + 5) (2 - 3cg) - 

1 
- [ ( 2 1 ~ ~  - 20) + ( 2 1 ~ ~  - 16)n] 
5 

1 + (n + 1) { [I - ;cB] [(2n + 5) (2 - 3 4  + ( 2 7 ~ ~  - 20)] - 

1 
20 
- [ ( 2 1 ~ g  - 20) + ( 2 1 ~ ~  - 16) n] 

For the specific case of cg = 16/21 and n = 2, the solution thus varies as exp(0.83 V t / w ) .  
In contrast to the KH solution of the linearized Navier-Stokes equations in which there 
is no node coupling, the model equations with purely local coupling show sensitivity to 
spectral form in a manner that is independent of wave number. 

In contrast, the KH solution for free-shear-layer instability growth of velocity 
amplitude, A,  is 

A = Aoexp (:,Ut) , 

which is valid for as long as IcW << 1, so that the fluctuational energy content per unit 
mass in the shear layer is 

E = EO exp (/cut) . 
The basis for the error in turbulence transport analysis lies in the neglect of nonlocal 
processes. As shown by the KH analysis, the velocity potential extends into the far lateral 
regions beyond the shear itself, varying as e-klYI, where y is the normal coordinate with 
origin in the shear layer. Both analyses drive the fluctuations with the same force, but 
the KH derivation contains the inertial resistance of adjacent mass well outside the shear 
layer whereas the local turbulence transport derivation does not include this effect. The 
total fluctuational energy is the same; the difference between the two within the shear 
layer manifests two very different energy distributions, one of them nonlocal and the other 
local. 

The nonlocal coupling between turbulence and mean flow is even more visibly 
manifested in the flow past an obstacle. At low Reynolds numbers (- 100 to several 
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thousands) the von Karman vortex street is a prominent feature for an obstacle that is of 
infinite spanwise extent. 

The fluctuations in flow velocity, which at all scales can be considered to represent 
turbulence, extend far above and below the downstream shadow of the obstacle. They 
occur in those lateral regions because of the instantaneous propagation of pressure waves 
to  distances from the mean-flow shear layers that are an appreciable fraction of the 
dominant wave length. Inclusion of these effects in the analysis of turbulence means that 
valid transport equations for their representation must describe this strongly nonisotropic 
spectral structure at low magnitudes of wave number, again indicating the necessity for 
nonlocal coupling between the turbulence and the mean flow. 

Thus purely local modeling of mean-flow coupling in turbulence transport equations 
can result in a completely fallacious treatment of the low-wave-number parts of the 
spectrum, in regards to  both Reynolds stress magnitude and lateral extent of propagation. 
Issues regarding form-function structure and uniqueness can be obscured by neglect of the 
nonlocality, with significant consequences for validity of the single-point models that are a 
major focus for this work. 

Some of these issues of nonlocality have been discussed by Naot, Shavit, and Wolfshtein 
(1973), Ohkitani and Kishiba (1995), and Demuren, Lele, and Durbin (1994). We follow 
a somewhat different, more heuristic, approach. 

As useful guidance for development of the nonlocal coupling terms in turbulence 
transport, we consider the full KH solution for the stability of incompressible flow with a 
thin free shear layer (ICW << 1). In particular we summarize results of a stability analysis 
of a fluid of density p having an equilibrium velocity U(r) = 2 sign(g)U0/2. Thus at the 
plane y = 0, the flow velocity has an abrupt jump of Uo. 

It follows from Kelvin's circulation theorem that this perturbed flow must be a 
potential flow. Because the geometry of the equilibrium is spatially homogeneous in z, 
it suffices to  analyze the linear stability of the flow in terms of infinitesimal perturbations 
having the functional dependence, exp(ilcz + y t ) ,  where IC and y are the wave number and 
growth rate, respectively. We set u' = -V@, where 4' = 4(y) exp(iICz + yt). Because our 
flow is incompressible, V2@ = 0. To satisfy the boundary conditions of the perturbation 
velocities vanishing at y = foo ,  we find that 
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To obtain the relations between 4-0 and 4+0, we observe that the perturbed flow u' must 
satisfy 

aur uo aut r f -- = -vp*, - 
at 2 ax 

in which p; represents the perturbed pressure above and below the discontinuity. Inserting 
the assumed time and space dependences for the perturbed quantities, we obtain: 

where the perturbed potential and pressure amplitudes above and below the discontinuity 
are given by p i 0  and &o, respectively. Pressure balance across the surface requires 
continuity of the pressure perturbations, p+o+ = p-0 ,  so that 

Thus the potential amplitudes just above and below differ merely by a phase factor. We 
shall denote their squared magnitude by 1401~. 

Assuming the perturbed surface is described by ys(x, t )  = q exp(ikx + rt) and taking 
the convective derivative of ys, we find that the vertical motion of the fluid is given by 

I 

If one solves for 4*0 in terms of 
immediately obtains the dispersion relation: 

and inserts it into the pressure balance constraint, one 

kU0 
2 

y = f - - - .  

To describe growing modes, we choose only the positive sign. For these modes, we note 
that 4+0 = -i4-0. 

With these results, we can evaluate the averages of the second-order quantities, 
u:(x, y, t)uS (x, y, t ) ,  by defining the average of any quantity, say Q(x ,  y, t ) ,  by 

We thereby obtain: 
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It is interesting to note that there is no net transport of tangential momentum normal 

To illustrate the formalism that supports nonlocal modeling as an important factor 
to the interface in this low-amplitude perturbation-analysis result. 

for effective turbulence transport representations, we examine one isolated part of the 
transport equation for single-point Rij , namely 

For pressure behavior, the Poisson equation 

is useful to illustrate our point. This equation has the solution over an infinite domain 

so that 

plus triple-correlation terms. With integration by parts and some rearrangement, this 
result can be inserted into the Rij equation to give 

plus a symmetrizing term and some triple-correlation terms. 
Thus the nonlocal coupling of turbulence to mean-flow gradients is demonstrated to 

occur through a weighted interaction of the two-point Reynolds stress with the mean- 
flow shears at all points in physical space surrounding x. This nonlocal coupling, arising 
from correlations of pressure fluctuations with those of the velocity gradients, describes 
a completely energy-conserving redistribution of Reynolds stress components created by 
interactions with the mean-flow shears. It is supplementary to the purely local coupling 
terms that arise from momentum advection. The triple-correlation terms, omitted in 
the above derivation, also contribute nonlocal effects, which can be interpreted in terms 
of turbulence-induced propagation of turbulence, often represented as turbulence self- 
diffusion, but also including the processes of return to isotropy and cascade in wave-number 

3 

I) 

space. 
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Thus we see that the derivation of turbulence transport representations for nonlocal 
source terms in physical space are most easily accomplished by means of the two-point 
representation, without the Fourier transform to k space. [Oberlack and Peters (1993) 
have noted a variety of advantages for working in x, x2 space or x, r space.] The direct 
transformation to wave-number space does not result in forms that have proved intuitively 
meaningful to us or convenient for implementation into fluid-dynamics computer codes. 
We could remedy this difficulty by two methods. One is to postulate a conservative 
redistribution of Reynolds stress components based on the results of the KH analysis 
presented above. The second is to insert appropriate generic form functions into the 
integral expression in order to reduce the expression .to tractability. We follow the first 
approach, with the second one being described qualitatively in Chapter IV. 

We note that BHRZ derive the local coupling to mean-flow shear by setting part of 
the Poisson-solution integrand at position x1 to the value at position x. Higher-order 
corrections might be imagined through an expansion of the integrand as a power series in 
x1 - x, but this may not be a convergent process. 

Guided by the above derivation and by our postulate of separation of processes, we 
formulate a description for spatial redistribution of Reynolds stress components in a way 
that does not re-order their relative strengths or transport them in k space by this same 
mechanism. In scalar wave-number space we consider expressions of the type 

aEzj (x7 IC’ t ,  = 1 Gij (x’, k ,  t )  Q (x‘, x) dx’ , at 
in which Gij(x’, k ,  t )  is the purely local coupling source at x‘, and Q(x’, x), which also 
depends on k ,  redistributes that 

I )  
With local coupling, Q(x’,x) = 

d 

I, 

source from x‘ to x. Conservation requires 

Q (x’,x) dx = 1 . s 
6(x’ - x). In the vicinity of a free shear layer, the KH 

solution suggests Q(x’, x) decreases as exp(-2klyl), where IyI is the distance from the 
layer. 

To examine the properties of such a formulation, we therefore postulate 

everywhere. For large wave numbers, i.e., IcW > 1, this form gives essentially the local 
behavior, as appropriate. It is thus effective in broadening the distribution only for small 
wave numbers, i.e., for structures large compared to the shear-layer width. Does this 
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broadening take place in a correct manner? A significant criterion lies in whether or not 
its effect is to recapture the KH linear mode-growth behavior at small wave numbers. To 
demonstrate that this is, indeed, the case, we return to the evolution equation for Eij. As 
before, we set 

Eij = E,qj(Y)f ( t )  

and nondimensionalize the mean-flow velocity gradient with U /  W ,  so that with nonlocal 
creation 

EO.( )- df = - k f ( t ) -  )e-2kIY’-YIdyr , 
‘ j  ’ dt  

in which Sij(y) is the entire nondimensionalized coupling source. We can accomplish our 
demonstration by approximating the integral for y > W/2 as follows: 

Note that Sij(0) overestimates the integral while Sij (F) underestimates it. 
$Sij (0) as a best guess so that 

We use 

df 1 U 
d t  4 w  

~,oj(y)- = --f(t)-Sij(o)e-2kY (ekW - e -kw)  . 

Twice the integral from W/2 to 00 thus gives the total amount of Eij created per unit 
time outside of the shear layer, which accordingly is 

4 

II 

The total amount created per unit time everywhere is (because of the normalization of Q) 
the same as the local-theory total amount, namely 

Thus the nonlocal prediction for total Eij created inside the shear layer per unit time is 

I 8Eij (inside) 1 - e-2kW 

2kW at = -uf(t)sij(o) [l - 

or, continuing the approximation, 

2kW 1 ’ df 1 - e2kW 
WE,oj(O)- = -uf(t)Szj(O) [l- d t  
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so that 

in which N is a constant numerical factor. Thus 

.. 

2kW 
f = f o e X P ( w  NUt [l- 

which shows the nonlocal modification to the exponential growth rate. For kW >> 1 the 
modification is small (and could be made even smaller with an appropriate change to the 
form of Q). For kW << 1 we note that 

which, with -N = 0.5, has the correct wave-number variations as in the linear Kelvin- 
Helmholtz solution. 

This procedure for capturing the low-wave-number effects of nonlocality in physical 
space can also be applied to circumstances with large density variations. As shown 
by Steinkamp, Clark, and Harlow (1995). the classic Rayleigh-Taylor instability can be 
described by a turbulence transport model with a similar spatial redistribution of Reynolds 
stress creation terms. 

rn 
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IV. SELF-SIMILAR FORMS 

A. Introductory Description 
BHRZ showed that the concept of approximate self-similarity is a crucial element 

for the validity of single-point turbulence transport models. In order to describe with a 
small number of variables the collective effects of a virtually infinite number of degrees 
of freedom, it is necessary that severe constraints exist to confine the dynamics of the 
fluid to a very small set of all possibilities. Moreover, it is necessary that the approach 
to approximate self-similarity occurs rapidly after a sudden change in the external drive 
conditions. (There are direct analogies to these considerations in assessing the validity of 
the Navier-Stokes equations for describing the collective dynamics of numerous molecules.) 

In anticipation of ubiquitous occurrence of self-similar forms, we also refer to them 
as generic forms. The simplest type of form occurs in the idealized circumstance of 
homogeneous, isotropic turbulence decay. BHRZ discussed the form and its applications 
to spectral moments, showing that even with this simple idealization the standard single- 
point model could be derived. In their analysis, self-similarity means that the spectral form 
depends upon k and t through a function of a single combined variable kL( t ) ,  in which 
L(t)  is a function with the dimensions of length (proportional to k;’, where k, is the wave 
number at which Eee(k) is a maximum). In general, self-similarity means reduction of the 
number of independent variables by one, usually expressed by rescaling both spatial and 
wave-number vector components with functions of time as described in more detail below. 

As a more complicated example, consider the spectral behavior of Eee(y, k, t) for a free 
shear layer. Note, first, that dimensional constraints for the overall (spectrally integrated) 
structure of the shear layer can be derived under the assumption that all aspects of initial 
conditions have been “forgotten.” In the absence of viscosity, the incompressible behavior 
in a single fluid (Mach number -, 0) is characterized by a single dimensional number, the 
overall velocity difference across the layer, U. It then follows that the peak value of the 
turbulence energy per unit mass, KO, equals a constant times U2; also the width of the 
turbulence layer, W ,  varies in time as Ut.  

Again this description is an idealization. No free shear layer is absolutely flat across 
all space. More subtle, however, is the nonidealization associated with initial conditions, 
in particular with the structure of the spectrum as k --f 0. The effects of low-wave-number 
perturbations can persist forever and are therefore not “forgotten.” The consequences 
are quite interesting and bear significantly on the issues of existence and uniqueness for 
self-similar forms, as discussed below. 

* 

b 

1) 

42 



m 

__ k 
A 

B 
D C .L 

E 

Fig. 1. Regions of spectral behavior in wave-number space. 

For the example of a free shear layer, consider the behavior of Eee(o, k , t l )  at the 
midpoint of the layer at some particular time, t. Figure 1 shows the qualitative behavior 
of this quantity. 

Interval C contains the dominant levels of turbulence, the total of which is essentially 
the same as the content of the entire spectrum. It is fed throughout region B by energy- 
conserving coupling to the mean-flow gradient; i.e., the shear-stress component, Ezy, is 
removing energy from the mean flow at the same rate that turbulence energy is being 
created. This creation is of two types. One type is the thoroughly nonlinear coupling of 
turbulence structures that are comparable in scale to the width of the layer. The other 
type is the linear coupling (in the Kelvin-Helmholtz sense) to structures that are very large 
compared to W ,  which occurs in the interval A. 

A flux of turbulence energy from C to A also occurs as a result of inverse cascade, 
for which a dominant component occurs as a result of instability of the largest (strongly 
nonisotropic) “roll” structures. This instability takes energy from the mean-flow shear and 
draws the rolls together in pairs (the “vortex-pairing” process). Leith’s (1990) stochastic 
backscatter also contributes to this inverse cascade. As discussed in Chapter 111, the 
laminar-instability growth of turbulence in the interval A is also important but completely 
misrepresented by purely local descriptions. With the inclusion of nonlocal inertial effects, 
the KH source in A can be properly expressed. 
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Thus the low-wave-number parts of the spectrum exhibit a very complicated set 
of interactions and couplings, the full richness of which can only be appreciated in 
consideration of the strong nonisotropy of the Reynolds stress components and of the 
structure as a function of the vector wave number k. Questions of existence and uniqueness 
for self-similar forms can be answered only in the context of this full richness of processes. 
These questions are of three related types: 

0 What are the constraints on the low-wave-number parts of the spectrum that allow 

0 What is the nature of that self-similarity? 
0 Is there a concept of approximate self-similarity that is useful for a broad set of 

self-similarity? 

circumstances that do not admit exact self-similarity? 
For higher wave numbers, the level of isotropy increases. The structural evolution is 

still governed by a variety of complicated nonlocal processes, as described in Chapters I1 
and 111. Interval C not only contains the dominant energy (and Reynolds stress 
components) but also is a transition interval. In D, there is relatively little coupling 
to the mean flow; the Reynolds stress components move through k space to higher wave 
numbers in a manner that is neither creative nor destructive. This constant-flux inertial 
range is characterized by k - 5 / 3  behavior for Eel and by a somewhat more rapid decay of 
the deviator components of Eij, which are destroyed both by cascade flux and the tendency 
for return to isotropy. 

Finally, in the interval E, the effects of molecular viscosity become significant, and 
the Reynolds stress components decrease rapidly towards zero. In equilibrium the flux of 
turbulence energy through D equals the conversion rate to heat in E. 

True self-similarity means that at a later time the spectral variations of all the 
Reynolds stress components can be suitably scaled in k and in magnitude so that the 
plots would look exactly the same. We can also describe self-symmetry in physical space 
by plotting Ele as a function of y for a fixed value of k ,  or integrated over all values of k .  

The central part, near y = 0, receives energy by the various mechanisms of mean-flow 
coupling described above for low wave numbers. The lateral regions receive Reynolds 
stress components by turbulence self-diffusion and by the nonhomogeneous (nonlocal) 
contributions from the pressure-velocity correlations. The lateral regions sense the nonlocal 
effects of linear mean-flow coupling at low wave numbers, which decrease as exp(-2klyl). 
Because, to lowest order, turbulent self-diffusion is a nonlinear process, we might expect 
a rather sharp cut off at the edges of the shear layer, with relative low-amplitude wings 
extending beyond. 
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B. Self-similar Time Extraction 
The scaling of coordinates (x and k) and magnitudes that define self-similarity can 

be expressed more precisely. Consider the behavior of E(y ,  k ,  t ) ,  which has the dimensions 
of (di~tance)~/( t ime)~.  Suppose that we simultaneously stretch the space and time 
coordinates such that 

Y - wnY 

t + wmt , 
k 4 w-nk 

where w is a dimensionless number that defines the degree of stretching, while m and 
n are numbers to be determined. We also stretch the magnitude of E according to its 
dimensionality, 

E - w  E .  3n-2m 

Our constraint of self-similarity in this process results in the equation 

E(y, k , t )  = E (wny,  w-nk, wmt)  . W3n-2m 

When we differentiate with respect to w and then set w = 1, the result is 

8E 8E 8E (3n - 2m)E = ny- - nk-  + rnt- 
aY ak  at ' 

which can be solved to give 

in which 5'1 is an arbitrary function of its arguments. The origin of time is arbitrary, so 
that we may choose the onset of self-similarity at some time, to, and write 

L(t)  z Lo(t - 
3n-2n 

K( t )L ( t )  = KoLo(t - to)" , 

thus re-expressing the solution in the form 

with F having absorbed some constants and likewise being an arbitrary function of its 
arguments. This expression describes the constraint of linear-stretching self-similarity on 
the form of E. It is derived without reference to the transport equation for E and serves 
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to distinguish from all possible transport solutions a particular subset with the property 
of self-similarity. 

Applied to homogeneous, isotropic turbulence (independent of y) , the result is 
conversion of a partial differential equation for E ( k ,  t )  to an ordinary differential equation 
for F [ k L ( t ) ] .  BHRZ discuss the properties of F and obtain an explicit solution. 

For the free shear-layer analysis in k space the self-similarity constraint has likewise 
reduced the number of independent variables, but insertion into the transport equation 
nevertheless results in a partial differential equation for F ( y / L ,  kL), which has a much 
greater richness of possible solutions than the ordinary differential equation for homoge- 
neous, isotropic circumstances. Already we see hints of the so-called “nonuniqueness of 
self-similar free-shear-layer turbulence.” 

The breadth of possibilities increases substantially when we examine the free 
Recognizing the dimensionality of R i j ( x , k , t )  as shear layer in full vector, k ,  space. 

(d i s tan~e)~/ ( t ime)~  we can derive the self-similar constraint in the form 

in which 

5n--2m K(t)L3(t)  = K&(t - to)“ 
Insertion of this form into the full transport equation reduces the seven independent 
variables in the partial differential equation to six independent variables. For the free shear 
layer with physical-space dependence on y, only, the number of independent variables is 
four. 

In this four-dimensional domain there are numerous possible dependencies of solutions 
on conditions at the boundaries. In particular, we believe that the structure of the 
turbulence near lkl + 0 is felt throughout the domain. There are various significant 
questions. How strongly is this influence propagated? Is it possible that most of the 
solutions cluster around a dominant form that shows relatively little effect from the 
conditions near Jkl = O? Certainly we can expect solutions to the full transport equation 
that do manifest strong dependence on conditions near lkl = 0 (and more generally, on 
initial conditions of various sorts), which are not included in the subset of self-similar 
solutions. 

In homogeneous circumstances that are isotropic in k space, self-similarity is described 
by a single function of one independent variable, kL. The transport equations produce a 
single ordinary differential equation for this function, which is thus uniquely determined 
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except for constants. More generally the self-similarity constraint results in a set of partial 
differential equations that describe nonunique families of form functions, which are capable 
of retaining information from the initial and boundary conditions from which the self- 
similarity evolved. Even in those circumstances that are not precisely self-similar, is it 
possible that there exists a meaningful concept of “almost self-similarity,’’ in which we can 
identify broad classes of solutions that behave very closely to the truly self-similar solutions 
and exhibit relatively little influence on either the very large structures (of the mean flow) 
or the initial conditions? We postulate that the answer is yes. Moreover, we believe that 
the consequence is a meaningful validity to modeling with idealized self-similar solutions 
in which K ( t )  and L( t )  are replaced by K ( x ,  t )  and L ( x ,  t )  so that the self-similarity is 
only local in both space and time. The implication is that meaningful modeling can be 
based on idealized self-similar forms even when the mean-flow circumstances change with 
position and time in ways that destroy precise self-similarity. 

C .  A Free-Shear Example 
As a basis for exploring the implications of the above speculations, we examine in 

more detail the structure of the strictly self-similar forms arising in the presence of a free 
shear layer. One aspect of this structure seems especially remarkable. It is exhibited by the 
turbulence in an inviscid free-shear layer, described by the following set of five equations. 
We assume that the flow velocity satisfies u = u(y, t )?.  In the absence of viscosity and 
with purely local modeling, the equations describing the free-shear case can be written: 

2 a(kEl2) 
- c ~ k & E + ,  

aE+ 1 -- 
at T(E+)  = -C+U12E12 3 + 3CFU12 dk 

where c* = cg - 1 f C B ~ ,  E(y, k , t )  equals the trace of the energy spectral tensor, 
E*(y, k, t )  E (E22(y, k, t )  f &(y, k , t ) )  /2, u12(y, t )  du(y, t ) / a y ,  and where the tilde 
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denotes the deviatoric, or anisotropic, part of the energy tensor. We have gleaned from 
numerical solutions of these equations a remarkable property when T is taken to  be the 
sum of two terms satisfying 

kE(Y A t )  for an arbitrary function, f(r, k ,  t ) .  Here ~ ( y ,  t )  = 
that self-similar, separable solutions appear to exist which have the structure, 

d k .  We have observed 

in which q = y /L( t ) ,  w = k L ( t ) ,  KO is a constant specifying the energy density at 9 = 0, 
L(t)  = Lo(l +t/to),  where LO, t o ,  and the {cij} are all constants, F(0)  = g(0) = 1, and 
where, finally, 

Using this variable-separated structure, one can verify that according to the final 
equation of the BHRZ model, the q-dependence of the shear, u12, is merely proportional 
to d(F/g)/qaq. When one writes out each of the first four equations in terms of the 
variable-separated forms, one finds that each of them has terms involving w-derivatives of 
the G functions multiplied by functions of q. These functions come in the following five 
varieties: 

G(w)  d w  = 1. 

where there would be the possibility of some ambiguity if the last of the functions were 
not negligible. The primes denote differentiation with respect to the argument, which 
in this case is 7. The constant ND is given by cg JT G4 (w ) /ws  dw, and the constant 
a by Lo/ ( t o m ) .  Since the'last of the five functions has been shown by numerical 
computations to  be negligible, we thus can arrive at nonlinear differential equations in 
the Gs alone if the remaining functions are proportional to  each other (and so can be 
divided out). We find numerically that this is indeed the case, despite the fact that the 
proportionality requires three conditions to be placed upon only two functions, F and g!  

a 
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To gain further insight into this separability of the energy and its deviatoric 
components into “form functions,” F(q) ,  g(q),  and Gij (w) ,  we have replaced the diffusion 
term in T ,  the term prefaced by the constant, CD, by a spatially conservative wavelike term 
prefaced by the constant cw so that 

We were motivated to choose this model form for three reasons; namely (a) the numerical 
appearance of separability was anomalously highly sensitive to the value of CD, (b) any 
term introduced should conserve energy in physical space, and (c) the presence of any 
term having the form, w ’ 2 a w 2 ,  seemed to preclude the existence of exact separable solutions 
because they would overdetermine the g and F functions. 

Without excluding the possibility that there may be other separable solutions in the 
presence of this wavelike term, we have found one separable solution of this equation that 
yields simple analytic forms for g and F ;  namely g(q) = d- and F ( q )  = g3(q), 
where N w a y  = -1, and N w  is defined analogously to ND,  where cw replaces CD. In 
order that F be spatially bounded, y must be positive. This implies then that Nw,  or 
equivalently cw must be negative. One can verify then that the shear, u12(= duldy), is 
proportional to y and is thus spatially constant. (Of course, this solution does not satisfy 
the boundary conditions of a bounded shear flow layer.) In this case, one finds that the 
functions that multiply the w-derivatives of the G functions that arise, corresponding to 
the functions listed above associated with the T operator containing the diffusion terms, 
have the following values: 

The fifth term in the earlier list is absent from this list because it resulted from a second 
derivative in w arising from the diffusion term. There are no such second derivatives in 
the new wavelike term currently at hand. 

The following equations are thereby produced determining the spectral distribution 
of the energy and its deviatoric components: 
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+ M~c12 [c-G- (w)  + c+G+ (w) ]  + Myc12 2 c ~ G +  (w)  - -.(a)] } = o , 
where we have employed the following definitions: 

(C22G22 CllG11) 

2 
G+ E , 

00 

These equations are merely a tensor generalization of BHRZ’s Eq. (3.11). 
That such a set of coupled nonlinear differential equations can lead to separable 

solutions is striking. However, the terms such as the diffusion term or the wavelike term are 
heuristically motivated. Indeed one would expect from a deeper analysis that the original 
forms of these terms require modifications, such as the following: 

These ‘modifications would be entered into the original BHRZ equations before the 
evolution equation for the traceless spectral energy tensor is derived. It may be too much 
to expect separable solutions for the traceless energy tensor to exist in the presence of these 
modifications! Indeed these kinds of modifications also can couple other tensor components 
of the spectral tensor into the equations that we have displayed above. 

D. A Simplified Subset Example 

transport equation in the form 
To examine the nonuniqueness of self-similar solutions, consider a subset of the 
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k . k .  k2dR in which X i j  f &i/dxj and Aij f S i j  - 3, and Eij J R i j M .  This form for the 
return-to-isotropy term ensures that angular integration in k space reduces that term to 
the simple form used by BHRZ. With a local rate in k space for that term, it should be 
noted that integration over k does not result in the single-point form for return to isotropy 
unless the variation of Eij follows a generic form as a function of k .  The same observation 
can be made for angular integration in the transformation from Rij in k space to Eij in k 
space for the alternative expression 

which contracts to zero. Because Ret is a function of k, the angular integration over k 
space does not reduce to the BHRZ formulation unless Rij has an appropriate generic form 
such that &, is a function of k ,  only. 

We use this alternative expression for the return-to-isotropy term in the above 
transport equation to illustrate our ideas. Omitting any spatial transport terms enables 
us to concentrate on the behavior of the wave-number part of the self-similarity. x i j  can 
refer either to the constant rate of homogeneous free shear or the local rate at the center of 
a free shear layer. Into this stripped-down transport equation we insert the self-similarity 
constraints, 

Rij = K ( t )  L3 ( t )  Fij [kL( t ) ]  
E = K(t )LF[kL( t ) ]  . 

Let c --= kL( t ) ,  so that t = kL(t) .  The result is 
d Fij 

d tn  
KL3Fij + 3KL2LFij + KL2LJn- 

in which Aij(k) = S i j  - *. In order that this equation contain only the variable e, it is 
necessary that there be no explicit dependence on t. 

There are two possibilities. For homogeneous shear, X i j  is constant in time and we 
require 

K 
- = constant F cy K 

* L 
- = constant p L 

and 
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Then 

and 

KL& = constant. 

30 
- + p = o .  2 

Although these conditions remove time from the transport equation, which becomes an 
equation only in (, there emerges a paradox. The exponential behavior of K ( t )  and L( t )  
contradicts the power-law behavior derived as part of the self-similar constraint. Thus 
it appears that a constant homogeneous shear is not amenable to self-similar description 
by this type of analysis. (Indeed, we believe that the idealization of such a mean-flow 
configuration is not attainable in nature.) 

The second case, however, allows the extraction of consistent results. For the free 
shear, the only dimensionally allowable behavior for X i j  is, as discussed above, 

In this case the removal of explicit reference to time requires 

-- = constant f M K L  
K 

L constant p 
K = constant . 

Then self-similarity is described by 

K = constant 

L = P( t  - t o )  , 
which is, indeed, the correct physical behavior for a self-similar free shear layer. 

The resulting equation for Fij becomes 

* 

c 
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Written in this form without the c2 part of the cascade, the equation is amenable 
to  characteristic analysis. With inclusion of the c2 term, or more generally the nonlocal 
representations, the simple characteristic analysis is no longer possible. Such models do not 
preclude the self-similarity; they do, however, increase the analytical difficulty in extracting 
tractable self-similar form functions. 

Note that 

so that characteristic analysis of even the “simple” equation, above, is challenging for the 
extraction of a solution. 

To examine qualitatively the behavior, however, we consider the equation with F(5)  
c l m  and c k  7 c , m .  Then the equation for Fij can treated as constant. Let ci 

be rewritten 

= -u (FieXje + FtjXie) - (P  + c:53/2)  [ e -  X e  aFij 

Note that in this form of the transport equations, the directionality of characteristics 
is determined by 

d5l - d52 - d53 

El E2 E2 
----- 

so that t1 = A52 = B52, with the geometry set by the constants, A and B .  Because 
c2 = 5; + 5,” = 5,” along the characteristic, we note that 

d51 - d5 
t1 E 
--- 

so that 

with boundary conditions for Fij(0) that depend on A and B .  

Fij (C), which we can examine for several interesting circumstances: 
Thus we have for this model an ordinary differential equation for the behavior of 

- the decay of homogeneous, nonisotropic turbulence, with X = 0, and 
- the competition among shear, cascade, and the return to isotropy, with X # 0. 

Even with p(5) not constant, a similar analysis can be performed leading to a nonlinear 
equation in which 

1 
Fee ( E )  
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If we include the c2 term (diffusive in e space), other local terms that destroy the 
characteristic behavior, and/or various nonlocal modeling terms, this analysis then is no 
longer strictly valid; nevertheless many of the qualitative conclusions may still be relevant. 

E. Tensor Forms 
To carry through this type of analysis, it is reasonable to postulate that Fij can be 

written as a sum of available tensor forms that can describe the structure of the solution. 
Candidates for this purpose can be found among such forms as 

and similar dimensionless possibilities. The number of these tensor forms is fortunately 
bounded. Another class of possible forms comes from the initial conditions of F&. In the 
approach to self-similarity, the persistence of initial conditions varies with wave number. 
Qualitatively, we expect the memory to last for an “eddy turnover time,” which is estimated 
for wave number k to be l/(km). If E ( k )  varies as k” near k = 0, then the persistence 
time varies as k - ( v ) ,  which is unbounded as k -, 0 for any reasonable value of n. This 
result suggests that Fij(0) is also a candidate for the construction of tensor forms and 
serves as a basis for our expectation that numerous different self-similar solutions exist, 
together with many others that are almost self-similar but not precisely so. 

There are two types of time variations that are especially relevant to the consideration 
of self-similarity. One of them is concerned with the rate of approach to self-similarity 
following a perturbation to the mean-flow drive. The second serves as a tool for the 
identification of appropriate tensor forms. 

Many authors have examined the tensor forms associated with specific mean-flow 
configurations (rapid-distortion theory) . For homogeneous circumstances, spatial Fourier 
transformation is equivalent to spectral analysis in the two-point separation variable, 
and many interesting solutions are easily derived [Reynolds (1987)l. For our purposes, 
however, we proceed in a different manner, extracting the appropriate tensor forms through 
successive substitution of early-time solutions into the full (non-self-similar) equations. 

For example, suppose that initially homogeneous, isotropic turbulence is sliced by a 
mean-flow shear. The lowest-order part of the non-self-similar solution is 

With suitable normalization of X i j  we can assume that X i j X i j  E 1. To first order in time, 
the tensor forms arising from this initial state come from the mean-flow coupling terms, 

a 

a 
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from which we extract 
( X i j  + X j i )  

and 
ke - (kiXje + kjjxie) 
IC2 

To second order in time we find, additionally, 

(&e + Xei) X j e  + ( A e j  + A j e )  Xie 

and 
kn kn -p ( W e n  + ktXin)  X j e  + -p + k j h )  Xie . 

At this stage it is useful to recognize the relationships 
X i e A e j  G 0 

XgAneXnj  = X i j  

X e i X e J m n h j  XeiXej 

XieXneXnmXjm = XieXje 

Continuing the successive substitution and using the above relationships, we can 

Note that from the nonhomogeneous spatial terms (e.g., turbulence self-diffusion) no 
obtain a closed set of independent tensor forms. 

additional tensor forms arise. For example, 

OXieXje - XieXje dX2 - -- 
d x n  A2 d x n  

Thus, we can write 
Fij(<) = A, [Tensor Form], , 

U 

in which the A,  functions are scalar functions of the available scalar variables, such as k 
and ICeknXen. 

Of greater interest, however, are various other initial conditions for R i j ( t  = 0) 
Ri j (O) ,  from which a greater richness of tensor forms can emerge. With the simple return- 
to-isotropy model (the alternative form discussed above) in our equation for Rij we can 
examine 

a R i j  - - 
= -RieXje - RejXie at 
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The structure of Rij(0) potentially contains tensor forms having nothing to do with &; 
they describe the effects of whatever stirring mechanism induced that initial state of 
turbulence. They can arise from the overall configuration of the experimental apparatus, 
for example the fan, screens, and walls of a wind tunnel. As a result of successive 
substitution into the equation for Rij, we derive numerous hybrid tensor forms in addition 
to those that arise from an isotropic initial state or from the return-to-isotropy model, like 

As noted above, the disappearance of initial conditions (here as a result of the return-to- 
isotropy process) takes place progressively more slowly as k + 0. 

F. Comments on Self-similar Forms 
Although this type of successive substitution analysis enables the complete identifica- 

tion of independent tensor forms, it may contribute little else of value to the self-similar 
analysis. Introducing the tensor-form decomposition into the equation for Fij as a function 
of [ and equating the coefficients of like tensors, we then obtain a set of coupled equations 
for the scalar functions, A,. The value of this approach, however, is more to demonstrate 
the existence of nonisotropic self-similar forms than to derive practical solutions like the 
form obtained by BHRZ for homogeneous, isotropic turbulence decay. A principal diffi- 
culty in working with the self-similar approach is that the equations for the A,  functions 
are eigenfunction equations. The solutions must be compatible with vanishing magnitudes 
for each A,  as k + 0 and k ---f 00, with prescribed ratios among the functions in the first 
of these two limits. How, then, can we obtain self-similar solutions that are useful for our 
purposes (e.g., taking spectral moments for the derivation of single-point-nonspectral- 
models)? Two techniques are much more tractable than brute-force attempts to extract 
eigenfunct ions. 

1. Numerical procedures for idealized circumstances, e.g., the idealization of an infinite 
free shear layer; relaxation from initial conditions through time to a self-similar 
state. (This technique can also be used for the self-similar eigenfunction equations 
through the introduction of a pseudo-time variable, but there does not seem to be any 
advantage to this approach.) 

2. As an approximation, we can postulate the structure of the form functions and perform 
spectral moment integrations to reduce the problem to variations in y and t only. Even 
further, the postulate of form functions in y reduces the analysis to variations in time 
only. 
It should be noted that the close relationship between nonisotropy in physical space 

and that of k space is well demonstrated by the decomposition into tensor forms. This 
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association is of much value in deriving angular averages of transport terms for the 
development of transport equations in k space from those in k space. 

Ordered, coherent structures emerge directly from this analysis. They are character- 
ized by the tensor forms that dominate at low wave numbers. Spanwise rolls in a free 
shear layer furnish a prominent example. Closely related forms occur in variable-density 
turbulence transport [Steinkamp, Clark, and Harlow (1995)] where they are prominently 
manifested by large-scale fingers of interpenetration at the unstable interface between two 
fluids subjected to a normal pressure gradient. In both cases there is an associated con- 
tinuous doubling process, vortex pairing for the shear .layer, and double-doubling for the 
mixing layer. 

In the variable-density mixing layer the coherent structures are strongly nonisotropic 
in both physical and k space. They may also be classified as representing an ordered (wave- 
like) part of the turbulence, in contrast to the isotropic part, which is disordered (diffusive). 
For constant-density turbulence there is a similar split into ordered and disordered parts. 
In physical space the propagation of turbulence can take place in essentially diffusive 
fashion; but as discussed in Chapter 111, there can be an ordered (wave-like) component 
carried by nonlocal pressure waves, principally associated with coherent structures in 
nonhomogeneous cofigurat ions. 

The most prominent external drivers for turbulence that are capable of imparting m 
nonisotropic structure are 

- freeshear, 
- boundary layer shear, 
- rigid boundaries (even in the idealization of free slip), 
- pressure gradients, 
- pre-existing flow structured at very small wave numbers, and 
- density gradients, including those that occur with constant density for 

each element of the fluid (material discontinuities, frozen-in entropy 
gradients with no molecular diffusion). 

Each of these may vary in space & time, and in a stochastically steady flow the 

Competing effects occur in each facet of turbulence evolution. These are characterized 

- direct and inverse cascade in wave-number space, both local and 

drive can vary along the mean-flow trajectories of fluid elements. 

especially in terms of rates, such as 

nonlocal, 
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- changes in drive in competition with the rate of approach to local self- 
similarity; maintenance of approximate self-similarity and/or generic 
form, 

- equilibrium arising as a balance between nonisotropic drive and the 

- critical Reynolds number for turbulence transition as a competition 

- uniqueness of self-similarity as a competition between long-wave-length 
instability growth and inverse cascade driven by mean flow gradients or 
second-point effects. 

ret urn-to-isotropy processes, 

between instability and viscous dissipation to heat, and 
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V. TURBULENCE SELF-DIFFUSION 

0 

0 

A. Introduction 
Two complementary roles for the actions of the triple correlations have been suggested. 

First, the triple correlations lead to a transfer of turbulence energy from large scales to 
small scales (the turbulence (‘cascade”) and second, in inhomogeneous flows, the triple 
correlations contribute to the self-propagation of turbulence from regions of high intensity 
to regions of low intensity (turbulence “self-diffusion”). In this section we will restrict our 
attention to the physical-space effects of the triple-correlations and the pressure-velocity 
correlations for inhomogeneous circumstances. In particular, we will examine the so-called 
‘(turbulence self-diffusion” phenomenon using three tools: 

(1) the moment equations, 
(2) direct numerical simulations of the Navier-Stokes equations, and 
(3) turbulence models. 

We will use the moment equations as a guide in modeling the triple correlations and to 
motivate the direct numerical simulations. The direct numerical simulations will be used 
to determine the plausibility of various potential models, and the turbulence models will 
be used to demonstrate the consequence of the modeling assumptions at high Reynolds 
numbers. 

B. The Navier-Stokes Moment Equations 
We begin with the Navier-Stokes equations for an incompressible fluid of constant 

density p, 

with the condition that the velocity field will be divergence free; 

We next decompose the variables into mean and fluctuating parts (the Reynolds 
decomposition), ui = Ui + ui and p / p  = P + p‘ and average, yielding the mean flow 
equation, 

where the term on the left-hand side is a ‘(average’’ material derivative, e.g., 
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Rij is, of course, the Reynolds stress tensor, Rij = uiug. We derive the equation 

for the fluctuation by subtracting the averaged equation from the instantaneous equation. 
The instantaneous fluctuating velocity is 

Using this equation we can derive the Reynolds stress equation by constructing the equation 
for u:ui, 

Duiug 
Dt 

and averaging 

8 

au; aug 
E . .  = V-- 
” axnaxn ’ 

and Rijk is the third moment of the fluctuating velocities, Rijk = u;u$ui. Note that this 
tensor appears in the equation in a fully conservative fashion and is symmetric on all three 

a 
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and 
au;u; auL 

Eijk  = . 
dxn dxn  

In addition to these equations, the divergence-free character of the velocity field can 
be exploited to ‘derive a Poisson equation for pressure divided by density, for the average 
pressure/density, 

and for the fluctuating pressure/density, 

C. The Pressure-Velocity Correlation 
The pressure equations can be inverted (e.g., via a Green’s function approach) to 

yield an integro-differential expression relating the pressure at a point in space to the 
velocity field (mean and fluctuating) over the entire domain. This expression can then be 
used to derive expressions for the pressure-velocity and pressure-strain correlations. These 
relations are highly opaque, involving three-dimensional integrals of two-point correlations 
over the given domain. If one restricts ones attention to homogeneous turbulence and 
pursues a modeling in Fourier space, some simplifications arise. In physical space (as 
opposed to Fourier space) the intrinsic three-dimensionality and integral nature remain 
and can only be “eliminated” by making relatively bold assertions (either explicitly or 
implicitly) regarding the nonlocal nature of these processes. For the present analysis, we 
are concerned with features intrinsic to inhomogeneous turbulence, and very little rigorous 
analysis can be performed to produce tractable differential closures for these pressure terms 
in physical space. 

We will presently argue that the conservative pressure-velocity correlations serve as 
a minor inhibition to the process of turbulence self-propagation and discuss how such 
an effect might be represented in a differential closure. However, we do not claim that 
such a representation can possess adequate physical fidelity to warrant their inclusion in 
a differential closure. It seems possible that under some circumstances, errors caused by 
representing this “nonlocal” effect as a purely local effect are, in fact, greater than errors 
caused by neglecting the effects of pressure-velocity correlations entirely. This shouldn’t 
be considered as a condemnation of current engineering dosures. In fact, many of the 
engineering closures that neglect these effects have been shown to yield good results 
under a variety of circumstances, thus suggesting that neglecting the effects of p’u: is 
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appropriate in many circumstances. Rather, we merely suggest that one might profitably 
consider “nonlocal” or integral approaches to modeling the effects of p‘ui when attempting 
to increase the regime of the validity of these closures. 

We begin by examining the Poisson equation for the fluctuating pressure/density for 
the case of an inhomogeneous, undriven turbulent field (this is also the circumstance we 
will simulate). The equation is 

- 
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e 
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Now letting rij = (uiui - Rij) and decomposing this tensor into its trace and deviator 
(denoted by the superscript “d”), 

or 

These equations suggest that for weakly anisotropic turbulence in the absence of 
mean-flow drive or wall effects, 

A possible form for the pressure-velocity correlation in weakly anisotropic turbulence might 
be - 

ukukui - Rmmui mmi 9 

where ap is a dimensionless coefficient. The direct numerical simulations appear to give 
ap M 0.33. (The details of the simulations will be discussed later.) Thus a “complete” 
differential closure for the conservative moments in physical space in the Reynolds stress 
transport equation might be 

0 
The pressure-velocity correlation appears to counteract the effects of the triple 

correlation. Thus if the velocities “align” to produce something like a net flux of “Rij,” 
the pressure-velocity correlations mitigate this effect in a manner perhaps analogous to a 
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body drag. This mitigation is somewhat more apparent if we decompose the Rijk-tensor 
into a traceless part (“deviator”) and its traces, 

Substitution into Dijk gives 
e 

Now recall that the Reynolds stress equation contains derivatives on the “k” index. 
Consider elements of -Dppk (with no summation on Greek indices), 

If p = I C ,  then the velocities in the triple correlation are the same component (i.e., the 
fluctuating velocities are aligned with the direction in which the derivative will be taken), 
and the effects of the pressure-velocity correlations are felt via ap, 

On the other hand, consider i = j = y # p, then the effects of the pressurevelocity 
correlation are not felt, 

Thus the pressure-velocity correlations appear to produce a preferential inhibition to 
turbulence self-diffusion. Note that if (up  = 3/5 the effect of -Dijk would show up as an 
essentially isotropic effect (except, of course, for possible contributions from the deviator 
R$k). As stated above, the direct numerical simulations suggest a value of ap M 0.33. This 
produces a correction of approximately 33 percent (neglecting the deviator) in the diffusion 
term -Dppp. To complete this proposal for modeling of the conservative correlations, we 
must produce an algebraic closure for the triple correlations. 

D. The Triple Correlation Equation 
Next, we will attempt to provide an algebraic closure for the third-order moment of 

velocity, & j k .  Note that one could close the model at the fourth-order level and develop a 
closed equation for the third-order moment-we have not yet pursued this option. Several 
rationalizations can be constructed for closing the equations at the second-order: 
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First, if the field is not “too far” from Gaussian (whatever “too far” means), then 
a quasi-normal assumption might be invoked to close the equations at the third-order. 
If the turbulence is not ‘%oo far” from equilibrium, then the triple correlations may be 
represented algebraically as an “equilibrium solution” of some sort. These are essentially 
the assumptions of the “EDQNM” model. 

Second, if the moments converge in some sense, then we might hope that the bulk of 
the physical effects can be expressed in the dynamics of the second-order correlation and 
the third-order (and higher) correlations might be algebraic corrections to the second-order 
correlations. 

Third (a purely practical consideration), it is not clear that for many applications 
the additional computational complexity of a higher-order closure are warranted. The 
additional phenomenological assumptions required to close the higher order equations 
may nullify any benefits accrued by maintaining higher order correlations. In addition, 
many of the difficulties associated with turbulence modeling are not directly related to 
the closure of the hierarchy of equations. Rather, they are due to difficulties in treating 
the fully three-dimensional integro-differential terms arising from the pressure correlations, 
and these difficulties are present at any given order of closure. Thus a higher-order closure 
which invokes a local expression for pressure correlations is probably not an improvement 
over a lower-order closure, since the damage to physical fidelity is probably made at the 
level of the approximation for the pressure terms. 

With these concerns in mind, we will invoke both an equilibrium assumption and 
a quasi-normal assumption to examine the triple correlation. First, we will assume 
that production approximately balances dissipation effects (i.e., we assume we are near 
“equilibrium”) and that the net effect of the terms analogous to pressure-strain correlations 
are essentially production terms. Neglecting viscous diffusion we have 

Next, substitute the 
equation, 

DRijk 
Dt 

previous approximation for the fluctuating pressure into the Rijk- 
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Next we invoke a “quasi-normal” approximation in physical space, i.e., 

Rijkn = RijRkn RikRjn + RinRkj , 
and a Markovian-like assumption, i.e., 

DRijk R i j k  
M- Dt r 

where 7- is a turbulent time scale, e.g., 

Rnn 
2E 

7- = CT-. 

The following “algebraic” closure for the triple correlation might be suggested: 

2 a  
(RjmRmkSin + RimRrnksjn + R i m k j b k n )  - 

+ 

This representation is fully symmetric on the indices i j k .  Substituting this term into 
the equation for the turbulence self-diffusion tensor Dijk gives 
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or, in a somewhat more verbose form, 

0 
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e 
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Note that this model appears to be analogous to a nonlinear diffusion of Reynolds 
stress. Because we have satisfied the symmetry condition for the triplevelocity correlation, 
this model will reduce to the essentially isotropic form discussed above for the case of 
cup'= 3/5. Note also that the form proposed by Daly and Harlow (1970) corresponds, in 
essence, to the last term in parenthesis in the first line. The fully symmetric form proposed 
by Hanjalii: and Launder (1972) [and also suggested by Besnard, Harlow, Rauenzahn and 
Zemach (1992, 1996)] corresponds to the first line. Of course, the terms multiplied by cup 
represent corrections to the correlation due to the presence of the conservative pressure- 
velocity correlations. We expect that the order of importance of the various terms is 
as indicated by their order in the equation. Clearly, for small cup,  the terms that are 
linear and quadratic in (the pressure-correction represented in the Dijk acting on the 
pressure-correction acting on R i j k )  are much smaller than the other terms and may be 
negligible compared to the size of other errors in our approximation. Thus the most obvious 
simplification would be to simply neglect the effects of the pressure (i.e., set cup = 0), thus 
yielding the Hanjalii: and Launder (1972) form; 

Now consider an element D p p k  (again, no summation on Greek indices): 

67 



We will first consider the case wherein the gradients are in the IC = p direction. We have 

Next, consider the case where i = j = y # p. This gives 

As an aside, we note that the Cauchy-Schwarz inequality for Rp, 

[%,I2 5 [%I [ 4 , l  ) 

gives 

and, in fact for the direct numerical simulations (DNS), Rp, = 0 if p # y and 

It is interesting to  compare these forms to those arising from the model of Daly and Harlow 
(1970): 

For the Dppp  component we have 

which is precisely the same form as produced by the Hanjalii: and Launder (1972) model 
for this term. For the D,,p component Daly and Harlow (1970) yields 

which is again precisely the same form as produced by the symmetric Hanjalii: and Launder 
(1972) model for the particular case of our DNS, which represents a “planar” turbulent 
diffusing layer of initial “quasi-isotropic” turbulence. The primary difference between the 
two closure approximations is that the symmetric Hanjalii: and Launder (1972) model 
yields a different factor in front of the Dppp-term than for the D,,p-term; Daly and 
Harlow (1970) does not. Hence the Hanjalii: and Launder (1972) form predicts greater 
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disparity of diffusion between Rppp and Rrrp than does Daly and Harlow (1970). One 

0 

0 

0 

0 

0 

a 

caveat must be noted: If pressure effects are accounted for, one might anticipate that the 
degree of disparity of diffusion of these two components would probably lie somewhere 
between that predicted by the Hanjalii: and Launder (1972) model and that predicted by 
Daly and Harlow (1970). 

Finally, we present what is perhaps the simplest diffusional form [due to Mellor and 
Herring (1973)l. Assume that Rnk M SnkR,m/3 and insert this into the Daly and Harlow 
(1970) model for the term inside the first derivative only to arrive at 

Clearly, this form predicts exactly the same form of diffusion for both Dppp and Drrp. 
As we have just shown, the so-called gradient diffusion approximation can be thought 

of as a severe truncation of an algebraic representation of the triple velocity correlations. 
The initial bsumptions leading to the more general algebraic form are similar to the 
assumptions underlying the Eddy-Damped Quasi-Normal Markovian model of turbulence 
for homogeneous unforced turbulence. At the severest level of truncation, the analogy to 
a gradient diffusive process is evidenced by the leading terms in the representation. 

Examination of the direct numerical simulation results indicates that the symmetric 
form offered by Hanjalii: and Launder (1972) satisfies the relationships of the tensor 
components observed in the simulations. Neither the Daly and Harlow (1970) form or the 
simple form maintain the correct disparity between the diffusion of the various components 
of the Reynolds stress tensor observed in direct numerical simulations. 

E. A Spectral Form for the Triple Correlations 
Attempts to construct a spectral closure for the triple correlations are complicated by 

(principally) two factors. First, the two-point triple velocity correlations do not satisfy the 
same symmetry conditions as the single-point form, e.g., 

When transformed from (XI, x2) to (x, r) and Fourier transformed with respect to r, 
the resulting triple correlation, Tijk(Xk), exhibits an asymmetry with regard to its real and 
imaginary parts. This asymmetry is manifested in the exact k-space spectral transport 
equation for Eij (x, k) by the appearance of not only the triple correlations Tijk (x, k) but 
also Tijk (x, -k). Thus the simple symmetry arguments used to justify the form of the 
single-point Rijr, does not follow directly in the Fourier space. Second, the relevant time 
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scales in the Fourier space for this inhomogeneous process are not obvious. After averaging 
the equations over angles in k-space, one can arbitrarily construct time scales that are either 
“local” in k-space or “nonlocal” (integrated over all wave numbers). BHRZ have offered 
two models of the triple correlations. The first form, introduced for expedience, does not 
preserve the tensor properties of either the triple correlations or the triple correlations 
“augmented” by the pressure-velocity correlations. This first-cut model is simply 

0 

where 

, o  
This form was used for the shear-layer computations presented by BHRZ. These 
computations displayed the emergence of self-similar spectra in which the appropriately 
scaled spectral shapes for the spectral tensor component varied between components but 
did not vary across the shear layer. A consequence is that the single-point anisotropy was 
constant across the entire shear layer. Additionally, the emergence of this self-similarity 
was highly dependent on the choice of the coefficient CD. Turner (1996) has shown that 
the self-similarity is the result of a delicate balance between the diffusional “velocity” of 
the Eij given by the simple form (above) and the rate at which the production of Eij 
moves away from the centerline of the shear layer as aUl/OY disperses. The sensitivity to 
CD, the constancy of the anisotropy across the shear layer, and the severe treatment of 
known symmetries of the diffusion tensor suggest that this simplified model is inadequate. 
A more general, fully symmetric form was also presented by BHRZ: 

where 

This form alleviates several concerns expressed in regard to the simpler form. First, the 
emergence of the self-similar form is somewhat less sensitive to the choice of CD. Second, 
the self-similar spectra are consistent with a varying spectral from across the shear layer, 
and hence, an anisotropy that varies across the shear layer. The principal features of the 
model predictions are shown in Figs. 2 through 10. Figure 2 shows the evolution of the 
turbulent kinetic energy K n n  (9, t ) ,  the turbulent length scale L ( t )  = l / k m a z  (0, t ) ,  and 
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Fig. 2. 
along the shear plane at y = 0. 

Temporal evolution of the shear rate, length scale and turbulent kinetic energy 

the shear rate U I , ~  (y, t )  = aU1 (y, t )  /a3 at the the shear plane, y = 0. Note that the 
turbulent length scale at any point in y , t  is defined herein as the inverse of the point in 
k-space where the energy spectrum is a maximum, i.e., k,,, (y, t ) .  The particular choice 
of the length scale to scale the data corresponds to the turbulent length scale at the shear 
plane, y = 0. This figure show the trend towards the expected self-similar behavior, e.g., 
constancy of Knn (0, t ) ,  linear growth of L ( t )  = l / k m U z  (0, t ) ,  and decay of the shear rate 
inversely proportional to time. 

Figure 3 shows the behavior of the normalized turbulent kinetic energy and shear rate 
as functions of y* k,, (0, t )  = y / L  ( t ) ,  the normalized distance from the shear plane. This 
figure shows a “reasonable” behavior for these quantities. Figure 4 shows the behavior 
of the turbulent length scale across the shear layer. This figure also shows “reasonable” 
behavior. It is interesting to note that the length scale of the turbulence does not vanish 
at the outside edge of the layer. Figure 5 shows the ratio of the length scales of the 
components of the deviatoric spectral tensor. We may define the deviatoric tensor as 

1 
Biij (x, k, t )  = Eij (x, k, t )  - -S,jEn, 3 (x, k, t )  , 
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Fig. 3. 
at t = 1024. 

Variations of turbulent kinetic energy and mean shear rate across the shear layer 
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Fig. 4. 
at t = 1024. 

Variations of turbulent length scale L (9, t )  = l /kmaz (y, t )  across the shear layer 
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Fig. 5. 
layer at t = 1024. 

Variations of the turbulent length scale L (y, t )  = l/kmaz (y, t )  across the shear 

and denote the wave number at which the ijth component reaches an extremum as 
kij,ezt (x, t).  Then the length scale associated with this component is L i j  (x,t) = 

l/kij,ezt (x, t) .  Note that the discontinuity in L 2 2  is caused by the change in sign of 
the E 2 2  component. This component changes sign at the lower wave numbers first; when 
the largest amplitude of the part which has changed sign first exceeds that of the part 
that hasn’t yet changed sign, the corresponding point of the extreme value “jumps” to the 
extremum associated with the part which has changed sign. 

The change in sign of E 2 2  is also manifested in the plot of the anisotropy tensor 
components, shown in Fig. 6. The anisotropy tensor is defined as 

where the tilde again denotes the deviator. Note the change in sign of the component b 2 2 .  

This figure clearly demonstrates the variation of the anisotropy of the turbulence across 
the shear layer-a phenomenon missing from computations using the simplest gradient 
diffusion closures. Note that the same data plotted for a time oft  = 512 produces a graph 
which is virtually identical to the present graph because the turbulence is essentially self- 
similar in the regime t > 256. The present result appears to present a reasonable model for 
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t = 1024. 

Variations of components of the anisotropy tensor across the shear layer at 
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the variations of anisotropy across the shear layer. The change in sign of the b 2 2  component 
is associated with the predominance of the anisotropic diffusion process (as identified in the 
DNS) over the “shear production” of negative b22 at the outside of the shear layer. Thus, 
the change in sign of this component is a direct result of the use of the fully symmetric 
form of the triple velocity correlation closure and gives a result that is consistent with our 
intuition, which is based on the results of the direct numerical simulations. 

The spectral features of the self-similar form are displayed in Figs. 7 through 10. 
These figures are “shape plots” showing the normalized spectra as functions of the scaled 
wave number at various values of y * kmax (0 , t )  and at times of t = 512 and t = 1024. 
Because the turbulence is essentially in the self-similar regime at  these times, the data at 
t = 1024 overlies the data at  t = 512, for each component at each value of y * kmax (0, t ) .  
However, the spectra for a particular component at a specific value of y * k,,, (0, t )  does 
not necessarily overlie the values for that component at a different value of y * kmax (0, t ) .  
This variation is the spectral manifestation, and indeed the source of the variation of the 
anisotropy across the shear layer. 
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Fig. 7. Variations of the shape of the energy spectrum. 
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Fig. 9. Variations of the shape of the &2 spectrum. 
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This symmetric form of the diffusion tensor “mixes” the diffusion of trace and 
deviatoric parts of the spectral tensor in such a way as to produce a fine-scale “local” 
anisotropy in the edges of the diffusion layer. This fine-scale anisotropy is most obvious in, 
say, the El2-spectra and might be viewed as a consequence of weak production of turbulence 
in this vicinity. The production terms balanced against the tendency to return toward 
isotropy typically produce a k - 7 / 3  scaling in this model when applied to homogeneous 
turbulence [Clark (1992)l. However, at the outside edge of this layer, the mixing of the 
trace components of the spectral tensor with the deviatoric parts imposes a “diffusion” of 
k - 5 / 3  behavior onto the deviatoric spectra at the edge. This k - 5 / 3  behavior is consistent 
with the idea that the turbulence at the outside of the shear layer is diffusion dominated. 
It also indicates that the assumption of “local isotropy” may need to be modified for self- 
diffusion dominated turbulence. This k - 5 / 3  behavior may be an appropriate description 
of the outside edge of the layer, where, in reality, the turbulence is far from Gaussian and 
far from isotropic, as indicated by the direct numerical simulations. Further studies, both 
numerical and experimental, would shed much light on this issue. 

F. A Spectral Form Including the Pressure-Velocity Correlations 
‘As noted previously, the effects of the pressure-velocity correlations is to counteract 

the “diffusive” effects of the triple correlations in a certain preferential fashion. Following 
the analysis of the previous chapter, this effect can be accounted for in a tensorially correct 
fashion by defining a new tensor, D i j k ,  such that 

where the third-rank tensor, Dijk, is fully symmetric on its indices and may be taken 
as the same symmetric tensor defined above. Note that this “asymmetry” in the indices 
implies that this tensor appears in the Eij evolution equation with the divergence taken 
on the k-index only. Attempts to use such a closure with the spectral model applied to the 
free shear layer produced apparently unphysical results. Preliminary examination of the 
computed results indicate that the inclusion of the pressure effects as a diffusive correction 
to a gradient diffusion approximation caused pathological behavior near the edge of the 
layer. This behavior is apparently the result of the “anti-diffusive” effects of the fluctuating 
pressure-velocity correlation acting in the direction normal to the shear plane. The physical 
effect seems to be analogous to a “drag” on the component of the triple correlation that 
is fully aligned in the direction of the inhomogeneity. (This effect corresponds to the 
D222 component of the diffusion tensor in both the DNS and the model computation.) 
However, this “drag” effect literally has been modeled as an anti-diffusional correction to 
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the diffusive model of the triple correlations. While this form may be adequate for certain 
components at certain scales, its inclusion ‘in the spectral model applied to the free shear 
layer apparently caused a spurious “anti-diffusion” for some components at some wave 
numbers, resulting in the computational failures. 

In conclusion, it appears likely that a simple diffusion-like model is inadequate to 
capture the effects of the pressure-velocity correlations with any real physical fidelity. It 
seems likely that the nonlocal effects (in physical space) of these correlations are essential 
to represent the front growth with any real physical fidelity. Much work remains to be 
done in formulating a physical motivated yet tractable integral (i.e.) nonlocal) form for the 
pressure-velocity correlations. 
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