MAGNETIC DAMPING FORCES IN FIGURE-EIGHT-SHAPED* NULL-FLUX COIL SUSPENSION SYSTEMS

Jianliang He and Howard Coffey

Argonne National Laboratory
9700 South Cass Avenue Argonne, Illinois 60439

to be published in the September 1997 Intermag issue of the IEEE Transactions on Magnetics

*Work supported by the 46th Test Group, U.S. Air Force at Holloman Air Force Base, through Interagency Procurement Request M46TGT960060 with the U.S. Department of Energy. Opinions, conclusions, and recommendations contained in this article are those of the authors and are not necessarily endorsed by the U.S. Air Force.
Magnetic Damping Forces in Figure-Eight-Shaped Null-Flux Coil Suspension Systems

Jianliang He and Howard Coffey
Argonne National Laboratory, Argonne, Illinois 60439

Abstract – This paper discusses magnetic damping forces in figure-eight-shaped null-flux coil suspension systems, focusing on the Holloman maglev rocket system. The paper also discusses simulating the damping plate, which is attached to the superconducting magnet by two short-circuited loop coils interacting with the figure-eight-shaped null-flux coils in the guideway. Closed-form formulas for the magnetic damping coefficient as functions of heave and sway displacements are derived by using a dynamic circuit model. These formulas are useful for dynamic stability studies.

I. INTRODUCTION

The figure-eight-shaped null-flux coil suspension system has been widely used for many different maglev configurations, including the Japanese MLU system, several U.S. system concepts, and, more recently, the U.S. Air Force's Holloman maglev rocket sled system [1] (Fig. 1). The major advantage of this system is that it can provide very high lift-to-drag ratios (i.e., very high suspension efficiency). An important question is whether such a null-flux suspension system can produce sufficient magnetic damping forces to stabilize the rocket sled at hypersonic speeds. In fact, such magnetic damping forces are equally important to any electrodynamic suspension (EDS) maglev system [2], [3]. The dynamic stability of a maglev system cannot be predicted without knowing the magnetic damping forces.

This paper analyzes the magnetic damping forces resulting from the interaction between the figure-eight-shaped null-flux coil guideway and the damping plate by simulating the damping plate with two conducting loops. Thus, one can derive a simple relation for the magnetic damping force and therefore gain insight into the physics associated with the system design. In particular, the damping coefficient is expressed in terms of heave and sway displacements, which can be very useful for studying dynamic stability.

II. THE MODEL

A double-loop-shaped eddy current pattern is induced in the damping plate by the figure-eight-shaped null-flux guideway coils, suggesting that one may simplify the analysis of the damping problem by simulating the damping plate with two conducting loops (Fig. 2). Thus, one can use a dynamic circuit model in which the damping forces are determined in terms of circuit parameters and thus avoid using a complicated field analysis model [4], [5]. Following the conventional notation used in the maglev community, we specify x as the direction of longitudinal motion, y as the direction of sway or lateral motion, and z as the direction of heave or vertical motion, as shown in Fig. 2, where the subscripts gu, gl, du, dl, and s refer to the upper and lower guideway loops, upper and lower damping loops, and the superconducting magnet (SCM), respectively. Assuming a constant magnet current, I_s, one obtains four voltage equations for the system:

$$i_g R_{gu} + \frac{d\phi_{gu}}{dt} + \frac{d\phi_{gu}}{dt} + \frac{d\phi_{gu}}{dt} = 0,$$

$$i_g R_{gl} + \frac{d\phi_{gl}}{dt} + \frac{d\phi_{gl}}{dt} + \frac{d\phi_{gl}}{dt} = 0,$$

$$i_d R_{du} + \frac{d\phi_{du}}{dt} + \frac{d\phi_{du}}{dt} + \frac{d\phi_{du}}{dt} = 0,$$

$$i_d R_{dl} + \frac{d\phi_{dl}}{dt} + \frac{d\phi_{dl}}{dt} + \frac{d\phi_{dl}}{dt} = 0.$$

Work supported by the 46th Test Group, U.S. Air Force at Holloman Air Force Base through Interagency Procurement Request M46TJ960060 with the U.S. Department of Energy. Opinions, conclusions, and recommendations contained in this article are those of the authors and are not necessarily endorsed by the US Air Force.
where \(i \) is the current, \(R \) is the resistance, and \(\phi \) is the flux linkage. The flux linkages in the null-flux coils and the damping coils are divided into several groups, according to their generating sources. The terms \(\phi_{gu,g} \) and \(\phi_{gl,g} \) are the flux linkages of the upper and lower loops of the null-flux coil with the self-inductances and the mutual inductances from neighboring guideway coils. Similarly, \(\phi_{gu,d} \) and \(\phi_{gl,d} \) are the flux linkages with the damping loops, \(\phi_{gu,s} \) and \(\phi_{gl,s} \) are the flux linkages with the SCM, \(\phi_{dgu,d} \) and \(\phi_{dgl,d} \) are the flux linkages of the upper and lower damping loops with their self-inductances and the mutual inductances between the damping loops, and \(\phi_{dgu,g} \) and \(\phi_{dgl,g} \) represent the flux linkages with all null-flux guideway coils.

In equations (1) and (2), the third terms represent the voltage induced in the null-flux loops by the eddy current in the null-flux coil given by

\[
\phi_{gu,s} = i_g M_{gu}(y,z) \cos \beta x \quad \text{and}
\]

\[
\phi_{gl,s} = i_g M_{gl}(y,z) \cos \beta x,
\]

where \(M_{gu}(y,z) \) and \(M_{gl}(y,z) \), the mutual inductances between the SCM and the upper or lower loops of the null-flux coil, are functions of the vertical and lateral displacements. They are calculated at the position where the two coils are aligned in the longitudinal direction. The term \(\beta \) is a wave number, and \(\tau \) is pole pitch of the SCM. The currents induced in the upper and lower loops of the null-flux coil are identical but have opposite signs \((i_g = -i_g) \), and the resistance of the null-flux coil is much smaller than its reactance, \(R_g << X_g \). Therefore, one can solve for the current flowing in the null-flux coil given by

\[
i_g = \frac{1}{2} i_g \frac{\left(M_{gl} - M_{gu}\right)}{L_g} \cos \left(0, \beta \right),
\]

where \(\omega \) is the radial frequency relating to the longitudinal motion only, and \(L_g \) is the equivalent self-inductance of the null-flux loops, which includes all effects from its neighboring null-flux loops. Assuming that one SCM (and its associated damping loops) covers three null-flux coils, the total flux linkages to the upper and lower damping loops by three consecutive null-flux coils can be obtained as

\[
\phi_{dgu} = i_g - i_{g-1} + i_g M_{dgu} + i_g M_{du} + i_g M_{dgu} + i_g M_{dgu} + i_g M_{du} + 1,
\]

and

\[
\phi_{dgl} = -i_g - i_{g-1} + i_g M_{dgl} - i_g M_{dl} - i_g M_{dgl} - i_g M_{dl} + i_g M_{dgl} + i_g M_{dl} + 1.
\]

where \(i_g, i_{g-1}, \) and \(i_{g+1} \) are the currents flowing in the first, second, and third null-flux coils facing the SCM, and \(M_{du}, M_{du}, M_{du}, M_{du}, M_{du}, M_{du}, M_{du}, M_{du}, M_{du} \) are the mutual inductances between the damping loop and the first, second, and third upper null-flux loops, respectively. Note that the coupling effect between the upper and lower damping loop is also neglected. With a harmonic approximation, the currents induced in three consecutive guideway coils are expected to be delayed by one-third of a pole pitch. Thus, one can show that (8) and (9) have a traveling wave form referred to the guideway:

\[
\phi_{dgu} = \phi_{dgl} = \frac{3}{2} i_g M_{du} M_{gm} \cos \left(\omega t - \beta x\right),
\]

where \(i_g \) is the maximum value of the current in a null-flux coil given by (7). Equation (10) indicates that the flux linkage to the damping loop travels along the guideway with the same speed as the damping plate (simulated by loops) attached to the SCMs. In other words, there is no relative motion in the longitudinal direction between the damping plates or loops and the magnetic fields produced by the null-flux guideway coils. Consequently, one can now deal with the damping currents described by equations (3) and (4) without considering the motion in the \(x \)-direction. The total power dissipated in the two damping loops is expressed as

\[
P_d = 2P_{du} = 2P_{de} = \left(\frac{1}{2} R_d \frac{v_z^2}{\omega} \right) \left(\frac{1}{2} R_d \frac{v_z^2}{\omega} \right) = \frac{9}{16\pi^2} \frac{v_z^2}{\omega^2} F(y,z) \varphi_y R_d,
\]

where \(v_z \) is the speed associated with vertical motion, and \(R_d \) is the resistance and reactance of the damping loops. The two damping loops are assumed to be identical. Letting \(v_{zo} = R_d (\omega \beta L_d) \), where \(\beta \) is the vertical wave number, equation (11) can be further simplified as

\[
P_d = \frac{9}{16\pi^2} \frac{v_z^2}{\omega^2} F(y,z) \varphi_y R_d,
\]

where \(F(y,z) \) is a non-dimensional coupling function, depending on the geometry of the null-flux coils and the damping loops:

\[
F(y,z) = \left\{ \frac{\varphi_y}{L_d M_{du} M_{du}} \left(M_{gu} - M_{gl} \right) \right\}^2.
\]

Finally, one obtains the damping coefficient, \(C_d \), associated with the vertical or heave motion from equation (12) as

\[
C_d = \frac{P_d}{v_z^2} = \frac{1}{16\pi^2} \frac{1}{v_z^2} F(y,z) \varphi_y R_d.
\]

One can derive similar relations for the damping coefficient for the lateral motion. This topic will not be discussed here.
The power dissipation in the damping loops has three factors, as shown in equation (12). The first factor is related to the motion, which scales the power from zero to one as the speed varies from zero to infinity. The second factor is associated with the coupling between the guideway coils and the damping plate, and the last term has the form of resistive power dissipation. The relationships developed in equations (13) and (14) are illustrated in Figs. 3-5, where the following parameters are assumed: a 0.36-m by 0.17-m SCM with an excitation of 500-kA turns, 0.25-m by 0.12-m null-flux loops, 0.45-m by 0.12-m damping loops; a mean air gap between the SCM and the null-flux coil of 7-cm; and a gap between the damping loop and the null-flux coil of 4 cm (y0).

The dependence of the coupling function, F, on the vertical and lateral displacements is shown in Fig. 3, where one can see that F peaks at vertical null-flux position (z=0) and decreases as the vertical displacement increases in either direction. This implies that the power dissipated in the damping loops reaches a maximum value at a vertical null-flux position, although the currents flowing in the null-flux coils vanish at this position, simply because the damping power is proportional to the change of the currents in the null-flux coils. As expected, the coupling function F decreases as the lateral air gap, y, increases.

For a given speed, v2, the dependence of the damping coefficient, Cd, on the vertical and lateral displacements is determined by the coupling function F, as shown in Fig. 4, where one can see that several hundred kilograms per second per SCM can be achieved for the Holloman system, depending on the heave and sway displacements. The damping coefficient Cd approaches a peak at the vertical null-flux position, one that is similar to the peak shown in Fig. 3. However, note that Cd decreases with vertical speed, as shown in Fig. 5.

Fig. 3 Coupling function vs. vertical displacement with lateral displacement as a parameter

Fig. 4 Damping coefficient vs. vertical displacement with lateral displacement as a parameter at V2 = V2c = 2.1 m/s

Fig. 5 Damping coefficient as a function of vertical speed ratio, V2/V2c, with lateral displacement as a parameter at vertical equilibrium (vertical null-flux position)

IV. CONCLUSIONS

The magnetic damping forces associated with heave-and-sway motions of the Holloman maglev sled were studied by simulating the damping plate with two damping loops. Simple closed-form formulas for the damping coefficient are obtained in terms of a dynamic circuit model. These relations can be very useful for dynamic stability studies.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.