Molecular modeling of the pendant chain in Nafion{reg_sign}

PDF Version Also Available for Download.

Description

Ion transport through perfluorosulfonic acid ionomers such as Nafion{reg_sign} is controlled by both the microstructure of the polymer and the charge and water distribution in the hydrated polymer. The authors present here the results of theoretical calculations on the side chain of Nafion{reg_sign}, establishing microscopic information for the modeling of water modeling of water modeling of water and proton transport in the membrane. Optimized geometries for the trifluoromethane sulfonic acid fragment (CF{sub 3}SO{sub 3}H), the di-trifluoromethane ether fragment (CF{sub 3}OCF{sub 3}), and the side chain (CF{sub 3}{single_bond}OCF{sub 2}CF(CF{sub 3})OCF{sub 2}CF{sub 2}SO{sub 3}H) were determined by means of both ab initio ... continued below

Physical Description

23 p.

Creation Information

Paddison, S.J. & Zawodzinski, T.A. March 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ion transport through perfluorosulfonic acid ionomers such as Nafion{reg_sign} is controlled by both the microstructure of the polymer and the charge and water distribution in the hydrated polymer. The authors present here the results of theoretical calculations on the side chain of Nafion{reg_sign}, establishing microscopic information for the modeling of water modeling of water modeling of water and proton transport in the membrane. Optimized geometries for the trifluoromethane sulfonic acid fragment (CF{sub 3}SO{sub 3}H), the di-trifluoromethane ether fragment (CF{sub 3}OCF{sub 3}), and the side chain (CF{sub 3}{single_bond}OCF{sub 2}CF(CF{sub 3})OCF{sub 2}CF{sub 2}SO{sub 3}H) were determined by means of both ab initio Hartree Fock theory with second order Moeller-Plesset electron correlation corrections, and density functional theory with Becke`s three parameter hybrid method. Several rotational potential energy surfaces were calculated to assess chain flexibility and proton accessibility. A probe water molecule was added to each of the fragments to characterize hydrophilic sites. These calculations confirmed that the sulfonic acid group is hydrophilic and the ethers are hydrophobic. Molecular dynamics simulations were then performed on the side chain to check the conditions required to stretch the pendant chain. Thermal averages of several structural parameters assessing the flexibility and stretch of the chain were computed from selected conformations produced in the simulation and these results indicate that although the sulfonate group is free to rotate, the chain stretches little. The construction of a potential energy surface for rotation about the second ether group suggests that the side chain exists in a folded or curled up conformation. A physical continuum dielectric solvent model was used to obtain free energies of electrostatic interaction of the fragments and the full chain with the solvent.

Physical Description

23 p.

Notes

OSTI as DE98002941

Source

  • Solid state ionics conference 1997, Honolulu, HI (United States), 16-21 Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98002941
  • Report No.: LA-UR--97-4414
  • Report No.: CONF-971196--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 645540
  • Archival Resource Key: ark:/67531/metadc691855

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • July 28, 2016, 7:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Paddison, S.J. & Zawodzinski, T.A. Molecular modeling of the pendant chain in Nafion{reg_sign}, article, March 1, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc691855/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.