Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data

PDF Version Also Available for Download.

Description

Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to ... continued below

Physical Description

13 p.

Creation Information

Creator: Unknown. November 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Creator

  • We've been unable to identify the creator(s) of this article.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ``Burnup Credit.`` Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ``Actinide-Only Burnup Credit.`` The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly.

Physical Description

13 p.

Notes

INIS; OSTI as DE98001301

Source

  • 1998 international high-level radioactive waste management conference, Las Vegas, NV (United States), 11-14 May 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98001301
  • Report No.: DOE/RW/00134--M97-020
  • Report No.: CONF-980516--
  • Grant Number: AC08-91RW00134
  • Office of Scientific & Technical Information Report Number: 645516
  • Archival Resource Key: ark:/67531/metadc692036

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 10, 2018, 2:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 4
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data, article, November 1, 1997; Vienna, Virginia. (digital.library.unt.edu/ark:/67531/metadc692036/: accessed November 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.