A fundamental objective of a power-system operating and control scheme is to maintain a match between the system`s overall real-power load and generation. To accurately maintain this match, modern energy management systems require estimates of the future total system load. Several strategies and tools are available for estimating system load. Nearly all of these estimate the future load in 1-hour steps over several hours (or time frames very close to this). While hourly load estimates are very useful for many operation and control decisions, more accurate estimates at closer intervals would also be valuable. This is especially true for emerging ...
continued below
Publisher Info:
Pacific Northwest Lab., Richland, WA (United States)
Place of Publication:
Richland, Washington
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
A fundamental objective of a power-system operating and control scheme is to maintain a match between the system`s overall real-power load and generation. To accurately maintain this match, modern energy management systems require estimates of the future total system load. Several strategies and tools are available for estimating system load. Nearly all of these estimate the future load in 1-hour steps over several hours (or time frames very close to this). While hourly load estimates are very useful for many operation and control decisions, more accurate estimates at closer intervals would also be valuable. This is especially true for emerging Area Generation Control (AGC) strategies such as look-ahead AGC. For these short-term estimation applications, future load estimates out to several minutes at intervals of 1 to 5 minutes are required. The currently emerging operation and control strategies being developed by the BPA are dependent on accurate very short-term load estimates. To meet this need, the BPA commissioned the Pacific Northwest National Laboratory (PNNL) and Montana Tech (an affiliate of the University of Montana) to develop an accurate load prediction algorithm and computer codes that automatically update and can reliably perform in a closed-loop controller for the BPA system. The requirements include accurate load estimation in 5-minute steps out to 2 hours. This report presents the results of this effort and includes: a methodology and algorithms for short-term load prediction that incorporates information from a general hourly forecaster; specific algorithm parameters for implementing the predictor in the BPA system; performance and sensitivity studies of the algorithms on BPA-supplied data; an algorithm for filtering power system load samples as a precursor to inputting into the predictor; and FORTRAN 77 subroutines for implementing the algorithms.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Trudnowski, D.J.; Johnson, J.M. & Whitney, P.Power system very short-term load prediction,
report,
February 1, 1997;
Richland, Washington.
(digital.library.unt.edu/ark:/67531/metadc691829/:
accessed February 22, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.