Effect of nitrite concentration on pit depth in carbon steel exposed to simulated radioactive waste

PDF Version Also Available for Download.

Description

The growth of pits in carbon steel exposed to dilute (0.055 M nitrate-bearing) alkaline salt solutions that simulate radioactive waste was investigated in coupon immersion tests. Most coupons were tested in the as-received condition, with the remainder having been heat treated to produce an oxide film. Nitrite, which is an established pitting inhibitor in these solutions, was present in concentrations from 0 to 0.031 M to 0.16 M; the last concentration is known to prevent pitting initiation in the test solution at the 50 degrees C test temperature. The depths of the deepest pits on coupons of particular exposure conditions ... continued below

Physical Description

13 p.

Creation Information

Zapp, P.E. October 21, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The growth of pits in carbon steel exposed to dilute (0.055 M nitrate-bearing) alkaline salt solutions that simulate radioactive waste was investigated in coupon immersion tests. Most coupons were tested in the as-received condition, with the remainder having been heat treated to produce an oxide film. Nitrite, which is an established pitting inhibitor in these solutions, was present in concentrations from 0 to 0.031 M to 0.16 M; the last concentration is known to prevent pitting initiation in the test solution at the 50 degrees C test temperature. The depths of the deepest pits on coupons of particular exposure conditions were measure microscopically and were analyzed as simple, type 1 extreme value statistical distributions, to predict the deepest expected pit in a radioactive waste tank subject to the test conditions. While the growth rate of pits could not be established from these tests, the absolute value of the deepest pits predicted is of the order of 100 mils after 448 days of exposure. The data indicate that even nitrite concentrations insufficient to prevent pitting have a beneficial effect on limiting the growth of deepest pits.

Physical Description

13 p.

Notes

INIS; OSTI as DE98051096

Source

  • Corrosion `98, San Diego, CA (United States), 22-27 Mar 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98051096
  • Report No.: WSRC-MS--97-00758
  • Report No.: CONF-980316--
  • Grant Number: AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 568048
  • Archival Resource Key: ark:/67531/metadc691930

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 21, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • June 14, 2016, 5:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zapp, P.E. Effect of nitrite concentration on pit depth in carbon steel exposed to simulated radioactive waste, article, October 21, 1997; Aiken, South Carolina. (digital.library.unt.edu/ark:/67531/metadc691930/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.