ENGINEERING DATA TRANSMITTAL

Distribution
- To: (Receiving Organization)
- From: (Originating Organization)
- Related EDT No.: N/A
- Purchase Order No.: N/A
- Equip./Component No.: N/A
- System/Bldg./Facility: 225-WC
- Major Asm. Dwg. No.: H-2-99525
- Project/Prog./Dept./Div.: W15540
- Cog. Engr.: PR Hired
- Permit Application No.: N/A
- Permit/Permit Application No.: N/A
- Required Response Date: ASAP
- Originator Remarks: Operability Test Procedure for testing the 225-WC wastewater samplers and monitors is routed for approval.

Received
- May 17, 1995
- OSTI

DATA TRANSMITTED

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document/Drawing No.</th>
<th>Sheet No.</th>
<th>Rev. No.</th>
<th>Title or Description of Data Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>WHE-SD-CP-0TP-153</td>
<td>0</td>
<td></td>
<td>OTP for PFP wastewater sampling facility</td>
</tr>
</tbody>
</table>

SIGNATURE/DISTRIBUTION

- Cog. Mgr.: DAF 4/21/95 T5-21 PJ Sullivan
- QA: DAQ 4/21/95 T5-54 GP Anderson
- Safety: Central Files (C)
- Env.: DAF 4/21/95 T5-54 P.E. T. I. (C)
- Ops. Div: DAF 4/21/95 T5-54

KEY
- Impact Level (F): 1, 2, 3, or 4 (see MRP 5.43)

Signature of EDT Originator

Page 1 of 1

EDT 136007
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
RELEASE AUTHORIZATION

Document Number: WHC-SD-CP-OTP-153, REV 0

Document Title: Operability Test Procedure for PFP Wastewater Sampling Facility

Release Date: 4/27/95

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

Kara M. Broz

April 27, 1995

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from:

U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650
Operability Test Procedure for PFP Wastewater Sampling Facility

5. Key Words
Wastewater Sampling TEDF PFP OTP 225-WC

7. Abstract
Document provides instructions for performing the Operability Test of the 225-WC Wastewater Sampling Station which monitors the discharge to the Treated Effluent Disposal Facility from the Plutonium Finishing Plant.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A-6400-073 (08/94) WEF124

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.
TABLE OF CONTENTS

1.0 Test Plan 2
2.0 Safety 3
3.0 Tools, Equipment, and Supplies 3
4.0 Quality Assurance and Pre-test Inspection Requirements 4
5.0 Procedure Steps 5
 5.1 Chart Recorder UR-201 5
 5.2 Current Isolator IB-201 6
 5.3 Current Isolator IB-202 7
 5.4 Current Isolator IB-203 8
 5.5 IB-1 and IB-2 Current Isolators 9
 5.6 Time Delay Relays TDR1 and TDR3 10
 5.7 Sampler Unit #1 11
 5.8 Sampler Unit #2 12
 5.9 pH Transmitter AIT-201 13
 5.10 Conductivity Transmitter AIT-202 14
 5.11 Flow Computer FQ-301 15
 5.12 Digital Indicator FQ-201 in Room 104 16
 5.13 Recorder AIR-202 in Room 104 17
6.0 Data Verification Sheets 20
Attachment 1 Exception List 24
Attachment 2 Acceptance Sheet 26
1.0 TEST PLAN

This Operability Test Procedure (OTP) has been prepared to verify correct configuration and performance of the PFP Wastewater sampling system installed in Building 225-WC located outside the perimeter fence southeast of the Plutonium Finishing Plant (PFP). The objective of this test is to ensure the equipment in the sampling facility operates in a safe and reliable manner.

The sampler consists of two Manning Model S-5000 units which are rate controlled by the Milltronics ultrasonic flowmeter at manhole #C4 and from a pH measuring system with the sensor in the stream adjacent to the sample point.

The intent of the dual sampling system is to utilize one unit to sample continuously at a rate proportional to the wastewater flow rate so that the aggregate tests are related to the overall flow and thereby eliminate isolated analyses. The second unit will only operate during a high or low pH excursion of the stream (hence the need for a pH control). The dual units are interconnected with a switch so that their "duty" (constant sampling during pH excursion) may be selected by selector switch actuation. This also permits back-up operation for the "constant" monitor in the event of failure or the servicing of one unit while the other continues to operate. Flow, pH and sample failure alarms are to be monitored in room 104, Building, 234-52 on a strip chart recorder and an annunciator. Digital readouts in room 104 will indicate flow rate and total flow.

The major items in this OTP include testing of the Manning Sampler System and associated equipment including the pH measuring and control system, the conductivity monitor, and the flow meter.

Acceptance of this OTP will require an Operations representative to initial each step that is satisfactorily completed. The Quality Control (QC) representative will initial, date, and/or stamp each section after it has been completed, and a representative from Environmental engineering will also initial and date each section. Operation of the system within the given parameters described in this OTP will constitute satisfactory test results. If any of the procedure steps outlined in this OTP can not be performed, Operations management and Environmental Engineering shall be contacted.

An Acceptance Test Procedure (ATP) has been previously performed on this system by construction forces during installation.
2.0 **SAFETY**

Individuals shall carry out their assigned work in a safe manner to protect themselves and others from undue hazards and to prevent damage to property and environment. Facility line managers shall assure the safety of all activities within their areas to prevent injury, property damage, or interruption of operation.

A pre-job safety meeting will be held.

3.0 **TOOLS, EQUIPMENT AND SUPPLIES**

Two DVM's (Example: Fluke 8060A)

One stop watch.

Temperature reading device (Example: temp/transmation)

One adjustable current generator – 0-20 mA minimum range ±2%, capable of driving 1,000 ohms impedance. (Example: Transmation)

Two containers with several gallons of demineralized water.

Beaker – 1,000 milliliters nominal size with graduation increments of 10 ml or less.

Jumpers, common

Manning S-5000 Instruction Manual – Section III.

Tigraph chart recorder Model 200 Users Manual.

pH standards (4, 7, & 10)

Conductivity standards (100 and 500 µS/cm)

Calibration/Functional Stickers
4.0 QUALITY ASSURANCE AND PRE-TEST INSPECTION REQUIREMENTS

1. Verify all supplies required to perform this OTP are available.
2. Verify all required personnel are present. (2 Instrument Techs, Env. Eng. and QC)
3. Verify test equipment is within calibration.

<table>
<thead>
<tr>
<th>Initial/ Date</th>
<th>Equipment Type</th>
<th>M&TE No.</th>
<th>Cal. Due</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 4.0 COMPLETE

Environmental Engineer_________________________ Date____________________

Quality Control _______________ Stamp________ Date______________

5.0 PROCEDURE STEPS

- Testing will be conducted by Operations personnel with Quality Control and Environmental Engineering sign-off.

- If test circumstances require red-lining, Operations management may make written procedural changes, with approval in accordance with WHC-CM-3-5, 2.7.

- If equipment is faulty, the OTP will be discontinued until the problem is solved.

- Discrepancies must be written down on the provided Exceptions List located in Attachment 1.

- Persons performing calibration and measurements must initial each step when completed.
5.1 Chart Recorder UR-201 (Tigraph)

Refer to Section 6.4, Chart Recorder UR-201 Data Sheet.

1. Test operability of chart recorder according to instruction manual.

Perform the following steps to test the recorder operation using the instruction manual.

2. Turn power switch ON.

3. Set Date/Time.

4. Set channels A, B, and C to "ON" and channels D-F to "OFF".

5. Set the following scale limits:
 - Channel A: Low = 0, High = 695
 - Channel B: Low = 0, High = 14
 - Channel C: Low = 0, High = 500

6. Print out chart status and verify parameters.

7. Check out and program recorder to come up on record mode when power is applied.

8. Restore recorder to operational status.

SECTION 5.1 COMPLETE

Environmental Engineer __________________________ Date ______________

Quality Control ______________ Stamp ______ Date ______
5.2 Current Isolator IB-201 (Moore Industries)

1. Disconnect input leads from IB-201.

2. Attach the current generator to IB-201 input terminals. Attach (+) to (+) and (-) to (-).

3. Disconnect the (+) output lead from IB-201 and install a milliammeter in series with the output terminal and the lead disconnected.

4. Turn on a-c power to UR-201, FI-201, IB-201, IB-203, and FQ-301.

5. Set current generator input to IB-201 to 4 mA.

6. Adjust "zero" control on IB-201 for 4 mA ± 0.1 display on meter hooked in series in Step 5.2.3.

7. Set 20 mA on input to IB-201 and adjust "span" control for 20 mA ± 0.1 output as above.

8. Repeat steps 5.2.5 thru 5.2.7 until no further adjustments are necessary.

9. Connect output leads to IB-201.

10. Check existing recorder UR-201 for proper operation (to 100% full span) at 4 mA and 20 mA (± 0.1) input to IB-201.

SECTION 5.2 COMPLETE

Environmental Engineer ___________________________ Date ________________________

Quality Control ___________ Stamp ___________ Date__________
5.3 Current Isolator IB-202 (Moore Industries)

1. Disconnect input leads from IB-202.

2. Attach the current generator to IB-202 input terminals. Attach (+) to (+) and (-) to (-).

3. Disconnect the (+) output lead from IB-202 and install a milliammeter in series with the output terminal and the lead disconnected.

5. Set current generator input to IB-202 to 4 mA.

6. Adjust "zero" control on IB-202 for 4 mA ± 0.1 display on meter hooked in series in Step 5.3.3.

7. Set 20 mA on input to IB-202 and adjust "span" control for 20 mA ± 0.1 output as above.

8. Repeat steps 5.3.5 thru 5.3.7 until no further adjustment is necessary.

10. Check existing recorder UR-201 for proper operation (to 100% full span) at 4 mA and 20 mA (± 0.1) input to IB-202.

SECTION 5.3 COMPLETE

Environmental Engineer ________________ Date ________________

Quality Control ____________ Stamp ____________ Date ________________
5.4 Current Isolator IB-203 (Moore Industries)

1. Disconnect input leads from IB-203.

2. Attach the current generator to IB-203 input terminals. Attach (+) to (+) and (-) to (-).

3. Disconnect the (+) output lead from IB-203 and install a milliammeter in series with the output terminal and the lead disconnected.

4. Turn on a-c power to IB-1, IB-2, UR-201, FI-201, AIR-202, IB-201, IB-203, and FQ-201.

5. Set current generator input to IB-203 to 4 mA.

6. Adjust "zero" control on IB-203 for 4 mA ± 0.1 display on meter hooked in series in Step 5.3.3.

7. Set 20 mA on input to IB-203 and adjust "span" control for 20 mA ± 0.1 output as above.

8. Repeat steps 5.4.5 thru 5.4.7 until no further adjustment is necessary.

9. Connect output leads to IB-203.

10. Check existing recorder UR-201 for proper operation (to 100% full span) at 4 mA and 20 mA (± 0.1) input to IB-203.

SECTION 5.4 COMPLETE

Environmental Engineer ______________________ Date ____________________

Quality Control ______________________ Stamp __________ Date__________
5.5 IB-1 and IB-2 Current Isolator (Action Instruments)

These isolators are necessary because of grounded inputs to each of the Manning samplers and the current cannot be input in series.

5.5.1 Testing IB-1

1. Disconnect input leads to sampler unit #1 and 2 and connect milliammeter to leads instead.

2. Apply 4 mA to input of IB-203.

3. Turn sampler selector switch to position #1.

4. Adjust #1 to 4 mA output with zero control.

5. Verify input to sampler #2 reads 4 mA ± 0.1.

6. Apply 20 mA to input of IB-203.

7. Set span control of IB-1 to 20 mA output on meter.

8. Verify input to sampler #2 reads 20 mA ± 0.1.

9. Repeat steps 5.5.1.2 through 5.5.1.7 as necessary until no further adjustment is needed.

10. Turn sampler selector switch to position #2 to test IB-2.

5.5.2 Testing IB-2

1. Adjust #2 to 4 mA output with zero control.

2. Verify input to sampler #1 reads 4 mA ± 0.1.

3. Apply 20 mA to input of IB-203.

4. Verify input to sampler #1 reads 20 mA ± 0.1.

5. Set span control of IB-2 to 20 mA output on meter.

6. Repeat steps 5.5.2.1 through 5.5.2.5 as necessary until no further adjustment is needed.

SECTION 5.5 COMPLETE

Environmental Engineer __________________________ Date ______________

Quality Control __________________________ Stamp ________ Date _________
5.6 Time Delay Relays TDR1 and TDR3 (Potter-Brumfield)

1. Set TDR1 to minimum setting (0 seconds).

2. While 20 mA is applied to IB-203 and Sampler Selector Switch is in position 2, short terminals 1 and 2 of AIT-201 at TB-1.

3. Check that milliammeter to Sampler #1 shows 20 mA.

4. Switch Sampler Selector Switch to position 1.

5. Check that milliammeter to Sampler 2 shows 20 mA.

6. Press reset button on Sampler Control panel to acknowledge LO pH alarm.

7. Set TDR3 to minimum setting (0 seconds).

8. While 20 mA is applied to IB-203 and Sampler Selector Switch is in position 2, remove jumper from terminals 1 and 2 of AIT-201 and place across terminal 3 and 4 of AIT-201.

9. Check that milliammeter to Sampler #1 shows 20 mA.

10. Switch Sampler Selector Switch to position 1.

11. Check that milliammeter to Sampler #2 shows 20 mA.

12. Press reset button on Sampler Control panel to acknowledge HI pH alarm.

13. Remove jumper from AIT terminals 3 and 4 and reconnect leads to Sampler #1 and #2 inputs.

SECTION 5.6 COMPLETE

Environmental Engineer __________________________ Date ______________

Quality Control __________________________ Stamp _____ Date __________

Release Date	Document No.	Rev/Mod	Page
WHC-SD-CP-OTP-153 | 0 | 10 of 26 |
5.7 Sampler Unit #1 (Manning S-5000)

1. Turn function knob to OFF.
2. Check power switch to be ON.
3. Disconnect from riser and immerse open end of intake hose into container of water with end of hose resting on the bottom.
4. Make sure Sample Control Switch is positioned to PH No. 2 position.
5. Test for ability to calibrate at operating points by the following steps:
 a. Input 4 mA to IB-203.
 b. Turn underrange pot CCW until LED (light emitting diode) to the immediate right of the underrange pot, just goes out.
 c. Set milliamp source to 20 mA and turn overrange pot until the LED just goes out.
 d. Repeat steps 5.7.4.b and 5.7.4.c until no further adjustment is necessary. Refer to page 3 of Manning instructions.
6. Set the three digit screwdriver adjustment switch marked MAX FLOW INPUT to read a maximum of 695, which is set to read in gallons per minute.
7. Set rate switch at 6 and multiple switch at 10 to obtain a 150 ml sample for every 60 gal of waste. (about 9 gallons collected for a flowrate of 12000 gallons/day)
8. Obtain 150 ml sample and verify sampling cycle operates properly.

SECTION 5.7 COMPLETE

Environmental Engineer ___________________________ Date ___________________________

Quality Control ___________________________ Stamp _______ Date__________

Release Date Document No. Rev/Mod Page
WHC-SD-CP-OTP-153 0 11 of 26
5.8 Sampler Unit #2 (Manning S-5000)

1. Turn function knob to OFF.

2. Check power switch to be ON.

3. Disconnect from riser and immerse open end of intake hose into container of water with end of hose resting on the bottom.

4. Make sure Sample Control Switch is positioned to PH No. 1 position.

5. Test for ability to calibrate at operating points by the following steps:
 a. Input 4 mA to IB-203.
 b. Turn underrange pot CCW until LED (light emitting diode) to the immediate right of the underrange pot, just goes out.
 c. Set milliamp source to 20 mA and turn overrange pot until the LED just goes out.
 d. Repeat steps 5.8.4.b and 5.8.4.c until no further adjustment is necessary. Refer to page 3 of Manning instructions.

6. Set the three digit screwdriver adjustment switch marked MAX FLOW INPUT to read a maximum of 695, which is set to read in gallons per minute.

7. Set rate switch at 6 and multiple switch at 10 to obtain a 150 ml sample for every 60 gal of waste. (about 9 gallons collected for a flowrate of 12000 gallons/day)

8. Obtain 150 ml sample and verify sampling cycle operates properly.

SECTION 5.8 COMPLETE

Environmental Engineer ____________________ Date ____________________
Quality Control ____________________ Stamp ______________ Date ______________
5.9 **pH Transmitter (Rosemount Model 1054A pH)**

Reference Manufacturer's Instruction Manual, P/N 5101054AP

Refer to section 6.1, pH Data Sheet.

1. Place assembly in position to rinse with clean water and rinse probe thoroughly.

2. Program in alarm set points at 6.5 for low pH and 8.5 for high pH.

3. Verify Temperature Indicator is within tolerance as outlined in section 5.2 of vendor manual.

4. Calibrate system as outlined in section 5.3.1 of vendor manual.

5. Verify correct pH is being sent to Effluent Treatment Facility (ETF) Control Room. (phone # 373-7975)

6. Verify hi/lo pH alarms on transmitter.

7. Verify hi/lo pH alarms on Local Control Unit.

8. Set DELAY TIME ON to 10 seconds for both alarms.

9. Perform a integrated functional test of the pH sampling system:
 - a. Place pH probe into low pH buffer.
 - b. Alarm should sound 10 seconds later.
 - c. Manning Sampler #2 should switch on and collect a sample.
 - d. Acknowledge pH alarm.

10. Return pH and Manning samplers to operational status.

SECTION 5.9 COMPLETE

Environmental Engineer ___________________________ Date ___________________________

Quality Control ___________________________ Stamp _______ Date _____________
5.10 Conductivity Transmitter (Rosemount model 1054A C)

Refer to Section 6.2, Conductivity Data Sheet.

1. Place assembly in position to rinse with clean water and rinse probe thoroughly.

2. Adjust Cell Constant Input to a value of 5.0 as outlined in step 7.4 of PSCP-5-036.

3. Perform Temperature calibration as outlined in step 7.5 of PSCP-5-036.

4. Perform conductivity calibration with buffer solutions as outlined in step 7.6 of PSCP-5-036.

5. Verify correct conductivity is being sent to ETF Control Room.

6. Set TIME DELAY ON to 10 seconds for alarm.

7. Restore the transmitter to operational mode.

SECTION 5.10 COMPLETE

Environmental Engineer __________________________ Date __________________

Quality Control __________________________ Stamp ______ Date ____________
5.11 FO-301 flow computer (Milltronics Multiranger Plus)

Reference: Multiranger Plus Programmable Level System Instruction Manual

Refer to Section 6.3, Flow Computer Data Sheet.

1. Program in Operating Parameters as outlined in Vendor Manual.
5. Verify alarm on Local Control Unit.
6. Verify correct flow data is being sent to ETF Control Room.

SECTION 5.11 COMPLETE

Environmental Engineer __________________________ Date ____________________

Quality Control __________________________ Stamp _______ Date ____________
5.12 Digital Indicator FQ-201 in Room 104 (Fischer-Porter)

1. Set totalizer digital indicator section of FQ-201 to proper range and check.

2. Calculate scale factor. \((6000 \times 60 \times 10)/695 = 5180\)

3. Verify totalizer scaling switches 4096, 1024, 32, 16, 8, and 4 to ON, all others to OFF.

4. Momentarily short circuit terminals M and N on display board to reading to zeros.

5. Apply 4 mA input to FQ-201 for a reading of "0" ±7 counts. Adjust ZERO potentiometer R4 for "0" count if necessary.

6. Apply 20 mA input to FQ-201 for a reading of 695 counts ±7 counts. Adjust span potentiometer R10 if necessary for appropriate readings.

7. Repeat steps 5.12.5 and 5.12.6 if necessary for appropriate readings.

8. Set millimeter to 4 mA output.

9. Reset scaler of FQ-201 to zero.

10. Observe totalized scale for 1 minutes. Reading shall be "0" ±7 counts. (If more than 7 counts, check milliammeter for exact 4 mA and rerun.)

11. Set milliammeter to 20 mA.

12. Reset scales to zero and time exactly 10 minutes for a required count of 695 ±7 counts.

SECTION 5.12 COMPLETE

Environmental Engineer_________________________ Date________________

Quality Control_________________________ Stamp_________ Date_________
5.13 Recorder AIR-202 in Room 104 (Tigraph)

Refer to section 6.5, Chart Recorder AIR-202 Data Sheet.

The intent of this section is to sufficiently check out the TI recorder and its association with the annunciator -- not to necessarily set it up for operation but functionally checkout.

1. Test operability of paper drive according to Section 3.2 of instruction manual.

Perform the following steps to test the recorder operation using the instruction manual.

2. Turn power switch ON.

3. Set Date/Time.

4. Set channels A, B to "ON" and channels C-F "OFF".

5. Set high point alarm on channel A at 72% of full scale. This represents 500 gpm.

6. Set low point alarm on channel B at 46%. This corresponds to pH=6.5.

7. Set high point alarm on channel B at 61%. This corresponds to pH=8.5.

8. Set the following scale limits:

 Channel A: Low = 0, High = 695
 Channel B: Low = 0, High = 14

Perform the following steps on channel B.

9. Set current generation to 12 mA. Clear annunciator pH light.

10. Gradually increase current until alarm occurs. Alarm should occur at approximately 13.7 mA (pH = 8.5). Tolerance on pH alarm = ±0.1.

11. Set current generator to 13 mA and clear annunciator.

12. Gradually decrease current until alarm occurs. Alarm should occur at approximately 11.4 mA (pH = 6.5). Tolerance on pH alarm = ±0.1.
Perform the following steps on channel A.

13. Set current generation to 12 mA.

14. Gradually increase current until alarm occurs. Alarm should occur at approximately 15.5 mA (flow = 500 GPM). Tolerance on flow alarm = ±7 GPM.

15. Remove generators and reconnect wire inputs.

16. Print out chart status and verify parameters.

17. Check out and program recorder to come up on record mode when power is applied.

SECTION 5.13 COMPLETE

Environmental Engineer ______________ Date ____________________

Quality Control ___________ Stamp __________ Date ___________
5.14 Reference Drawings

H-2-81331, Sh. 1, Rev 0: TEDF Effluent Instr Arrangement Wiring & Details
H-2-81331, Sh. 2, Rev 0: TEDF Effluent Instr Arrangement Relay Cabinet
H-2-81331, Sh. 3, Rev 0: TEDF Effluent Instr Arrangement Details
H-2-81331, Sh. 4, Rev 0: TEDF Effluent Instr Arrangement Wiring Diagram
H-2-99525, Sh. 1, Rev 0: Engineering Flow Diagram - PFP Wastewater Effluent
H-2-99526, Sh. 1, Rev 0: Piping Plan and Details - PFP Wastewater Effluent
H-2-99527, Sh. 1, Rev 0: Piping Plan and Details - Sampler Rack #1
H-2-99527, Sh. 2, Rev 0: Piping Plan and Details - Instr. Rack Assy
H-2-99527, Sh. 3, Rev 0: Piping Plan and Details - Sampler Rack #1 Assy
H-2-140390, Sh.2, Rev 0: Electrical/Instr Monitorying Sta Details
H-2-140391, Sh.1, Rev 0: Electrical/Instr Installation Details TYP LCU Cabinet
6.0 DATA VERIFICATION SHEET

6.1 pH Transmitter AIT-201

Tolerance for Output Display ±2.5%
Tolerance for Chart Recorder ±2.5%

<table>
<thead>
<tr>
<th>BUFFER pH</th>
<th>AS-FOUND</th>
<th>AS-LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTPUT DISPLAY</td>
<td>CHART RECORDER</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2 Conductivity Transmitter AIT-202

Tolerances ±5%

<table>
<thead>
<tr>
<th></th>
<th>ASSIGNED VALUE</th>
<th>AS-FOUND</th>
<th>AS-LEFT</th>
<th>ETF CONTROL ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Constant</td>
<td>5.0</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Temp DI water</td>
<td>measured</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Alarm #1 Setpoint</td>
<td>400 μS</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Buffer #1</td>
<td>100 μS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer #2</td>
<td>500 μS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.0 DATA VERIFICATION SHEET (Cont.)

6.3 Flow Computer FQ-301

Tolerances ± 5%

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>ASSIGNED VALUE</th>
<th>AS FOUND</th>
<th>AS LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-14</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-20</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-23</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-38</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-39</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-41</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-42</td>
<td>2.6363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-43</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>ASSIGNED VALUE</th>
<th>AS FOUND</th>
<th>AS LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-45</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-46</td>
<td>694.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-48</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-49</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-50</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-52</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-53</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-54</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-55</td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-56</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-68</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-69</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-71</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-72</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-73</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-74</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-75</td>
<td>.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.0 DATA VERIFICATION SHEET (Cont.)

6.4 Chart Recorder UR-201

Tolerances for channel A ±1%
Tolerances for channel B ±2.5%
Tolerances for channel A ±5%

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI SETPOINT %</td>
<td>72</td>
<td>61</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LO SETPOINT %</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHANNEL SELECT</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>CHART MODULE</td>
<td>P1D</td>
<td>P2E</td>
<td>P3F</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>SCALE HI END</td>
<td>695</td>
<td>14</td>
<td>500</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SCALE LO END</td>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCALE UNITS</td>
<td>FLOW</td>
<td>PH</td>
<td>COND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO PASS FILTER</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
</tr>
<tr>
<td>CHART SPEED</td>
<td>1</td>
<td>IN/HOUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUMP SPEED</td>
<td>OFF</td>
<td>IN/HOUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME FORMAT</td>
<td>MONTH - DAYS, HOURS : MINUTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRIDS ORDERED</td>
<td>BY CHANNEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LINE SYNC 60 HZ.
6.0 DATA VERIFICATION SHEET (Cont.)

6.5 Chart Recorder AIR-201 (in Room 104)

Tolerances for channel A ±1%
Tolerances for channel B ±2.5%

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI SETPOINT %</td>
<td>72</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LO SETPOINT %</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHANNEL SELECT</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>CHART MODULE</td>
<td>PID</td>
<td>P2E</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>SCALE HI END</td>
<td>695</td>
<td>14</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SCALE LO END</td>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCALE UNITS</td>
<td>FLOW</td>
<td>PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO PASS FILTER</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
<td>OUT</td>
</tr>
<tr>
<td>CHART SPEED</td>
<td>1</td>
<td>I/HOUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUMP SPEED</td>
<td>OFF</td>
<td>IN/HOUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME FORMAT</td>
<td>MONTH - DAYS, HOURS : MINUTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRIDS ORDERED</td>
<td>BY CHANNEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HIGRAPH 200 STATUS

LINE SYNC 60 HZ.
<table>
<thead>
<tr>
<th>STEP</th>
<th>EXCEPTION</th>
<th>RESOLUTION</th>
<th>INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Document No: WHC-SD-CP-OTP-153

Rev/Mod: 0

Page: 24 of 26
<table>
<thead>
<tr>
<th>STEP</th>
<th>EXCEPTION</th>
<th>RESOLUTION</th>
<th>INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Release Date

<table>
<thead>
<tr>
<th>WHC-SD-CP-OTP-153</th>
<th>Rev/Mod</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>25 of 26</td>
</tr>
</tbody>
</table>
The undersigned concur that the OTP was successfully completed.

PFP Liquid Effluent Cognizant Engineer __________________________ Date __________

PFP Operations Manager __________________________ Date __________

QC __________________________ Date __________