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ABSTRACT

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants
(HAPs) as candidatder regulation. Should regulations be imposed on HAP emissions from
coal-fired power plants, a sound understanding of the fundamental principledlicgritie
formation and partitioning of toxic species during coal combustibbeneeded. Withugpport
from the Federal Energy Technology Center (FETC), tketEt Power Research Institute, and
VTT (Finland), Physical Sciences Inc. (PSI) bssmed with researcheérem USGS, MIT, the
University of Arizona (UA), the University of Kentucky (UKy), the University of Ceaticut,
and Princeton University to develop a broadly applicable emissions model useful to regulators
and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable
to all combustion conditions including new fuels and coal blends, low-NO combustion systems,
and new power generation plants. Development of ToOPEM will be based on PSI's existing
Engineering Model for Ash Formation NMAF). During the last quarter coal analysis was
completed on the fingdrogram coal, from the Wyodak Seam of the Powder River Basin.
Combustion testing continued, including data collected on the self-sustained combustor at UA.
Datafrom PSI and MIT were used to identify the governing mechanismsaioe glement
vaporization from the program coals. Mercury speciation and measurements were continued.
Review of the existing trace element and organics emissions literature was completed. And,
model development was begun.
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1. EXECUTIVE SUMMARY
The technical objectives of thisoject are:

a) To identify the effect of the modaw#-occurrence of toxic elements in coal on the
partitioning of these elements among vapor, submicron fume, and fly ash during the
combustion of pulverized coal,

b) To identify the mechanisms governing the post-vaporizatioreiciien of toxic
elements and major minerals or unburnt char,

c) To determine the effect of combustion eamment (i.e., fuel rich or fuel lean) on the
partitioning of trace elements betweempog submicron fume, and fly ash during the
combustion of pulverized coal,

d) To model the partitioning of toxic elements between various chemical species in the
vapor phase and between the vapor phase and complex allicaiteomelts,

e) To develop a frame work for incorporating the results of the program into the
Engineering Model for Ash Formation NEAF).

A description of the work plan faccomplishing these objectives is presented in Se2tibof
this report.

The work discussed in this report highlights #tleomplishments of the sixth quarter of
this program. Thesaccomplishments include completion of standard coal analysis on the final
Phase | program coal. Theesgtive leaching wrk, to cetermine théorms of occurrence of
various trace elements, was compldiwdhe three bituminous coals.afafrom the combustion
zone experiments at PSI and MIT were analyzed to explore the observed differences between
the two facilities and toetermine the dominant mechanisiostrace element y@orization.
The review of the existing trace element and organics emissionB@atpower plants was
completed. Two major combustion experiments were completed on the self-sustained reactor at
UA. Finally, work was begun to identify the models, and model petens) requirefor TOPEM
development, and how these models can be incatgpadinto the existing Engineering Model for
Ash Formation (EMAF)

Specifically, in the last quarter the trace element concentration analysis was completed
for the Wyodak coal. This analysis indted that the concentrations of trace elements in this
coal are within the range of the bituminous coals in this program, with the exception of arsenic.
The concentration of this element, and that of chromium, is much lower than was found in the
other program coals. The CCSEM analysis of this coaliaiaisto most low-sulr western
subbituminous coals. It is also likely that there is significant organic calcium that is not measured
by CCSEM.
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Another major activity in the last quarter was analysis of tip@nzation dta obtained
at MIT and PSI to determine the mechanisms governing trace elenpamiza#ion in the
combustion zone. These data suggested that significant differences in the particle temperature
between the two facilities rather than captureyfte by dicatesduring the combustion
process, which was hypothesized earlier, caused the differencasaretement \@orization.
These data also suggested floatalmost all elements, vaporization occurs from included mineral
particles. This is especially true for those elements that were found to batessaath the

pyrite.

A number of kinetic calculations were performed at MIT étedmine the partitioning of
chlorine between HCl and £l at temperatures and cooling rates consistent with the backpass of a
utility boiler. These indiate that a much smaller fractiorfasind in the as Gl than would be
predictedfrom equlibrium.

Trace element and organic species emissions dadeteel in the EPRI PISCES report
and in the scientific literature (period 1995-1996) were examined to identify gaps in our
understanding of &ice element combustion chemyst The results suggest that fundamental data
on trace element chemistry in combustion systems is needed to extrapolate the emissions findings
of the field studies noted above to a broader range of fuels and sources.

Experiments were performed at PSI to explore theceff cooling rate on mercury
speciation. Theatafrom these experiments suggest that the coadditesrtypical of the
economizer region of a power plant are sufficient to ‘freeze’ the oxidation of mercury -- leading
to a higher fraction of meuey in the elemental form than would be prtedfrom equlibrium.
Additional data are required, however faother substarndite thishypothesis.

A series of important experiments was completed at the self-sustained combustor at UA.
These experiments suggest that there is little change in the fraction of the ash in the submicron
sizes between the combustion zone and the convective sections. This is consisteipowia-va
tion of bulk species (silica) that recondense in the combustion zone. Sizeatedjsegh samples
have been sent to MIT for analysis anid ne presented iraker reports.

Finally, the mechanisms obtained from analysis of the PSI and MIT vaporization data
were used to determine the submodels required to develop ToPEvtelnto predict trace
element partitioning a vaporization model must be coupled with the existing burnout model.
Additional models must be developed or modified to described trace eleomel@nsation on
the existing submicron ash.
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2. INTRODUCTION AND PROGRAM OVERVIEW

Before eéctric utlities can plan or implement emissions minimizatioat&gies for
hazardous pollutants, they must haveaaaurate and site-specific means of predicting emissions
in all effluent streams for the broad range of fuels and operating conditions comnilcelg. ut
Development of a broadly applicable emissions model usefuilitg planners first requires a
sound understanding of the fundamental principles cliingohe formation and partitioning of
toxic species during coal combustion (specifically in Phase |, As, Se, Cr, and possibly Hg).
Physical Sciences Inc. (PSI) and its team membi#iracliieve this olgctive trough the
development of an "Engineering Model" that accurately predict®theation and partitioning
of toxic species as a result of coal combustion. The "Toxics Partitioning Engineering Model"
(ToPEM) will be applicable to allanditions including new fuels or blends, low-NO combustion
systems, and new power systems being advanced by DOE in the Combustion 2000 program.

Based on a goal of developing and delivering this TOPEM model, a 5-year research
program was proposed. This program is divided into a 2-year Phase | program and a 3-year
Phase Il program. The @gjtive of the ongoing Phas@idogram is to develop an experimental
and conceptual framework for the behavior oéstdd trace elements (arsenic, selenium,
chromium, and mercury) in combustion systems. This Phasedtg wil be achieved by a
team of researcheftom MIT, the University of Arizona (UA), the University of Kentucky
(UKYy), Princeton University, the University of Coecticut, and PSI. Model development and
commercialization will be carried out by PSI.

Our general approach to the development of the TOPEM model is to break the process for
toxic formation into sub-processesch of which Wl be addressed byeam members who are
experts in the area. Ultimately, thiglwesult in new sib-models which W be added to the
existing Engineering Model for Ash FormationBF) to create TOPEM. Figur2-1lillustrates
the relationship between the elements of the Phase | Work Breakdown Structure and the sub-
processes. Each of the areas identified in the figireeveddressed in the Phase | program as
described below.

Program Overview

Forms of Occurrence of Trace ElementEioal

One of the most important questions to be answered in the program as a whole is whether
the form of a particular element in the coakats itsform of emission at the end of the process.
The answer to this question wiktermine the shape of thellsmodels that must be developed in
this program. Thus, aethiled understanding of the forms of individuakk elements in coal
provides a foundation for much of the rest of the program. Key issuesilttzg sddressed in
Phase | are the specific mineral associations of individual elements and the relationship between
trace metaform and “standard” analyses.

Because of the iportance of elemental form (e.g., su# versusilicate mineral) on
partitioning, it is critical that coals representing a broad range of elemental forms be examined in
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Figure 2-1. Pr@ct organization.

this program. In Task 2 weillkselect and acquire a total idur coals for study in this program.

The coals chosen willl) represent a broad range of elemental forms of ocaeré?) represent

the major coal ranks and commercial coal seams used for pulverized coal (PCS power generation
in the US); and (3) include "future fuels" such as blends and bextefictoals. Once selected

fresh coal samples will be acquired and distribute@aon members. These sampldslve

subjected to ultimatgroximate, and ASTM ash analysis. Coal sampldide analyzed for

trace element concentrations BAA at the MIT Nuclear Ractor Léoratory (Task 5).

Advanced analytical techniques such as Mdssbauer spectroscopy and CUl3EeM w
used by UKy (Task 3) to determine the major mineral species presenfirognam coals and
the combustion generated ash. This analysligvovide important insight on the minerals
present in the coal, how they interdciring the combustion process, and how this adgon
may affect the partitioning of toxic elements.

Another important issue is the form-of-occurrence of thedrelements in the coal. In
this task the mode of occurrence of As, Cr, and iBdevdetermined by combiningAFS and
the Mdssbauer/CCSEM derived data discuséede Hg vl also be evalated. Other less
critical trace elements (Mn, Ni, Zn, Pb, U, etc.) may also be evaluated, especially if their
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abundance is unusually high in any of the program coals. In addition, the form-of-occurrence of
Cland S in coals and chars will be investey.

As a complement to the time-intensive XAFS analysis mentiobedea a unique
protocol developed by USGSIMbe used in Task 4 to analyze eseted raw coal, and size and
density segregated coal, samgtastrace elemenfiorms of occurrence. This protocol combines
low temperature (< 20@) ashing, chemical analysis, x-ray difftion, coal segregation via
flotation, ammoniunacetate and selected acid leaching, ed@cinicrobeam measurements, and
low and moderate temperature heating tests to determirerthe of elements in coal. d8ause
of the uniqgue combination of existing testing and analytical facilities available at USGS, the work
will be condwted at USGS laoratories. In addition, a relatively néachnique, synchrotron
radiation x-ray fluorescence microscopy ), available at the National Synchrotron Light
Source, will be testefbr application in this area by UKy (Task. Thistechnique uses x-ray
fluorescence excited by a focussed synchrotron x-ray beam for imaging and compositional
analysis. The x-ray yield obtained from a given element is orders of magnieaderghan that
possible in an electron microscope or microprobe; hence, its sensitiviacéodiement modes is
much better, particularfior modes of occurrence involving highly dispersed elements

Combustion Zone Transformations

The effect of coal type and combustianditions on the emission of the toxic trace
elements will be investaged using the MIT lamimelow drop tube eactor (Task). The
fundamental mechanisms of toxic species formation and partitioilligevdeterminedrom
careful examination of the ash formed under a variety of combustion conditions. Measurements
will be made of the partitioning of theate elements in tHeur coals as a function of
temperature and equivalence ratio. These measuremergsowile the baselineada on the
fraction vaorized for the different elements to be studied @atgr detail in Phase Il of the
program. Individual size-segratgd ash samples (collected with a cascade impaatl then be
analyzed by INAAfor total composition, Auger and STEM for saceé compositin, TEM and
SEM for particle morphology, and possiblat@r washing and/or chemical leaching to determine
the solubility of sedcted trace elements in the ash samples. Samjiletswbe subntted to
UKy for chemical species analysis ®AFS and othetechniques.

PSI will paform a cetailed experimental study tetrmine thdundamental behavior of
toxic species during combustion, including low NO conditions (Task 8). The wibtse/the
PSI Entrained Flow Reactor (EFR) that has been used in many previous combustion studies on
mineral matter trarfisrmations during pc combustion. Théactor is on a scale intermediate
between the bench top apparatus to be used by other team members (UA, MIT) and the UA
laboratory-scale combustor. Therefore the combustbyield a betterunderstanding of the
overall behavior of toxic species while avoiding some of the confounding influenatedred
self-sustained combustion in the larger &ea. Ulity-grind samples of th@rogram coals will
be burned under three different stoichiometric ratios, and two temperatures. Sizatedgisly
samples, and carbon filter samplel be collected. Ash samples collectddring the combus-
tion experiments will be analyzed OYAA and othertechniques at MIT. By performing an
elemental analysis on the size classified ash samples, we will identify the major mechanisms (e.g.,
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vaporization and condensation) that govern the behavior of specific toxic species during the
combustion process -- especially under reducing conditions.

Post-Combustion Transformations

The goal of this task is an increased understanding of the transformatiorectédel
metals as the flue gases cool following the high temperature combustion zone. Experiments will
be performed on two very different scales at UA. In addition, RiSyevform thermodynamic
equilibrium calculations and make measurements of submicron aerosol size and composition
from the large self-sustained combustor (Task 8 and 9).

At the small scale, UA willenduct experiments to explore the fundamental kinetics and
mechanisms for pstal vaorization and mtal vgpor-mineral inteactions. Metal viaor-mineral
interactions W be studied in this task using thermogravimetric analysis (TGA). The primary
experimental parameters to be studied are temperature, gas composition (particularly the
concentration of the metal species in the gas phase), the compositionabtrd échar,ibca,
alumino-dicate, etc), sorbent particle size and porosity, and exposure time (residence time).
The primary properties thatili\be analyzed are the concentration of toxact metals in the
particles as functions of time, the final chemical form of thedmetal, the leachiity of the
trace metal in the final particles, and if possible, the distribution of metal in the particles.

On a larger scale, UA willetermine how both coal compositi, cetailed mineralogy and
combustion conditions (including low NO conditions) govern #ie bf toxic metalsnder
practical time/temperature, self sustained, yitlasrodynamically well defined, pulverized coal
combustion conditions. Other tasks focus, one at a time, on individ eztasy toxic metal
partitioning. In this task, experiments are performed with time-temperature priofillas £
those in pc combustors. Therefore, the hypothesis derived from the smaller slit#des fzan be
tested under ‘real world’ conditions tetérmine the dominant mechanisiostrace element
partitioning. Results from this portion of the @y, together with the otheortions, vl lead to
a quantitative model thatilpredict the fate of all toxic species &gnctions of coal quality and
combustion configurations.

Select coals W be burned in the UA self-sustained combustor under premixed conditions
where all the coal is mixed with all the air prior to combustion. The baseline tksteamoy
the naturally occurring temperature profile &ach coal at a stoichiometric ratiolo®.
Samples will be witdrawn at the exhaust port. Coetel impactor samplesililbe collected and
analyzed foeach toxic metdll as listed in the 8AA plus U and Th) plus major elements.
This will yield the particle size segraigd toxic metal compositn, which can be compared to
data obtaineform other tasks of this program. Thistd wil then be examined toadermine
particle size dependence in order to infer possible mechanisms governiagetbédach metal.
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Organic Emissions

Some organic emissions associated with coal combustors can have deleterious effects on
the environment and/or human health. It is therefore very important (1) to know the identities,
guantities, and toxicities of the organic species released from coal combustion systems and (2) to
understand the chemical and physical processes that govern these species' formation, destruction,
and release. Organic emissions deden the DOE Air Toxics and EPRI PISCES programs have
the potential of benefitting the evaluation of the problem of organic emissions from coal
combustion. In Task 7, Pdeton University will onduct a critical review of the available field
data, focusing ofil) the appropateness,horoughness, and relitity of the experimental
techniques employed; (2) comparison with previously published emissitar$3) the implica-
tions of the results; (4)milarly evaluating comparableath availablérom other countries,
particularly Europe and Australia; review emerdiaghnical literature on coal pyrolysis and
combustion processes that affect organic emiss{dhstaying abreast of new results in the
toxicity literature, relating to organic emissions from coal; and (6) conuating regularly with
the other principal investigators of the air toxics team so thailBflexcognizant of the ties
between the organic and inorganic air toxics issues.

It is expected that thebave efforts of analysis and literature review lwad to(1) com-
prehensive understanding of what is currently known about organic emissions from coal and
(2) identification of the irportant questions that may still need to Hdrassed in future
research.

Model Validation

Also under Task 7, the University of Cauaticut wil conduct a priaminary review of the
relevant field data omorganic emissions. In Phase | wd use the field dta to focus the
experimental program and to valig the models weilwdevelop in Phasd. The Phase | effort
focuses on datrom the following sources:

EPRI PISCES

DOE Program

VTT (Finland)

KEMA (Netherlands).

Important issues to be addressed when reviewing tleaantiude mass balance closure,
methods of analysis and sample ecibon, efect of APCD, effect of bulk coal ash chemistry,
particle size distribution, and speciation of Hg.

Model Development
PSI will use its sitate eqilibrium model accounts for theon-idealbehavior of multi
componenticate solutions in combination with its trace element database to calculate Cr and

As partitioning. These results will be compared witholatory éta generatednder Tasks 5.1,
6.1, 6.2, and 8, and inorganic species figlthdeviewed as part of Task 7. These calculations
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may be repeatefdr Se and/or other elements if experimentgbdwarrant integretation of
vaporization under conditions whetikcate chemistry is dominant.
SECTION 3

RESULTS AND DISCUSSION
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3. RESULTS AND DISCUSSION

3.1  Program Management (PSI)

During the last quarter PSI and ABB personnel met to discusathedllected by ABB
during their ESP testing experiments performed as part of another DoE-funded program. ABB
burned the Wyodak coal, the same sample as used in this program, in their pilot scale combustor
under a wide range of firing conditions. A series of size-sagedgash samples were collected
with a Berner Low Pressure Impactor at the inlet and outlet of the pilot scale ESP. A number of
these ash samples were seledtedrace element analysilAA) to provide additional dta on
trace element partitioninguring the combustion process. Analysis of these samples was begun
in the last quarter and will be discussed in matitlin the next report.

3.2  Coal Characterization (UKy, USGS, PSI)

3.2.1 Coal Mineralogy - Wyodak Coal

The discrete mineralogy of theywdak coal has beeretérmined using computer-
controlled scanning electron microscopy (CCSEM). T @re summarized in Tal3el.
These data are not unlike data we have determined previtarshther low-sulfur western
subbituminous coals. The mineratter is richer in kaolinite thailite, has a low content of
basic minerals (calcite, pyrite, siderite), and contains minor amounts of a Ca-Al phosphate
mineral, which is most probably crarida. This coal appears a little unusual in that the quartz
content is quite high and is somewhat coarser in particle size than the other minerals. The illite
content is also quite significant.

From both the CCSEM data as well as the Mdssbauer data discussed below, it is clear
that the iron-bearing minerals are relatively insignificant in this coal. The principal basic element
in the coal is likely to be carboxyl-bound calcium, which is regedted in the Coal Minerals
Analysis method.

Iron in the Wyodak coal has been investeyl using both Méssbauer axadFS
spectroscopy. In comparison to the other three coals, the Mossbacteusp(Figure 3-1) of
the Wyodak coal is comparable in intensity to that of the Elkhorn/Hazard coal, but significantly
weaker than those of the Pittsburgh #8 dimtbls #6 coals. The Méssbauer spectrum of the
Wyodak coal is complex; at least four different iron-bearing species appear to be present.
Furthermore, the Mossbauer absorptions for jarosite aiid Fe /clay are very braadinigdi
additional complexity, such as the likely presence of further undefined contributions, such as the
presence of FeOOH, or other suéfs or clay types. In view of such complexities, no attempt
was made to analyze the Fe XAF&spum.

3.2.2 Trace Elemen€oncentrations

The trace element analysis, BAA, was competedfor the Wyodak coal during the last
qguarter. These results, and the results from the other program coals, are shown in Table 3-2.
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Table 3-1. CCSEM Analysis of Disstelnorganic Minerals in Wyodak Coal

AVERAGE SPECIES COMPOSITION
# MINERAL SPECIES Na Mg Al Si P S Cl K Ca Ti Fe Weight%

300 Quartz 0.0.0.99. 0. 0. 0. 0. 0. 0. 0. 26.7
192 Kaolinite 0. 0.47.51. 0. 0. 0. 0. 1. 0. O. 19.1
110 Illite 0. 0.30.54. 0. 0. 0.10. 2. 1. 1. 8.0

3 K-Feldspar 0. 0.15.62. 0. 0. 0.18. 2. 0. 2 1.5
27 Montmorillonite 0. 0.26.62. 0. 2. 0. 0. 6. 2. 0 2.2
301 Misc. Silicates 0. 0.27.61. 0. 2. 0. 3. 3. 1. 1 29.0

2
4 Pyrite 0. 0. 0. 0. 0.63. 0. 0. 0. 0. 35. 0.9
3 Ferrous Sulfate 0. 0. 0. 1. 0.52. 0. 0. 2. 1.43. 0.1
1 Chalcopyrite 0. 0. 0. 0. 0.55. 0. 0. 0. 0. 22. 0.2

7 Misc. sulf. 0. 0. 0. 3. 0.49. 0. 1. 6. 8.31. 0.7

23 Misc. Phosphate 0. 0.33. 2.28. 0. 0. 0.34. 1. 1. 25
5 Fe-rich 0.0.0.0.0.1.0.0.1. 0.98 0.4

1 Calcite 0. 0. 0. 0. 0. 0. 0. 0.100. 0. 0. 0.1

5 Mixed Carbonate 0. 0. 2. 3. 6. 1. 1. 0.32. 2.53. 0.3
4 Ti oxide 0.0.0.0.0.0.0.0.6.93.0. 0.4

4 Ti-rich 0. 0. 4.17. 0. 5. 0. 0.13.60. 0. 0.3

1 Sil-sulf 0. 0.18.44. 0.20. 0. 0.17. 0. 0. 0.1

1 Silicate-Pyrite 0. 0.28.28. 0.23. 0. 0.11. 0. 10. 0.1
1 Alumina-rich 0. 0.100. 0. 0. 0. 0. 0. 0. 0. 0. 0.1

129 Misc. Mixed 0. 0.29.28. 7. 7. 1. 1.23. 2. 0. 7.4
1122 GRAND TOTALS 0. 0.23.63. 1. 2. 0. 2. 4. 1. 2. 100.0

WEIGHT DISTRIBUTION
Size Ranges (Microns)

MINERAL SPECIES WT.% 0.1 25 5.0 10. 20. 40. 80.
25 50 10.0 20. 40. 80. 500.

Quartz 26.7 8 21. 16. 23. 12. 10. 10.
Kaolinite 191 24. 33. 16. 21. 4. 1. O
Illite 80 11. 17. 23. 36. 8. 5 0.

Misc. Silicates 29.0 38. 35. 12. 9. 5. 2. 0.
Misc. Mixed 74 56. 27. 12. 5. 0. 0. 0.
MINOR MINERALS 9.9 42. 29. 14 9. 5. 1

GRAND TOTALS 100.0 27. 28. 15. 17. 7. 4. 3.
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Figure 3-1. Mossbauer ggtrum of the Wyodak coal.

As can be seen from this table, most of thedrelement concentrations in thgdlak coal are
within the range shown by the bituminous coals. One important exception to this trend is the
arsenic. The concentration of this element in the Wyodak is much lower than in the other
program coals. The chromium content is also much lower.

3.2.3 Trace Element Forms of Occurrence in theadgk Coal

During the last quarter, new XANE&th were obtained at both ther8tad Synchrotron
Radiation Laboratory (SSRL), Palo Alto, CA, and the National Synchrotron Light Source
(NSLS), Brookhaven National Laboratory, NY, on S, Cl, Cr, Fe, As, and Se in the Wyodak
program coal. Aempts to prepare a densiy88 sink factionfrom this coal by fltation in
bromoform were not sicessful as no appreciable amount atenial settled to the bottom in
bromoform. However, a float andliags fraction were preparefdom this coal using liquid of
specific gravity 1.5. In this report, we have concatetl on data pertaining to elemental modes
of occurrence in the raw coal.

(1) Sulfur:

Sulfur K-edgeXANES datafor the Wyodak coal were celtted at NSLS over the energy
range from 100 eV below the S K-edge at 2,472 eV to about 300 eV above the edge. In compari-
son to the other three program coals, the sulfur K-edgetrspn was rather weak, which reflects
the low sulfur content (0.22 wt% asceived)for this coal. However, theatihh were amenable to
a least-squares fitting analysis (Figure 3-2), which showed that most (> 90%) of the sulfur was
present in unoxidized forms (thiophene and thioether forms), except for a minor amount of
organic sulfur as sulfone and inorganic sulfur asaself Pyritic sdlr was not étected by this
method.
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Table 3-2. Tace Elemen€oncentrations in Program Coals

Pittsburgh Elkhorn/idzard llinois No. 6 Wyodak
Concentration Concentration Concentratioh Concentrati

Element m m m m
Na 600 340 400 710
Sc 1.8 39 2.2 1.8
Cr 13 20 14 7
Fe 8220 2970 13700 2700
Co 25 6.2 .6 1.7
Zn 17 18 70 33
As 4.1 4 2.7 1.3
Se 0.62 3.1 2.2 1.6
Br 17 25 3.7 2.4
Rb 8 5.1 13 3.6
Sr 160 120 ND ND
Mo 0.85 4 4.9 1.7
Cd 0.06 0.31 0.15 0.30
Sh 0.26 1 0.38 0.23
Cs 0.55 0.45 0.99 0.26
Ba 110 130 52 370
La 4.5 14 4.7 4.9
Ce 8.8 27 9.3 8.7
Sm 0.78 2.5 0.9 0.71
Eu 0.2 0.37 0.19 0.18
Yb 0.38 14 0.032 0.35
Lu 0.063 0.24 0.0054 0.057
Hf 0.44 1.1 0.056 ND
Au (in ppb) 0.95 0.98 0.51 1.1
Hg 0.11 0.13 0.22 0.19
Th 1.2 4.3 0.095 1.7
U 0.31 19 ND ND
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Figure 3-2. Least-squares fitted gut XANES spectrum of Raw Wyodak coal.

(2) Chlorine:

Chlorine K-edge XANESatafor the Wyodak coal were celtted at NSLS over the
energy range from 100 eV below the CI K-edge at 2,825 eV to about 300 eV above the edge. In
comparison to the other three program coals, the chI¥ANMNES spectrum (not shown) was
extremely weak, which indicates an extremely low chlorine content (estimated 0.@% wt%)
for this coal, and no useful fine structure could be discerned fromélerism to assess the form
of occurrence.

(3) Chromium:

The best chromium K-edge XANE&t@for the Wyodak coal were obtained at beam-
line IV-3 at SSRL, but the data werepador g$atistical quality in comparison to data obtained for
chromium in the other program coals. We atempted to get data at2OA at NSLS, but the
quality of the data were of ev@oorer quality. Hence, thesatd suggest that thé@mium
content of the Wyodak coal is quite low (estted to be < 10 ppm). This is consistent with the
7 ppm concentration of chromium noted in Table 3-2. ThEANES spectrum (Figure 3-3) is
also relatively broad an@#tureless, with just the hint of a small peak at the maximum. The
spectrum suggests that at least one major form of occurrence of chromium in the Wyodak coal is
not the same as those (principally3@H and Ciillite) reported for the other three program
coals. The features of the spectrum are more like those for a totaljtéy@i* on. The
spectra of the Wbdak coal tdings and float factions, measured at NSLS, showed little variation
from that of the raw coal in either step-height or appearance. Our bestatdaggor of these
data suggest that Crggobably in solution as €r with only a weak cention to the coal
matrix. Such an interpretation is compatible with isolate€d Cr ions hela@bgasites on the
coal matrix.
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Figure 3-3. XANES spectrafor chromium, arsenic, and selenium in Wyodak coal.



(4) Arsenic:

Arsenic data were obtained at both dymdrons at beam-line X-18B at NSLS and at
beam-line IV-3 at SSRL. The quality of the data wawer from both synchrotrons and hence
indicate a low (< 3 ppm) concentration of arsenic in theWék coal (again this is consistent
with the concentration in Table 3-2). Theespra (Figure3-3) resembled those of other low-
arsenic subbituminous coals we have examined in thé past, and are compatible with the presence
of significant A$" in oxygen coordination (most probably, organically bound via carboxyl
groups) and some As , also in oxygen coordination asateséormed by oxidation.

(5) Selenium:

The selenium XAFSata (Figure3-3) for the Wyodak coal are of poorer quality (in part
due to the fact that a less than desired number of scansum@téan that found for the
relatively high selenium coals, lllinois #6 and Elkhorn/Hazard, examined previously. However,
the data do indicate a content of Se that is comparable to the arsenic content in the coal and we
estimate that there is perhaps as much as 2 ppm Se in this coal. Again, this estimate is consistent
with the concentration shown in Table 3-2. The peak position is positive by about 1 eV with
respect to an elemental Se staddaOwing to the poor quality of theesgtrum, plus the fact that
the spectra of the fractions have not been obtained, it is premature to make any conclusions at
this time.

In summary, th&XAFS datafor the Wyodak coal indate that the trace element
concentrations are lower than those found for the other three coals. This observation, coupled
with the fact thabur XAFS databasdor low-rank coals is relatively meager, means that our
conclusions on elemental modes of occurrence for the Wyodak coal are not nearly as firm as for
the other three coals.

3.2.4 Trace Element Forms of OccurrenceGpal - Summary of Data for Program Coals

The forms of occurrence results for thresct elements are summarized below in
Table 3-3. In almost all cases the results derived ¥8iS (Kentudky) analysis are compar-
able to those from the&ching analysis (USGS). USGS data are not yet avaitatilee
Wyodak coal. Arsenic in the bituminous coals is primarily assediwith thepyrite. The
Elkhorn/Hazard coal contains an appreciable amount of oxidized arsenimirfamy XAFS
results suggest that arsenic in the Wyodak coal is primarily organicallyassbcBelenium in
all the bituminous coals is found in both the pyrite and organically atedfmrms. Chromium
is found primarily as the hydtedform and in gicatesfor all coals.

3.3  Combustion Zone Transformations (PSI, MIT, UKy)

Work on the transformations ofite elements in the combustion zongreceeding
along two major fronts. In the first area investigators at PSI and UKy are workiatgtonihe
how the oxidation state @yrite and arsenic influenceatte element y@orization in the combus-
tion zone. As part of this area PSI is also addressing vaporizati@cefdlementsnder a wide
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Table 3-3. Preminary Forms of Ocarrence for Program Coals

predominantly pyrite

organics

Coal As Se Cr

Pittsburgh USGS: predominantly | USGS: pyrite or USGS: silicates, carbonates
pyrite organics or sulfides
Kentucky: Kentucky: predominantly
predominantly pyrite CrOOH, minor amount in

illite

lllinois 6 USGS: predominantly | USGS: pyrite or USGS: silicates and possibl
pyrite organics organic
Kentucky: Kentucky: pyrite and Kentucky: predominantly

CrOOH, minor amount in
illite

Elkhorn/Hazard | USGS: fine pyrites

Kentucky: 60% pyrite;
40% arsenate

USGS: predominantly
organic

Kentucky:
predominantly
organic? not
associated with pyrite,
except “Heavy”
fraction

USGS: silicates and possibl
organic

Kentucky: CrOOH, illite,
minor amount chromite

Wyodak Kentucky: organic,

ions in carboxyl groups

Kentucky: CrOOH, ions in
carboxyl sites

range of combustion conditions. In the second area investigators at MIT are working with the
size and density segregated coals adbptube eactor to evaluate parization behavior of

trace elements. Thisark is expanded upon at PSI where investigators are usinglityegund

coal and the PSI entrained flow reactor (EFR) to determine the petization of trace

elements in the combustion zone.

3.3.1 The Effect ofCoal Oxidation on Trac&lement \porization in the Combustion Zone

One question to be addressed in this program is teetedf theform of occurrence of a
given element on its partitioning between the vapor and condensed phases in the combustion
zone. For example, arsenic has been reported to be quite variable in how it partitions between
these phases during the combustion process. It has been proposed that the mode of occurrence
of the arsenic in the coal causes the variability. daress this issugeam membersom PSI
and UKy are evaluating the difference in the measured arsenic vaporization between a ‘raw’ coal
and a weathered sample of that coal. Specifically, combustion testdaverevith the PSI
entrained flow reactor (EFR) to measure thpor&ation of tace elementsom the llinois No.
6. As discussed in Table 3-3, arsenic in this coal is primarily substituted into the pyrite matrix. A
sample of this coal was subsequently subjected to accelerated weathering as discussed in the last
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Quarterly Report. XAFS of the veathered sample indicated that the prinfargn of arsenic
was as the oxide (arsenate).

To determine the degree of oxidation of bothpkgte and the arsenic, theeathered
coal sample was analyzed by Mdssbauer and XAFS. The Mosslaaaerd summarized in
Figure 3-4. The ata show thatl@out 45% of the pyritic iron has been oxidized to a mixture of
iron sulfates(principally szomolnokite FeSO ;H O, jarosite, and a minor amount of ferretglf
Further, there has been relatively little change in the iron forms of occurrence between the
sample taken at the end of 60 days' oxidation and that taken after 90 days. This observation may
indicate that goortion of the pyrite is relatively easily oxidized, whereas the remainder is much
more resistant to oxidation.

The arsenic XAFS setrum for the sample oxidized at°50 C for 90 days is shown in
Figure 3-5. By means of a least-squares fitting routine, the amount of As in different forms can
be determined with an experimentaioe of less than +5%. For theesgral data shown in
Figure 3-5, the least-squares fitting procedurecidid that laout 57% of the arsenic was
oxidized to arsenate, with the remain#®p6 as unoxidized arsenical pyrite. This percentage of
oxidized arsenic is greater than the percentage of oxidiaedapproxinately45%), estimted
from the Mossbauer ratio of pyritic sulfur contenésetmined orunoxidized and 90 days'
oxidized aliquots of thdlinois #6 coal. This observation would appear to support the hypothesis
that the arsenic is largely associated with a fraction opyhiee that is more susceptible to
oxidation.
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Figure 3-4. Moéssbauer sgtrum of lllinois #6 coal oxidized for 90 days.

Combustion tests with this coal were completed in the last quarter. The weathered
coal was combusted in the PSI EFR at a stoichiometric ratio of 1.2, andheds@tpoint of
1500 °C - identical to the baseline combustion tests performed with tresatheved coal.
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Figure 3-5. ArsenicXANES spectrum of lllinois #6 coal oxidized for 90 days (tofeast-
squares fitted spectrum showing contributions due to As(V) af/Aqbottom).

Ash samples were withdrawn from the face exit with the nitrogen quenphobe and passed
through the Mark Il cascade iraptor for size segregation and eglion. These ash samples
were sent to MIT foNAA, and will be discussed in moreetiil in the next quarterly report.

3.3.2 XAFS Analysis of Char and Ash Samples

During the last quarter, almost 4 weeks of synchrotron beam-time were made available to
UKy personnel. As a result many neata have been obtained on the various samples generated
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in the progct. A listing of the new data obtained odering the quarter is shown in Table 3-4.
Since much of this experimental time came towards the end of the quarter, there has not been
sufficient time to analyze theath completely. However, most of the data have been at least
cursorily examined and some of the conclusions pertaining to Hg in activabexhsare

presented later in thispert. Some additional findings on seted ash samples are also

presented below.

Table 3-4. Sample Analyses Yet to be Caetgdl at Kentucky

XAFS DATA Obtained

Zn| As| CrlHg | Se|l S| CI| I] Cal] Mdobssbau
r

1%

(a) Samples from T. Zeng, MIT

KYH4563 Stage 1
Stage 2
Presep.

KYH90106 Stage 1
Stage 5
Presep.

KYL4563 Stage 1
Stage 5
Presep.

KYL90106 Stage 1
Stage 5
Presep.

SSSNISSNISSSN SN

PTH90106 Stage 1
Stage 5
Presep.

PTL90106 Stage 1
Stage 5
Presep.

ILH90106 Stage 1
Stage 5
Presep.

ILL90106 Stage 1
Stage 5
Presep.

NN N N N N N N AN N N A N AR N Y AN NN AN NN
NN N N N RN N A N N NN AR R Y AR RN AN NN
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Table 3-4. (Continued) Sample Analyses Yet to be Cetagl

In addition, the major minerals in six
related samples are also being
determined by the CCSEM method.

(b) Ash samples from L. Bool, PSI

XAFS DATA Obtained

Zn

Cr

Hg

Se

S

Cl

Ca

Mossbau
r

1%

EH-13

16-9

P8-23

P8-44

(c) Char samples from L. Bool,
PSI

NN I N N BN

AN I N N BN

SIS

SIS

Pittsburgh #8

N

AN

lllinois #6

AN

AN

Elkhorn/Hazard

Sulfur XANES data reported for
these samples in previous repdrts.

(d) Char samples from B. Wu, UA

Pittsburgh #8

lllinois #6

Char samples from PSI that were
treated in Hg-containing flue gas
(see also narrative)

(e) Charsamples from
G. Dunham,UNDEERC

Char, LAC-1

Char, LAC-2

AN

N

AN

Char, LAC-3

Char, LAC (-400)

Char, SAC-1

Char, SAC-2

Char, SAC (-400)

NSTSTSTISININS
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Table 3-4. (Continued) Sample Analyses Yet to be Cetagl

XAFS DATA Obtained

Char, IAC-1

Zn

As | Cr | Hg

Se

S| CI] I] Ca

v v

Mossbau
r

1%

Char, IAC-2

Char, IAC (-400)

Char, LAC-5

Char, LAC-6
Char, LAC-7

Char, LAC-8

Fly-Ash-1
Fly-Ash-4

Fly-Ash-5

AN NS AY A YN AN AN BN N

See also narrative.

(f) Samples from Radian Corporation

In addition, the following ash and char sorbent samples from Radian Corporation were also examir
at the Hg edge and/or at the S, As, or Ca edges. All of these samples showed either no evidence for th
presence of mercury (estimated Hg content: < 2 ppm) or showed a very weak Hg edge that exhibited n¢
discernable fine structure (estimated Hg content: 2 < 5 ppm) relative to the signal/noise ratio.

ed
e

Hg Response Other Elements
PCARB-1 No signal S, Ca, As (strong)
COMP-1A No signal S (weak), Ca
COMP-2A Very weak signal S (weak), Ca
PASH-1 No signal S, Ca
PASH-2 S, Ca, As (strong)
PFLY-1 --- S, Ca, As
REAG-1A --- S, Ca
REAG-2A --- S, Ca
REAG-3A S, Ca
U-I-A No signal
U-I-B Weak signal
U-I-C Weak signal
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Table 3-4. (Continued) Sample Analyses Yet to be Cetagl

XAFS DATA Obtained

1%

Zn| As| Crl{Hg | se|] S| C Cal Mossbau
r
U-1I-A Very weak signal
U-1I-B Weak signal
U-1I-C Weak signal
U-1I-D Weak signal
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The Zn XAFS spctra (Figure8-6 and 3-7) of ash from the Elkhorn/Hazard coal over the
complete suite of size/density segregated samaesMIT have been examined and were found
to show significant variation among the different types of samples, which no doaebtgefl
wide variation in the zinc speciation in these ash samples. The ash samples were obtained using a
cyclone preseparator followed by a cascade impactor at the outlet of MIT’s drop tube furnace
(DTF). The preseparator sample, therefore, contains the largest ash particles (a@peloxim
greater than 10 um). Some of the spectra, such asdhathe ash captured in the iagior
preseparator when the high density, 90 to 106 um, coal was b#¥iel@@106 Presep), appear
to arise from zinc sulfide. Otheresgra, such as thos®m ash from the low density&ctions of
this coal (KYL4563 presep., KYL90106 presep.), appear to arise from zinc oxidetrespf
samples from Stages 1 and 5 do not generally show these specific phases and further work is
needed to explain the basis of their profiles. The Cr andcafssdb not appear to show such
obvious changes.

" Normalized Absorption

KYL90106 Stage |

1 A
KYL90106 Presep.
0

-20 0 20 40 60 80 100

Energy, eV

05185

Figure 3-6. ZincXANES spectrafor low density Elkhorn/Hazard ash samples gatest
by MIT.
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Figure 3-7. ZincXANES spectrafor high density Elkhorn/Hazard ash samples geteer
by MIT.

3.3.3 Trace Element &porization in the Combustion Zone

During the past quarter the data analysis was completed on the bdlsatiseNo. 6
experiments performed at PSI (1500 °C &ga setpoint, stoichiometric ratio bR). The NAA
analysis and the particle size distribution shown in Figure 3-8 were used taizatbel fraction
of each element that hadp@rized during the combustion process. Tlastion vaorized was
defined as the mass smaller than or equal to 0.80 um (Stage 6). Figure 3-9 shaesidhalfr
vaporization for selcted element®r the three bituminous coals under baseline conditions. In
general, vaporization for all elements was lower in lim®is No. 6 than in the other two
program coals. This is interestingdause several elements, specifically arsenic and selenium,

3-18



80

[ZE12 o9 1.20
© 601
c
®
£
5
E 40__. .................................................................................
[44]
o
4
> 7
20-_.. ... .................................................................
| 2
A
0 - 4 AR | f : :
»02 9278 783 315 1508 0804 0402 <02

Size range (microns} D191

Figure 3-8. Measured ash particle size distributions ffimrois No. 6
(PSI EFR, 150@C,SR=1.2).

40

ZISSERR

< S P

DO v ereenrm e

Percent vaporized

VAT A A S AP A S A A

L e R LR T PR TP TE

S

%
7
7
2
7
Z
Z
Z
A
AN
ﬁ :T;::

. R ! ﬂn } ! m_
Fe As Sh Ash
D-5180

Figure 3-9. Fiactional vaorization of tace elementsom bituminous coals (fuate setpoint
1500°C, SR=1.2).

were shown to be associated with reactive min€pgiste) or organically assaated in this coal.

Thus one would expect these elements to be eagilyrizad from this coal. More work is
required to explain these results.
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3.3.4 Mechansms for Tracdlement \dporization in the Combustion Zone

In order to interpret the vaporizatioatd collected in thiprogram, it is useful to think
about potential mechanisms foate element \@orization during combustion. By performing
‘thought experiments’ foeach mechanism, and comparmg predcted volailization rates to
those observed in the experiments, we can determine which mechanismsfoetigrattention
in Phase Il and which mechanisms can be neglected.

There are several general mechanisms that may affect thidizatlah of a given species
during the combustion process. These mechanisms include:

1. Unconstrained vaporization (from excluded mineral particles)
2. Constrained vaporization (from included mineral particles)
3. Vaporization from included mineral particles that have been exposed as part
of burnout
4. Capture of the reacting mineral (and associated trace elements) in glassy phases.

First we want to look at the eft ofpyrite capture byikcates toform glassy phases on
trace element yaorization. Many of the &ice elements of interest have been shown to be
associated witipyrite. If vaporization of these elements is delayed until the pyrite particle is
exposed during char burnout, capture of the pyrite into a glassy melt may interfere with trace
element vaporization. If, on the other hand, vaporization begins before the particle is exposed,
this mechanism can be neglected. The relatiy®itance of this mechanism can be estimated
by comparing the observed vaporizatiatessfrom the two fadities, and the faction of iron
captured in the glassy phase. For example, since the MIT data show consistently higher
vaporization ates than the PSI ddftar the same coal, we would eeqt alower fraction of iron
captured in the glassy phase (i.e., less interference from the glassy melt). A comparison of
Mossbauer data collectediring a previous DoE program is shown in Table 3-5. In one case a
less than 75 um size split of the Pittsburgh coal, from the same mine as the Pittsburgh coal in this
program, was burned under at 20% oxygen in the MIT drop tubaderfdTF). In the other
case a utility grind sample of the same coal lw@sed in the PSI EFR at a stoichiometric ratio
of 1.2. The MIT @ta show somanreactegyrite in the ash, which may iradite that the
residence time was too short gact all thepyrite. However, the PSlatia show bout the same

Table 3-5. Mdssbauer Analysis of Ash Samples from Pittsburgh Coal
(% Iron inEach Phase)

Species MIT DTF PSI EFR
FeiS 9 0
Magnetite 27 44
Fe” glass 22 39
Fe™ glass 42 17
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amount of iron in the glassy phase as the Mdfiad This would indicate that the coalescence of
pyrite with other minerals to form a glassy phasegeals atlaout the sameate in the two
systems. Since the observed vaporizaties are so different, capture mechanism number 4
can be neglected. This, mrh, suggests that vaporization may begin much earlier in the char
burnout process while the pyrite grains aikestcapsuhted by the char matrix.

Earlier work on the vaporization of inorganics from coal during combustion has
indicated that vorization is strongly dependent on particle temperature. Based on this observa-
tion, a likely explanation for the differences in observed ilitkes may be due to differences in
particle temperatures between the two facilities. To ewalthis effect, an existing chiamrnout
model was used to estimate the particle temperaturéuast@on of time for different sized char
particles in each faty. The Pittdurgh coal was used as a repreéatve coal in these simula-
tions. As can be seen from Figure 3-10 the peak particle temperatures in the MIT DTF are much
higher than in the PSI EFR. This result suggests that the differences in observed trace element
vaporization are rated to the differences in temperature.

2300

2200+

21004

2000

= U A

Peak char temperature {K)

1600 +——+——+——+——F———————+——————
40 50 60 70 80 90 100
Particle size {micron) D-51922

Figure 3-10. Predited peak char temperatures (Pitigh coal).

Although these dta indicate a sbng temperature dependence on vaporization, the exact
vaporization mechanism islstinclear. The lack ofarrelation between thedction vaorized
and the fraction ofron in the glass demonated #&ove suggests that vaporization begins early in
the char burnout process. Thus we wouldeexprace element parization from inclusions to
be limited by difusion through the pores in the char (internal diffusion control), or diffusion
through the char boundary layer (external diffusion control). If internal diffusion is important,
we might expect to see morepaization from the high densitydction of the MIT coal samples
than the low density fradn, kecause internal fiusion resistance might be higher for the low
density coal particles. The plots shown in Figures 3-11 through 3-13 express the percentage of
selected elements appearing in the subni@ash for the three bituminous coals. The MIT data
are plotted next to the PSI dditet SR=1.2 and SR=1.0 or 0.9. In general, the high density
fraction does show a higher fractionpasized than the low densityafttion.
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Another way to determine which mechanism might be ctinggpexternal or internal
diffusion control, is to look at the dependenceath mechanism on such parameters as char
particle radius. Quann, in his doctoral thésis, outlined sefiraitihg casegor vaporization
from a burning char particle. These cases, and the@otéa@ particle size dependence, are
discussed in detail below.

For the case where we have vaporization from both internal inclusions and exposed
inclusions on the char surface (see Fig#4), Quanh gives:

0 2 e 3 e
N, =N 4mcrt [E D, xm+? D, xm’] (3-1)
and:
r3
0 _ 0
N“=0= (3-2)
i
where:
Ny = is the moles of metal yarized per gram coal burned
N° = number of inclusions in the char particle
c = molar concentration
I = inclusion radius
r, = charradius
t, = burnout time
D. = effective difusivity
Dn = metal difusivity
Xmn = equilibrium mole fraction metal at internal inclusianface
Xm® = equilibrium mole fraction metal atiface of &posed inclusion
® = volume ratio of inclusions.

Based on these equations, the parameter derived by Mim5 et al. can be derived (see
Ref. 2 for derivation).

f, 9m6c| DeXn . Dt .
> C, 0, |2 T (30)Y2 5

<

—+
o

where G is the concentration of the metal in the ggas the density of the char particle, apd f
is the fraction of the elementparized during the combustion process. For vaporization from
the external particles we assume D <D then:
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(3-4)

This indicates that the parameteimidependenof char radius.
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Figure 3-14. Schematic ofdice element y@orization mechanisms.

For the limit where internal flusion islimiting, the efective difusivity term in Eq. (3-3)
is much higher than the metaffdsion term. Thus:
t, T (3-5)
For external diffusion control, as would occur with very fine inclusions or organically
associated elements, we hdve:

f, 4 D, Cc X -6
b G, r02

Thus, when external diffusion is contirg we would exgct to see a 1ff dependence.
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These equations suggest that if we can determine the effect of particle size on the
fractional vaorization ate (f /t ) we can begin tonderstand the mechanisms that drive trace
element vaporization. In Figures 3-15 through 3-19 we plot the ratio of thisgtaréon two
different particle sizes. ,f was calculafieaim the percentage of ash in submicron particles.

t, was estimatettom calcuated particle combustion histories. Also plotted is the behavior we
would expecfor either a 1jf or 1/f dependence. For example, the ratig @f (f /t ) for two
different size ranges as measured by Mims for several elements. Etesmde beerocrected

for the efect of particle temperature. As we can see, all of the elements measured by Mims et
al. from a lignite coal demonstied a 1/f dependence - suggesting that these elements either
vaporized from very fine inclusions or from the carbon matrix. Unfatkely, theforms of

occurrence of these elements in the coal were not measured in that program so we can not link
the observed vaporization behavior with the forms of occurrence in the coal.

The data presented in Figui246 and 3-17 were obtained by MIT in this program (20%
oxygen, 1500°C). Theseath were orrectedfor the temperature difference due to differences in
particle temperature (see Figure 3-10) using the temperature dependencies noted by Mims et al.
A 1/r, dependence was noted for sodium in almost all cases. This finding is interesting as it
suggests that sodium is vaporizing from déserminerals contained within the char --srusual
vaporization mechanism for this element. More forms of occurrence of this element in the coals is
required to betteunderstand these results. Ttaeadshown in Figure3-16 and 3-17 also suggest
that the dominant vaporization mechanism for iron vaporization is different between the two dens-
ity classes. In the high density class there seems to b¢ a 1/r dependence, whereas a 1/r was
noted
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Figure 3-15. Ratio of functional vaporizatioates - Mims et &. dafar Montana Lignite.
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for the low density case. The F;E/r dependence may atedelo extraneoysyrite grains in the

high density fraction -- y@orization from which would bEmited by external dfusion. Iron

may vaporize from the low densityafition by a reduction type mechanism noted by Qudann.

The vaporization mechanism for zinc also seems to change between the different coals and
density fractions, however momgformation on the forms of zinc in thesadtions is required to
explain these differences. In general, these data suggest that arsenic predomiparitlsva

from included pyrite. The only exception seems to be the low dersitydin of the Pitisurgh

coal. Itis possible that the observed’l/r dependence for this sample may be caused by arsenic
vaporization from fine pyrite grains in the coal. However, until the CCSEM analysis of this
density split is complete, this mechanism is fairly speculative.

Figures 3-18 and 3-19 show the ratio @fclional v@orization atesfor a number of
elements. These data were notrectedfor the difference in peak particle temperature
associated with the particle size. These data suggest that most of the elements not discussed
above, scandium, chromium, antimony, and cobalt also show a 1/r dependence, and therefore
probably vaporize from disete minerals.

3.4  Post-Combustion Transformations (UA, PSI, UKy)

Trace element traf@mations in the region between the face exit and the ESP play a
critical role in determining the partitioning of that element between flyash captured in the ESP
and vapors erttedfrom the sack. In this program we are investigating these post-combustion
transformations on two different scales. Mercury capture by residual carbon, shown to be an
important mechanism for mercurgtention in the ash, is being evaluated in a small benchtop
facility. Samplegrom other groups exploring mercury uptakedsyivated cebon were
examined by XAFS toetermine théorms of mercury that aretained in the char. Other
interactions, such a®odensation andcactive scavenging, betweemeaized species and ash
particles are being investigated using the larger self-sustained combustor at UA. Mercury
speciation in flue gas is being evaluated in the PSI EFR. Finally, kinetic calculations are being
performed at MIT to dtermine the partitioning of chlorine between HCL and CI .

3.4.1 XAFS Investigation of Hg Captured ont&ated Cabons
(1) UNDEERC Samples LAC-1,2,3, SAC-1,2, IAC-1,2:

The rationale for the investigation of these seven samples aimdipaey Hg XAFS data
obtained for this set @fctivated cebon samples provided by Grant Dunham of the University of
North Dakota Energy and Environmental Research Center were described in the previous
Quarterly Report. In the current quarter, PeAFS data have been obtainéat these samples
atthe S, Cl, Ca K edges and thg,| L edge. A brief discussion of the principal results is
presented on an element by element basis. However, it should be noted that the analysis of these
spectra has not yet been fully completed; hence, the conclusions presentéaildrbes
regarded as preliminary.
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lodine:  As expected XAFS spectroscopy showed that iodine was present only in the two
IAC samples and absent in all other samples. The step-height for IAC-2 was about
four to five times as large as that for IAC-1 sample exposed to the flue gas, perhaps
indicating that iodine was partially voll@ed during exposure to flue gas at a
temperature of about 225 F. The closeatah to the iodine |, -edg¢éANES
spectra of the IAC chars was exhibited by elemental iodine; however, the spectra
were not identical.

Sulfur: SulfurXAFS spectroscopy showed that sulfur was present in all samples, except for the
two IAC samples. In the LAC samples, sulfur was found to be present predominantly as
sulfate, whereas in the SAC samplesfusulas present predominantly in elemental form.
The data suggest that fulpresent in the flue gas is not significantly captured by the
activated cebons.

Chlorine: Chlorine was present in significant amounts in the LAC samples exposed to the flue
gas. On the basis of the chlorine K-edge step-height, the Cl contents aatesiston
be as follows: LAC-1 > LAC-2 >> LAC-3. It should be noted that the IAC and SAC
samples have yet to be examined at the chlorine edge. However, the Cl XANES data
appear to suggest that chlorine can be captured efficiently from flue gas as HCI.
Hence, reaction between Cl and Hg may occur readily at the wiiace. Certainly,
the Hg XAFS atafor the LAC samples are compatible with Hg-Cl bonding; however,
the discrimination between Hg-Cl and Hdp&hding is quite subtle KAFS
spectroscopy and further work is needed to resolve this point.

Calcium: Calcium is present in significant amounts in both SAC and LAC samples; however, no
IAC samples have been examined. Ca XANES#p@ are differerfor the LAC and
SAC sample sets. The Ca XANES®sfra of the two LAC samples are closeiyir
and suggest Ca as Ca sulfate; those of the two SAC samples amidsplait are
more suggestive of Ca as carboxyl-bound species.

(2) HgXAFS Spectroscopy of New UNDEERC Actated Cabon Samples:

During the quarter, Hg XAFSada were obtainefibr a number of newactivated cebon
samples from UNDEERC. These new samples included a set of three samples exposed to the
simulated flue gas containing Hg in tfeem of mercurous chloride (Hg¢}, and a set of four
LAC samples (LAC-5, 6, 7, 8) prepared under different conditions to the set of three samples
(LAC-1, 2, 3) examined previously. Only a [mm@nary evaluation of theata wil be given here
as the analysis of the Hg XAF&td has only just commenced.

The Hg XANES spctra of the three samples [LA€I00), SAC (-400), IAC (-400)]
exposed to the flue gas containing mercurous chloride app@lar $o the spctra obtained
previously for the relted samples (L&-1, 2, SAC-1, IAC-1) exposed to the flue gas containing
elemental Hg. Similar trends in tX&NES data (e.g., separation of the two derivative peaks)
to those seen previously have been noted for the current set of three samples.
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Except, possibly for sample LAC-8, the MANES spectra of thdour new LAC
samples are similar to theesgra of samples LB8-1 and LAC-2 examined previously. However,
there is some significant variation in the step-height tlibh@ed to be evahted.

(3) XAFS spectroscopy of Hg in Samples from UA:

The samples of PSI char exposed to mercury in experiments at UA have also been
examined briefly. These spectra are not unlike those obskmwdwe UNDEERC LAC-1,2
chars discussed in the previous Quarterly Report. Further wibdevpaformed on these
samples.

3.4.2 Mercury Capture by Residual Carbon

During the last quarter mercury capture experiments were performed with chars from
three of the program coals, tHinbis No. 6, the Pittsburgh, and the Wyodak. The samples were
sent to a commercial laboratory for analysis. The results were obtatedd the last quarter,
and are currently being analyzed. Thedkebe discussed inetail in the next report.

3.4.3 Mercury Speciation Measurements

Mercury represents one of the most difficudtde elements to control inility boilers.
Although most researchers agree that mercury in coal vaporizeseteinpt the combustion
zone of a boiler, predicting emissions of mercury has been probleraatiode the trafmma-
tions of mercury in the post-combustion gases are not well understood. Mercury leaves the
combustion zone in the form of elemental mercury in the gas phase. Some oxidation of mercury
occurs as the flue gas cools. At the air heater exit, where the flue gas typically enters the
pollution control train, mercury can be found in the gas phase as elemental mercury (Hg ) or
oxidized mercury species (Hg ) or in the partitalphase.

The efficiency of mercury removal by air pollution control devices (APCDs) such as
electrostatic precipitators (ESPSs) or flue gas desghtion (FGD) units depends on tlierm
(gas versus particulate) and speciation’(Hg verstis Hg ). For example, oxidizedyrisentore
likely to be captured by residual carbon in ash or to be removedd@Brunit, while elemental
mercury is more likely to escape the air pollution control devices and be@ha the
atmosphere. Understanding speciationof mercury in the post-combustion zone is critical to
predicting its final form of emission (solid, liquid, or gaseous).

In Quarterly No. 4 from this program, we hypothesized that the oxidation of mercury is
frozen in coal combustion flue gas is frozen below some temperature between 750 to 900 K
(900 to 1200°F). Edlibrium calculations suggest that mercury is entirely in the elemental form
at the high temperatures associated with the combustion zone. As the gas dldwisi®qu
predicts that the mercury oxidizes. However, as discussed in Quarterly Report No. 4 some field
data suggests that the meng oxidation is ‘frozen’ at some temperature around 850 K. To test
whether oxidation is indeed frozen at some temperature, a series of experiments wextedompl
to measure the mercury speciation in real flue gas at a range of temperatures.
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For these experiments the lllinois No. 6 coal was combusted under fuel lean conditions
(stoichiometric ratio of 1.2). Flue gas was removed at the bottom céalstor with either an
unheated stainless steel tube ouaheated quartz tube. At the exit of the tube the sample was
guenched with nitrogen. The temperature profile along the tube, including the quench point, was
measured as part of the experimental protocol. Another set of experiments were performed
using the standard nitrogen quench probe. Bgectifig data with the quengobe in the
furnace, and at various other temperaturehomed to test whether mercury speciation is, in
fact, ‘frozen’ at some temperature. These mercury speciation measurenizet tite
Ontario-Hydro method. This method was identified by a FETC-EPRI-UNDEER@G as one of
the more reliable methods for measuring mercury speciation in flue gas.

Of the data collected, only two sets of samples yielded useable results. All of the samples
using the quartz tube were found to have mercury concentrations in the impinger trains below the
detectionlimit. The reasotfior this is unclear, as the duration of the runs was long enough to
achieve concentrations several times higher than the detéweitiionlt is possible that leaks
around the various etalquartz seals may have caused dilution of the samples.

One sample yielded results, although with a low mass closure (32%). This sample was
collected with the nitrogen quenphobe and should represent the speciation in theéern
Analysis of the particulate and the various impingers suggestedoipraixarately 50% of the
mercury was assaied with the particulate. The gas phase mgraas approxirately 66%
elemental and 34% oxidized. The gas temperature at tlhasda has been measured to be
approxinately 1300 K (1900F) with the water-cooled probe installed.

The second sample that yielded good results wasoted with a stainless steel tube.
These data indicated thai@oximately 16% of the mercury wagtained in the ash 883 K.
The measured cooling rate in this tube waraximately 200 k/s, which is comparable to the
economizer in a power plant, where most of the mercury oxidation icfgedo ocar. The
vapor phase mercury was approately 72% elemental mercury and 28% oxidized mercury.
Mass closure for this experiment was appr@tizy 100%.

Equilibrium predictions for this coal, shown in Figure 3-20, suggest that we should have
found more elemental mercury at the high temperatures, and much less elemental mercury at the
lower temperatures. Although thatd at high temperaturelsaild be considered dirinary,
due to the low mass closure, the combination of the two data point suggest that the fraction of
oxidized mercury isisiilar between the two samples -- contradicting the equilibrium predictions.
Since the cooling rate of the low-temperature data is comparable fouhdtin the region of
interest in a utility boiler, theseath sipport the hypothesis that mercury oxidation is frozen due
to kinetic effects.

Although these experiments provided some promising results, there exists thiitpossib
that the sampling technique (i.e., the stainless steel tube) may have influenced the mercury
speciation. In addition, much more work must be donettelunderstand the conditions
required to ‘freeze’ mercury oxidation. These experiments are planned for Phase Il of this
program.
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3.4.4 Large Scale Combustion Experiments

Laboratory Scale Combustor and Sampling Apparatus

The furrace used in these experiments is a @0nft) long downfired combustor, with a
15 cm (6 in.) inner diaeter. Sample ports areclted at pproximately30.5 cm (1 ft) intervals
along the length of the fuace. Thdurnace was designed to simulate the time/temperature
histories and complex particle interactions of commercial-scale combustors Whileostding a
flow stream which is sufficiently well chacterized to allow the mechanisms of trace element
transformations and partitioning to be studied.

The combustor was fired with either natural gas or coal. Gas and particulate samples
were collected along the length of thuenace using the systems described later in thisesecti
When the particle laden flue gas exited the dgmit wagouted through a baghouse to remove
entrained particulate. The gas was then cooleddm temperature, combined with the purge
air, chemically filtered, and discharged to the atmosphere. Condeatsdwas removed in a
series of knockout pots. Gas flows through the system are controlled using two induced draft air
blowers operating in series.

The temperature profile in the furoe was allowed to evolve naturally based on the coal
feed rate, air feed rate, and presqunadile in the furrace. There are two fixed K-type thermo-
couples installed in the fuaice. The post-combustion therroaple is l@ated320 cm below the
burner. The exhaust-point thermocouple ated below the final samp®rt, roughly 600 cm
below the burner (this thermocouple was inoperable during these experiments).

3-34



The temperature profile for the fiace was measured using@table thermocouple
probe. This probe consisted of a type R thermocouple encased in a ceramic shell. The thermo-
couple bead extended approzimly 6 mm bgond the end of the ceramic shell and ended at the
centerline of the furace.

A portable gas sampling probe was used to measure the gas profile in Huoe fuFiue
gas was drawn through aater-cooled stainless steel tuibem the centerline of the fuatce. To
remove entrained water and particulate, the gas wagsahésd through a series of filters plus a
cooler and additional filters. The dry gas stream was analyzed for CO, CO , NO, and O. CO
and CQ were analyzed using Beckman Model 864 nondispersive infrared analyzers. NO was
determined using a Thermo Eleart Model 10A chmiluminescent analyzer (a Model 300
molybdenum converter wasilized). Oxygen was analyzed using a Beckman Model F3 para-
magnetic analyzer.

Particle sampling was carried out using a portable, water-cooled, stainless steel, aspirated
isokinetic sampling probe. This probe was used to probaathdamplefrom the centerline of
the furrace. Extracted samples weoeited through a Berner Low Pressure &cfor (BLPI)
using a metered dilution nitrogen stream and a vacuum pump. Isokinetic sampling was
accomplished by adjusting the dilution flow rate at a near constant total flow rate. A slipstream
of gas from the particate sampling system was atswuted to the NQ analyzer to verify the
dilution rateduring particuhte sampling.

The BLPI consists of 11 collection plates designed to collect particles of decreasing size
on each plate. A listing of the size distributfonthe BLPI pates is shown in Tab®&6. For
accurate results, the BLPI must b#ized in two sepaate onfigurations. For cadction of
small particles, those below 0.337 microns, a cyclone is used on the inlet of &wtoinip
collect the larger particles. This allows the sampling time to be extendecdlongjeto coktct a
significantly large sample of particulate. When large particles are to be collected, the cyclone is
removed and a shorter sample time is used.

Table 3-6. Particle Cut-off Diagtersfor Berner Low Pressure lraptor

Impactor Plate Cut-off Diameter
Number (microns)
11 15.7

7.33
3.77
1.98
0.973
0.535
0.337
0.168
0.0926
0.0636
0.0324

[N
o
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The collection plates are lined witlDa4 um thick polycarbate membrane (Poretics
Products) cated with a higtpurity grease. When operating with the cyclonaiéd 1 to 6
contained membranes while Plates 7 to 11 were lined with grease-coated aluminum foil.
Similarly, when the cyclone was not utilizedafs 6 to 11 contained membranes while Plates 1
to 5 were lined with grease-coated aluminum foil.

Experimental Procedure

At the beginning of each experiment flaenace was preheated bwyrning natural gas for
an extended period of time. The maximum sustainable gas feed rate was used in this preheat
period. Typically, the furace was allowed to warm up overnight and the temperature in the
furnace at stady-date was related to the gas rate used in the preheat step. During preheat,
exhaust gas was routed through a bypass lineadsof hrough the baghouse. Once the preheat
period was over, the baghouse wasussioned and allowed to warm-up until the gas tempera-
ture in the baghouse was approately 100°C. This warm-up was norma#dgcomplished in
15 min or less.

Once the furace was hotreugh to ignite the coal, the natural gas was turned off and the
coal flow started. The temperature of the fixed post-combustion zone thermocouple was
measured continuously during the coal feed warm-up period. The time that was required for
furnace warrup varied depending on how hot the face was at the time of switch ofesm
gas to coal. A typical warm-up time was 1.5 to 3 h. During the coal feed warm-up period, the
gas sampling and analysis system was commissioned. Each of the analyzers was calibrated with
a certified calibration test prior to gas data collection.

After the gas sampling system was commissioned, the O apd CO readings from Port 4b
were then used to adjust the main air flow raterder to set the stoichiometric ratio at 1.2.
Port 4b is just below the combustion zone. It was our intention to adjust the exhaust gas blower
speed to maintain a neutral pressure at Port 4b. It turns out that the exhaust blower speed was
set to maximum throughout the experiment. Until slag buildagaime significant, this speed
corresponded to a near neutral pressure at Port 4b. Another reason for using Port 4b is that there
is one appreciable crack in the faoe wall. It is located at theofir joint approximtely 40 cm
below Port 4b. Therefore readings from Port 5, which is below the floor joint, would not give a
true reading of the excess oxygen content in theafien

In general, two sets of samples were obtained deaafy testun. Each set of samples
consisted of a ‘cyclone run’ and a ‘no-cyclone run.” The ‘cyclone run’ uses a cyclone in
conjunction with the BLPI to allow more sample to be collected in the small size ranges. The
‘no-cyclone run’ is performed without the cyclone to measure the particle size distribution of the
larger particles. Before sampling, the gas sampling probe was inserted into Port 4b and the main
air rate was adjusted to insure stoichiometric combustiaditions. This final air flowate was
then used to calculate an isokinetic sampling rate aptinis The samplingate was set at 90%
of the maximum laminar gas velocity estimated infthheace. A size segregated ash sample was
then collected using the particle collection system describedea
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When sampling was completéat each samplingun, the BLPI was unloaded. The
polycarbomte membranes were folded and inserted in the sample vials. The combined
vial/ash/membrane weight was obtained. Aluminum foil samples were weighed and stored in
plastic Petri dishes. The cyclone catch, when collected, was emptied into a preweighed Petri
dish. The dish containing the ash was weighed. The sample collectionfongtd@ next test
run was weighed and loaded into the BLPI.

During the time period that the BLPI was being unloaded and reloaded, a gas profile of
the furrace was obtained. All of the firsbfir sample ports below the combustion zone (Ports 4,
4b, and 4c) were sampled along with a repregeme sample of thports on the basement floor
(Ports 5 to 14). Once the BLPI was reloaded, the stoichiometry at Port 4b was reconfirmed with
the gas sampling probe. The next sample test was then begun.

After the sampling was complete at the top offthreace (1 set of samples), the gas
sample probe was inserted into Port 12 to measure the difference in oxygen content between
Ports 4b and 12. This difference is due to air leakage into the post-combestion sf the
furnace which isinder slightly negative pressure. Usually, the dgmhas been operating on
coal long enough that slag has built up over the crack at the floor joint and the isokinetic
sampling rate at Port 12 igrslar to the ate at Porttb. However, during some of the runs,
appreciable oxygen leakage walt detected. The difference oxygen concentration was used
to calculate a new, higher gas velocity in this section ofutr@ce, which was used iarh to
determine an isokinetic sampling rate. The last set of samples, consisting of a ‘cyclone-and
cyclone’ run, was then celtted.

Results

A total of 11 sets of particulate samples were colledtethg six test runs for the
Pittsburgh coal. Foltlinois #6, seven sets of partieté samples were collectddring four test
runs. The sample sets and test runs are summarized in Table 3-7. Table 3-8 shows the sampling
conditions for the most important sample sets.

Figures 3-21 and 3-22 shoveady-sate temperaturprofiles for the Pittsburgh and
lllinois coals. The results are similar and ppreciable difference in the temperature profiles
for the two coals can be discerned from tlatad Note that the resufter Run P8-1 shown in
Figure 3-16 were obtained at the lower coal festd,..4 kg/h, compared to 2.0 kg/h for the
other three sets of data. There is no discernable difference in the tempenaiiledased on
these two coal feed rates.

Table 3-9 provides a summary of the maastionsfor the Pittsburgh sample sets 9
through 12. These represent the sample sets taken at a coaltéeef210 kg/h plus the
extended sampling period (2 h with the cyclone and 6 min without the cyclanelarl§, the
mass fractionor the llinois #6 sample sets are shown in Table 3-10. A metailed compila-
tion of the data, including the mass loading calculations used to generate these mass fractions is
given in Appendix A. Using the mass fractidram each test, an average mass loading can be
calculatedor each coal type/coal feed/samplart combination. The resulting particle size
distributions are shown in Figure 3-23.
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These samples were then sent to MIT fdAA and will be discussed in moreetall in
the next report.

Table 3-7. A Summary of the Phase | Test Runs

Coal Sample
Test Run # Date Feed Rate Sample St # Port Used
P8-1 1/29/97 1.4kg/h| 97P8-1c 12
97pP8-1 12
97P8-2c 12
97P8-2 13
P8-2 1/30/97 1.4kg/h| 97P8-3c 4b
97P8-3 4b
97P8-4c 4b
97P8-4 4b
P8-3 214197 1.4 kg/h| 97P8-5c 4b
97P8-5 4b
97P8-6¢ 4b
97P8-6 4b
97P8-7c 4b
97P8-7 4b
P8-5 2/18/97 2.0kg/h| 97P8-9c 4b
97P8-9 4b
97P8-10c 12
97P8-10 12
P8-6 2/20/97 2.0kg/h| 97P8-11c 4b
97pP8-11 4b
97P8-12¢ 12
97P8-12 12
IL-1 2/25/97 2.0kg/h | 97IL-1c 4b
97IL-1 4b
97IL-2c 12
97IL-2 12
IL-2 2127197 2.0kg/h | 97IL-3c 4b
97IL-3 4b
97IL-4c 12
97I1L-4 12
IL-3 3/3/97 2.0 kg/h | 97IL-5¢ 4b
97IL-5 4b
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IL-4 3/5/97 2.0 kg/h | 97IL-6¢ 12
97IL-6 12
97-IL-7 12

Table 3-8. Conditions for Phase | Experiments

Total Air| Sampling Sampling Temp Port 4 Port 4b Porf12 Portfl2
Sample Set # Feed Rate Ratg °Cft portwherq © Cong GO Conc ,O0 Cpnc L£LO Cpnc
(Port Sampled) (slpm) (slpm)] sample was taken) (AN) (A (%0) (%
97P8-9/9C (4hb) 535 1.72 1167 3.3 18.6
97P8-10/10c (12 535 1.84 866 3.5 18.4 5.1 17.]
97P8-11/11c (4b 535 1.72 1159 3.2 17.7
97P8-12/12c (12 535 1.72 3.0 17.3 3.( 16.2
97IL-1/1c (4b) 527 1.70 3.7 15.0
97IL-2/2c (12) 527 1.70 3.6 15.0 3.8 15.0
97IL-3/3c (4b) 518 1.67 1170 3.4 15.2
97IL-4/4c (12) 518 1.83 871 3.4 15.2 5.6 13.7
97IL-5/5c¢ (4b) 547 1.70 1106 4.1 14.2
97IL-6/6¢c (12) 540 2.10 842 3.9 16.1 7.0 12.2
97IL-7 (12) 540 1.96 842 3.6 15.6 6.8 11.9
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Figure 3-21. $eady state temperatupeofile for the Pittsburgh coal

(UA laboratory combustor, SR=1.2).
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Figure 3-22. $eady state temperatupeofile for the llinois No. 6 coal
(UA laboratory combustor, SR=1.2).

Table 3-9. Summary of the Normalized Particle Size Distributions
for Four Runs from Pittsburgh Coal (as Masad&ons)

Impactor Run 9 Run 11 Run 1 Run 32

Stage 4b 4b Avera Std De}. 12 12 Averdge  Std Oev.
11 0.112174| 0.06458p 0.0883%1 0.033448 0.109p63 0.04p129 0.Q76 0.448
10 0.484779| 0.38973B 0.4372%6 0.067407 0.188p24 0.67p59 0.432 0.345
9 0.079228| 0.13725)] 0.108239 0.041(328 0.222B72 0.071619 0.147 0.)07
8 0.096485| 0.25762| 0.177043 0.1139%4 0.218189 0.039882 0.1)29 0.1p6
7 0.072168| 0.086607 0.0793§8 0.01041 0.132p74 0.04%027 0.J9o1 0.060
6 0.149565| 0.049909% 0.099737 0.070467 0.082§06 0.046061 0.464 0.026
5 0.001712| 0.005539% 0.003635 0.0027106 0.014p44 0.023181 0.419 0.9o6
4 0.002594| 0.004034 0.0033314 0.001419 0.013p89 0.019644 0.412 0.go2
3 0.000415| 0.00205)1 0.001233 0.0011)57 0.006B44 0.01063 0.409 0.004
2 0.000882| 0.001231 0.001046 0.000347 0.007f 0.019633 0.014 0.0p8
1 0 0.001436| 0.000718 0.0010315 0.002994 0.0101L71 0.097 0.0095

3-40



Table 3-10. Summary of the Normalized Particle Size Distributions
for Seven Runs fronilinois #6 Coal (as Mass Fractions)

Im-

pactof Runl Run 3 Run ! Sid Run|2 Run 4 Rup 6 Ryn 7 Std

Stage (4b) (4b) (4b) Avg  Dey. (12) (12 (12 (12 Ayg. Dgv.

11 0.14675| 0.15206 0.23435 0.178 0.¢49 0.06y05 0.09047 0.3R781 0.12155 0.14} 0.12
3 4 3 1 6 8 9 3

10 0.27819] 0.33228 0.51742 0.376 0.126 0.24445 0.59452 0.3)y562 0.$3767] 0.468 0.18
2 8 2 6 8 4 1 5

9 0.16589| 0.22903 0.087J0 0.1p1 0.071 0.24305 0.09589 0.1p293 0.07108 0.12% 0.08
4 5 5 9 7 2 1 0

8 0.23097| 0.0863% 0.07196 0.1B0 0.088 0.12p%72 0.03072 0.0p439 0.04326 0.061 0.04
6 7 9 2 7 4

7 0.10464| 0.1276% 0.054742 0.0p6 0.037 0.18439 0.13830 0.0B024 0.06696 0.11% 0.05
1 9 9 2 7 1 3

6 0.06380| 0.06007 0.02245 0.049 0.023 0.07962 0.04879 0.0B073 0.¢04120¢ 0.05¢ 0.02
6 5 3 3 1 3 7 1

5 0.00598| 0.00472 0.00337 0.0p5 0.001 0.0124 0.03992 0.0p524 0.00524 0.011 0.00
5 9 6 6 1 1 1 7

4 0.00194| 0.00507 0.00647 0.0p4 0.q02 0.0179 0.04932 0.0p289 0.¢00289 0.007 0.00
8 9 3 5 2 2 5

3 0.00099| 0.00271 O 0.01 0.0p1 0.0022 0.00B47 0.04379 0.0p379]0.006|0.00
8 5 7 7 5 5 2

2 0 0 0.00154 0.00L 0.041 0.00645 0.00932 0.00p71 0.0¢271 P.0050.00

7 3 5 1 1 3

1 0.00080| O 0.00067 0.000 0.0p0 0.01498 0.00§#23 0.04361 0.0p361]0.0070.00

8 5 2 8 5 5 7
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Figure 3-23. Ash particle size distributions fdiimois No. 6 and Pittsburgh coals
(UA laboratory combustor, SR=1.2).

3.4.5 Chlorine Partitioning

Previous laboratory experiments can provide guidance on the most likely chemical
pathways for gaseous elemental mercury as the flue gases in a coal-fired power plant cool. In a
laboratory study, a small continuous flogactor was usefr kinetic investigations of the
reactions of gaphase mercury with flue gas constituents. The results show that elemental
mercury is oxidized by HCland £l by NO , and by O in the presenaetivfited cebon.

Laboratory experiments have also dematsit the reduction of oxidized merg back to
elemental mercury byeaction with S and CO as well as stesfaces. At this point, it is
impossible to say how important reduction reactions are in a full scale system.

The reaction of elemental meny with HCl is fast above 700 K (800°F) and seems to
proceed slowly (if at all) below00 K (600°F). There is no obviowsaction pathwajor the
gas-phase oxidation of l§g by HCI. The ones identified as catedidire complicate-they
probably involve many elementary steps which are not kfown. All this implieatthating
equilibrium when both HCl and Hg are present in trace concentrations may require a very long
time. Indeed, there is evidence from laboratory and pétd that the kinetics of Hg oxidation
by HCl are slow at low temperatures. Based on pilot data, the addition of HCI to coal
combustion flue gas at temperatures below 450 K@gdid not increase the amount of'Hg in
coal combustion flue gas, indicating no reaction at those temperatures.

On the other hand, the gas-phasaction of Hg with Gl is fast, even 283 K (50F).
The reaction iprobably a bimoleculaeacton. In the continuous floneactor previously citedl,
as little as 2 ppm ¢l was sufficient to oxidize half the elemental Hg in about 1 s (starting with a
mercury concentration of 0.012 ppm). At high concentrations.of Cl (>5 ppm), the Hg was
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almost completely oxidized in 1 s at temperatures in the rarng@3dio 973 K. The authors
speculated that, at low temperatures, gas-solid reactions@ogamt to the oxidation of Hg by
Cl, because of some difficulties in gettingpreducible results with their mercury measurement
cell.

The formation of Gl in the gas phase is thermodynamically favored at low temperatures.
For example, the equilibrium calculations carried out in Quarterly Report No. 4 on the four
program coals predict that 30 to 60% of the chlorine to be Cl at 423 K. However, the formation
of Cl, may be kinetically limited in the rapidly cooling flue gas which might reduce thphgese
oxidation of elemental mercury relative to the iigium value.

Kinetic calculations were carried out using the CHEMKIN-II package using a typical
time-temperature history from fuamne exit to APCD inlet in a power plant. The effects of
combustion stoichiometry and coal chlorine content were explored for a typical bituminous coal
composition. A set of 264actions was used to model the chemical kinetics of major species
containing the elements H, O, N, C, and CI. Figure 3-24 shows the time-temperature history used
in the calculations and the results for a coal with 2000 ppm chlorine and a stoichiometric ratio of
1.25. These calculations show that only about 1% of the chlorine is converted to Cl at the
APCD inlet. Thus, the conversion of HCI to the magaative CI seems to be kineticdilpited
in a power plant flue gas.

1.2% — 2000
"~ Temperature
o 1.0% ~. 1750

o
w 0.8% |
o

Temperature, K

Time, seconds

Figure 3-24. Gas temperature and poted chlorine partitioning in a typicalility boiler.
As discussed above, thermochemicalildarium is not reached in coal combustion flue

gas. The flue gas in a coal-fired power plant cools rapidly as heat is transferred to water and
steam. Since meucy is present in suchace amunts, mercury species may not have time to
equilibrate as the gas cools, particularly because the majphgas oxidationeaction is with
other trace species (HCl or,Cl ). Other trace species in the flue gas such as CQ and SO do not
have time to equilibrate as the gas cools. For example, the oxidation of SQ to SO in coal
combustion flue gas does not proceed at a fast rate bblmyt 4500 K and thus the SO
concentration is effectiveliyozen below this temperature in the flue gamnil&rly for trace
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species, present in ppm or ppb amountsilibgjum may not be attained as the flue gas cools as
demonstrated here by the results of kinetic calculatmmshlorine in flue gas.

35 Literature Review (UConn, Pgaton)

Under Task 7 of the program, field measurements of organic arel éfement emissions
from coal combustion are to be critically evatleid. The objective of this examination is the
identification of areas in whicbur knowledge of ice element combustion chemistry is
incomplete. In Phase | of tHisyear, two- phase program, the literature review and analysis will
lead to (1) a comprehensive view of thats ofknowledge obtainable from field measurements,
and (2) identiication of critical issues that need to hielgessed in laboratory experintation
and modeling in the other program tasks. A subsequent extension of this task in Phase Il will
provide the basis for validation of thate element traf@mation and emissions model being
developed under Task 8 of this program. Thistien represents an interim summanpggress
on Task 7 during the first year of the Phase | program.
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3.5.1 Review of the EPRI Field Study: gamic Emissions

Summary of Report Findings

EPRI chose 16 substances for measurement in the field stuhcandance with two
criteria: (1) the likelihood that the substances would be foundlity emissions (based on
previous EPRI findings) and (2) the availiép of toxicity factors. Of the chosen 16, the organic
substances include: benzene, toluene, formaldehyde, polyelatidibenzodioxins and
dibenzofurans (PCDD/PCDF), and polycyclic aromatic hydrocarbons (PAH).

As revealed in the EPRI Repdrt, the measured levaadi of these substances vary
greatlyfrom plant to plant, atlustrated in Figure3-25 for benzene emissions from 22 coal-fired
plants. Values range from 0.2 to 200 13710 Btu, spanning 3 orders of magnitude. In the absence
of any obvious correlation between emission level and plant typeataeck treated in
statistical fashin. The geometric mean of 3.8 IbfA0 Btu is calted, along with the 95%
confidence interval, which lies between 1.6 and 8.8 18/10 Btu. It is important to realize that
the "95% confidence interval" does not correspond to a range in which 95% of the measurements
fall. As Figure 3-25llustrates, 9 of the 22 measurements fall within96&6 confidence
interval for benzene; six lie below, and seven lie above. The lowest measurement corresponds
to approxinately one-fifteenth of the geometric mean; the highest measurement, a factor of 40
times the geometric mean. It might be noted that a straight arithmetic mean of the benzene
emissions measurements would yield a value of appedgign22 Ib/1¢* Btu, more than a factor
of 5 higher than the geometric mean.

In the Report, the emissions measuremenéaoh of the other organic substances are
analyzed as in Figure 3-25, and the results are summarized in Table 3-11. PAH emissions and
PCDD/PCDF emissions are reported as bajpgfene an®,3,7,8tetrachbro{-dioxin
equivalents, respectively, aftgo@oprate toxiciyy-based weightings were assigned to the
various measured PAH and PCDD/PCDF species, as explained in the Report, Appendix B. As
Table 3-11 reveals, the 95% confidence intervals for the other organics are at least as broad as
that of benzene, so it follows that the measured levels of these substances also vary by orders of
magnitude from plant to plant, though the values themselves are small.

The Report uses toxicityatih and emissions factors (the geometric means of the emis-
sions measurements) to calculate carcinogenic riska@mchrcinogenic inhalation hazards for
maximally and reasonably exposed individuals (MEI and REI) living within 50 km of the 600
power plants. The risks and hazards due to all 16 selected emissions are summed, and the results
for each plant type anustrated in Figure8-26 and 3-27. For all three types of coal plants —
bituminous, subbituminous, and lignite — the contributions to carcinogenic risk (Figure 3-26) and
to noncarcinogenic hazard (Figure 3-27) are included in the "ath&tpry. As shown in these
figures, organics are calculated to contribute < 2% of the total carcinogenic risk and < 5% of the
total noncarcinogenic hazard of coal power plant emissions. The Report concludes that organic
emissions from the 600 U.S. power plants do not constitute any health risks to
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Figure 3-25. Distribution of benzene emissioastors for coal-fired units.
(Figure B-17 from the Repott)

Table 3-11. Organic Substance EmissiaotBrs for Coal-Fired Units, Ib/10 Btu
(Table 3-5 from the Repdrt )

Organic Substance/Class Measurement Geometric Mg¢an 95% C.|.
Benzene 23 3.8 1.61t08.8
Toluene 21 14 0.7t0 3
Formaldehyde 22 3 15t06
Benzop]pyrene equivalent 11 0.0018 0.0004 to 0.00942
2,3,7 8tetrachlorop-dioxin 9 2 x10 (4 - 100) x 16
equivalent

* 95% confidence interval is about the geometric mean, not about all the data

humans: "Although uncertainty in organic compound emissiotofs is relatively high,

neither carcinogenic inhalation risk estimates hazard index estambes are sensitive to these
uncertainties for any plant type, due to the small contribution of organic compounds to cancer
risk estimates and hazard index estimates." (EPRORE p. 7-24).
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Figure 3-26. Contributions by individual substances to MEI inhalation carcinogenic risk,
median plant by fuel type (Figure 7-4 from the Report).
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Evaluation of Findings

In examining the results presented in the Report, #¢essary to consider the types of
methods used in the emissions measurements. Aldehydes weotecblly EPA Mdtod 0011,
converted to stable forms byeatment with dinftophenylhydrazine, and the derivatives analyzed
by high pressure liquid chromatography (HPLC). Volatile organics, including benzene and
toluene, were sampled with an EPA Method 0030 sampling train, trapped by Tenax and
charcoal sorbents, and analyzed by gas chromatography-reag®sgetry (GC-MS) with EPA
Method 5041. PCDD/PCDF were sampled by a metimiths to EPA Mehod 0011 and
analyzed by EPA Method 23 with GC and high resolution MS. Semi-volatile organics, including
PAH, were collected by EPA Medd 0010 with a Modified Method 5 sampling train, trapped
with a particulate filter an&AD-2 resin, and analyzed by GC-MS according to EPA Method
8270. Except for the aldehydes, therefore, all of the organics were analyzed by GC-MS.

In the following, we assess several aspects of tip@iRe results of organic emissions
measurements: sample collecti analytical methods, species not included, and heaétbteff
At the outset it should be noted that the power plant emissions testing program is an extremely
ambitious undertaking, one mimense difficulty, particularly in view of theon-laboratory-like
setting of the measurements. Treceeding comments, théoee, are not to be taken as
criticisms but as guidelines for understandingliftnéations of the rported measurements.

Sample CollectionFirst of all, it should be acknowledged that nine cting
companies participated in the plant measurements: Ra@arB&telle, Wesin, KVB,
Acurex, Clean Air Engineering, Interpol, and Carnot. Even though the large scope of the field
testing progct may have necessitated the use of many contractdrsultd$e borne in mind
that the multitude of contractors lends some variability to #ta.dSeond, as tated in the
Report (p. 2-1), the coratctors employed the EPA-recommended methods for sampling, but
some of the methods had not yet been aédidfor power plant streams, and others were being
pushed to or beyond thdimits. In several cases, low levels of organic speaeessitated
modification of collection techniques at the site so that detectaldardasof sample could be
collected. The difficulty of obtaining quantifiable samgiesn extremely dilute streams is not to
be overlooked. Third, errors can be introduced by the use of sorbents (e.g., Tenax) and resins
(e.g, XAD-2) during sampling — either by irreversibletention of corponents or by the
introduction of contaminants. Macroreticular resins used for sorption of PAH are particularly
notorious for introducing artiicts? Therfre, even though many species can besctdld by the
EPA methods used, other species may have escapectidn.

Methods of AnalysisThe derivatization, exction, and HPLC analysis procedure used
for the measurement of the aldehydes appears to be sound. GC-MS — the method used for
analyzing volatile organics, PCDD/PCDF, and semi-volatile organics — is an excellent method
for the volatile organics such as benzene and toluenelintitesd in applcationfor semi-volatile
organics such as PAH, however, for three primary reasons: (1) Sample components have to be
vaporized in the igctor of the GC before they can get onto the GC column for separation.
Some components, particularly less-volatile ones, can be trapped irettterigio that they are
never put onto the GC column or detected among the separathets. (2) Some components,
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particularly polar compounds, can be irreversietyained by the GC column so that they too are
never detected(3) Differentiation of PAH isomers is very important since some are carcino-
genic and others are not (¢ lgenzof]pyrene and benze]pyrene). In GC-MS, a compound is
identified by its retention time and mass spectrum. For PAH, eatly faf isomers (e.g.,

CxH12) has the same mass spectrum, so identification of a particular isomer requires a unique
retention time. This requirement is not that serfou$ AH of less than five ringsazause the
number of isomers is manageable and reference standards are available to enable one to
determine the retention time of all isomers. However, GC-MS is not very rdtalaaalysis of
PAH of greater than five fused rings sing&) the number of isomers goes up exponentially with
the number of rings comprising the PAH, and the availability of reference standards of these
isomers goes way down and (2) PAH of > five rings are also not easily vaporized at the
temperatures used in most GC injectors. Because of these yaonbilems of GC analysis —
injector trapping, irreversible retention on the column, indistinguibtyabetween mass sgtra

of isomeric PAH, and lack of component vaporililgbh— sample corponents can either be
missed or misidentified. It is thus extremely important to report mass balances on GC analyses:
What proportion of the mass of materigjeicted into the gas chromataph is actually
accounted for in the identified products?

Species Not Includedlhe Report gives emissions measurements of nine PAH —
benzplanthracene,lrysene, benzobffluoranthene, benzgfluoranthene, benz&lfluoranthene,
benzop]pyrene, dibend,hjanthracene, indend[2,3-cdpyrene, and benzghi]perylene —
all of which are four-, five-, and six-ring species. Surprisingly absent are phenanthrene,
fluoranthene, and pyrene, the three-and-four-ring species observed to be among the most
abundant PAH measured from coal-burning power pfdiits.  Early EPRI stutfies,  however,
had found these species to be asged with particulate matter, so in latesrw the EPRI
contractors may not have looked for these compounds in the gas phase, if they has not been
aware of the more recent wotk®  linking these species with the gas phase. Since PAH emissions
from coal are the products of pyrolys&actions, it is reasonable to compare the identified nine
PAH with PAH products from coal pyrolysis. Years of experiéhide  in this field tell us that it is
most unusual to have the nine specified PAH without a host of other product species in the
sample as well. Figure 3-28, for example, shows an HPLC chromatogram of PAH from the
pyrolysis of a low-rank codf. In addition to the nine PAH identified in the Report,
this chromatogram displays 41 other PAH — some of which haaegrthan five rings,
partially hydrogeated rings, alkyl substituents,rbanyl groups, or cyclopenta-fused rings. It
should be noted that some of the species identified in Figure 3-28;benzofhi]fluoranthene,
cyclopentag¢d|pyrene, and naphth®[1l-gdpyrene — have mutagenicities significantiygter
than that of benza]pyrene®* so omission of such species can lead to inevenpt misleading
conclusions about health efits. The fact that the Rert gives measurements of only nine
PAH—none of which have gater than six rings, substituembgps, or cyclopenta-fused rings
— is most probably a consequence of the GC-MS analytical methods used. Once again
underlined is the importance of knowing what proportion of the sample nas=oignted for in
the products measured by GC-MS.

It should also be noted that aromatic compounds having nitro substituent groups; N, S, or
O ring heteroatoms; and oxygen-containing functionalities are also not included in the Report's
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results. If present, these species — particularly the highly mutagenic nitré&*2AH  and PAH
with ring nitroge?*° — could also have impact on the health effects assessmemP Alit

have been measured from other coal combustéts Other coal-derived "organics" not
mentioned in the Report are soot and unburned carbon atesbuwiith fly ash.

Health Effects.The Report assesses the healtba# of organic emissiofisom power
plants, using toxicity information and measured emissions levels of aldehydes, benzene, toluene,
PCDD/PCDF, and nine particular PAH. A number of other organic species that could be
present, however, are never mentioned. Since it is the objective offibd Reevalate health
effects of plant emissions, it is mostportant that there be an accounting of the strongly
biologically active compounds such as nitro-PAH, PAH with ring nitrogen, and species such
as cyclopentajd|pyrene and naphth®[1-gdpyrene, which are more mutagenic than
benzof]pyrene. If these species have been specifically searched for by apier@pralytical
techniques, then the documentation of the testfirming the absence of these compounds
needs to be presented. If it is the case, however, that steps have not been taken to measure these
biologically active species, then it remains indeterminate whether the organic enfissions
power plants do or do not pose a health concern. Of critical importance are mass balances on the
sample collection and sample analysigscessesWhat percentage of the organics produced are
collected,and what percentage of the masextted is acounted for in the identified
products?

Key Questions

In order to address some of the uncertainties that the above evaluation raises, we have
formulated the set of questions listed below.

1. In the sampling from the power plants, what tests were coedtio ensure that the
sampling methods did indeed pick up all the organic emissions and that none could get
by the sampling system without being trapped?

2. Of the total organic mass that was colleatedng the sampling from the plants, what
proportion isactually acounted for by the particular organic products whose identities
and quantities are given in the reports? The EPRI Synthesis Report gives measurements
of benzene, toluene, formaldehyde, nine particular PAH, and a number of PCDD/PCDF.
Is there documentation that verifies that these particular organjpoemmsaccount for
the whole of the organic samples collected? If so, whatadstwere used to make the
determination? Were these imetls capable ofetecting and quantifying classes of
organic compounds other than the particular ones reported? If these particular species do
not account for the whole of the organic massectdld, on what basis were other
organics excluded from consideration?

3. Apparently in the EPRI study, some early "screening” runs were ciautiio establish

which organic species were measurable and which were below deteaiten Were
these results or similar ones used as screening guidelines in the IRIPEastd if so, are
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the results from these screening runs available? What methods were ustedrtine
which species would be targeted and which would be below detéoiits?

4, During the gas chromatographic analyses of the organic samples, were mass balances
condiwcted to showl) that all mass iejcted was in fact y@orized in the irgctor so that it
could all get onto the GC column for analysis and (2) that there were no peaks in the
chromatograms corresponding to species other than those identified and quantified in the
Report? Are thactual tiromatograms available for examination?

These questions have been shared with EPRI and DOE, who sponsored the field
emissions studies, and both organizations have responded very helpfully by sharing additional
reports and providingccess téurther cata andnformation. We Wl be working together in the
coming period of time to answer the above questions and others that may arise on organic
emissions.

3.5.2 Field Data Review:lnorganic Sgcies Emissions (Trace Elements)

Approach for Analysis of Brice Element Data in Literature

The data being consideredder this task are measurements of the following petens
made at operating full scale coal-fired power stations. The'teliracale’ is meant to include
any central station electric power generationlifgdourning pulverized coal.

a) Trace element concentrations in the fly ashfasetion of ash particle size.
b) Correspondingatafor trace element concentration in the parent coals.
c) Trace element emissiofe different types of air pollution control equipment.

At the start of the program in November 1995, two major sources of atehvdre
identified. The first was the Electricility Trace Substances SynthesipBe,’ published by the
Electric Power Research Institute (&P of Palo Alto, CA, in November 1994. The emissions
data described in the EPRpaat were obtained during the EPRI program Power Plant
Integrated Systems: Chemical Emissiongd$t(PISCES). In the remainder of this report, the
terms ‘PISCES’ and ‘PISCES data’ are used to identify the SynthgsstR&he other major
source of trace element field data was a recently completed Department of Energy (DOE) led
study of eight different US power plants. Although the DOE Summary Report was not yet
available at the start of work on Task 7 (January 1996), the individuaactotreports foeach
facility were available.

Additional data identified at the outset of thimgram were those published by thiitut
KEMA in the Netherlands describing a measurements made in their boilers, and data available
from the VTT Aerosol Technology Group of Espoo, Finland for several different European
boilers. Subsequent to the start of our work, additioatdfdom a British powertation and a
Spanish power station wepeblished in the open literature.
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Work described in this interim report includes an assessment of the EPRI PISGES d
preliminary evaluation of the DOEath, and evaluation of the recent British and Spanish data.

3-53



Summary of Results

The PISCES datasptovides a comprehensive examination até element chemistry at
over 40 U.S. sites. In the PISCES study, coal rank, ash content, sulfur coatenglément
concentrations, coal higher heating value, trace element emissions rate, and particulate matter
emissions rate were all determined. From this dataset, the operating efficiency of air pollution
control devices, both in collecting particulate matter and in removing trace eldremntbe
stack gases can be determined. By calculating both of these parameters, it is possible to
determine whether an individual trace element is collected more efficiently than the particulate
matter, less efficiently than the particulate matter, or with the same efficiency as the particulate
matter. This calculation wasdertaken as the first task in the review of the PISCESsét.

The particulate collection efficiency of an air pollution control device is defined as

PM, - PM_,
" Tem, (3-7)

n

where PM is the particulate matter concentration at the inlet of the air pollution control device
(mass per unit energy content of the as-fired fuel, e.g. [lb/MBtu]) ang PM , the particulate
matter concentration at the device outlet (same units). This can be rearranged to

PMyy = PM, (1 - n) = # (3-8)

where { is the ash content of the coal on an as-fired basis (mass/mass, e.g. [Ib/Ib]) and H is the
higher heating value of the coal (energy content per unit mass, e.ghBtu/I

For any trace elemenfresent in the coal, the emissions E (mass per unit energy content
of the as-fired fuel, e.g., [Ib/ MBtu]) can be dterminedrom

_ G@-m)

E = A (1-m) H

(3-9)

where A, is the concentration of the trace element in the gas stream entering the air pollution
control device (mass per unit energy content of the as-fired fyel), C is the concentration of the
trace element in the coal (mass/mass),@i&lthe capture efficiency of trace elemeimt the air
pollution control device, defined by an expression analogous to Eq. (3-1). Combining Egs. (3-2)
and (3-3), an expression foatre element emissions atiaction of coal parameters and air
pollution control device efficiency is obtained,
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o Ci I::'Mout (1 - ni)
| fa (1 -m)

(3-10)

Measurements of E ,,C, BM , and f were all made as part of the PISCES data sets. A
plot of E v. (G PN, /f) should therefore pass through the origin and be linear with slope equal
to (1 -m;)/(1-m). For trace elements that are captured with greater efficiency than the
corresponding fly ash, the slopdlwe less than one, a resultgfbeing greater than. If the
efficiency of trace element capture is identical to the efficiency of particulate capture, the slope
will equal one.

The above analysis implicitly assumes that the relationship betwaemndlement capture
efficiency and particulate capture efficiency is not dependeon the type of air pollution con-
trol equipment. Analysis of trace element emissions datgpgd by type of air pollution control
equipment can be used to test this assertion. Further, if the partitioningeottements among
the vapor phase and fly ash particles of different sizestisonsistent from furaice tofurnace,
then poor correlations (Eg. (3-10)) would be obtained for any groupirgtaf dnder this latter
scenario, the emissions from anyiliacare dependentpon the &te of the trace elemedtring
combustion. A poor correlation (Eq. (3-10)) is thereforeciative ofpoorly understood trace
element combustion transformations. This reasoning is summarized in Table 3-12.

Table 3-12. @ta Intepretation

Slope (Eq. (4) R Interpretation
1 Closeto 1 Trace element capture equal to particulate captule
>1 Closeto 1 Trace element capture less than particulate
capture
<1 Closeto 1 Trace element capture greater than particulate
capture

- Close to 1 when identicgl Type of APCD affects trace element capture
APCD considered

- Far from 1 Trace element capture cannot be predicted from
particulate capture. Concentration of trace
element in vapor and in ash as f(dp) dependent
upon mineralogical and combustion parameters
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In the original analysis of the PISCES data, an equation dbthe
c pMm|’
f

a

E = a (3-11)

was used in correlating the emissioasad This is identical to E¢8-10) when the exponent b
is equal to 1.

The results of using Egs.(3-10) and (3-11) to fit the PISGHES are summarized in Table
3-13. In generating Table 3-13, the entire set of availadike \ttas usetbr each element. For
some elements, the database can be expanded by including thoséopwihish the
concentration of the element in the coal, C, was the only missing parameter. For those samples,
an estimated concentration C can be deternfimed the rank average value of the concentra-
tion for that element in coal of the idited rak, using only those values less than the reported
detectionlimit for the site in question. These additional points expandecdcathbakdor several
elements as indicated in Tald€l3. Regardless of the size of tretabase, Eq3-11) provided
a better fit to the data than did Eg§-10) for 10 of the 11 elements considered. This is further
reflected in the values of themonent b not equaling 1 as shown in the table, suggesting that the
combustion transformations ofitre elements are dependepbn mineralogical and combustion
parameters.

Based on the results of the field data analysis, recommendations regarding bench-scale
fundamental study of the combustion transformations and capture of individual elements were
made. The resulting prioritization is shown in Table 3-14.

Element-Specific Discussion

Antimony (Sb)

No correlation was noted between thec& concentration Ei of antony and the para-
meter (G PM/f) (Eq(3-10)). The corresponding value of r wasetmined to b@.15 for the
nine sites for which compte datasets were available. When the database is expanded to include
sites for which the antimony concentration in the coal was atohfour additional sites can be
added (Table 3-15). Addition of thesatdsets does not change the lackasfelation with the
group (G PM/f), however. In Figure 3-28, antimony emissiata @including théour additional
points) are broadlycattered, with no trends apparent. Using the empirpaicach described in
the original analysis of the data (§8-11)), ant correlation coefficient of 0.65 was reported by
EPRI. [atafrom these nine sites plus the four others for which coal antimony concentrations
were estimated are plotted in Fig@-9.
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Table 3-13. @AtaCorrelation with Egs. (3-10) and (3-11)

R? Slope R

Element | (Eq.(3-10)) (Eq.(3-1q)) Intercept Data Phirs (Eq. (3-11)); b N#

Sb 0.15 0.15 1.00 9 0.65 0.92 0.6 8
0.05 0.11 1.06 13

As 0.20 3.53 11.6 36 0.72 3.1 0.8p 34
0.20 3.50 11.0 34

Be 0.74 1.23 0.116 17 0.83 1.2 1.1 17

Cd 0.02 -0.09 2.59 11 0.78 33 0.5 9
0.01 0.07 1.43 30

Cr 0.26 0.95 5.84 37 0.57 3.7 0.5 38

Co 0.28 0.80 2.09 18 0.57 1.7 0.6 20
0.28 0.80 2.14 20

Pb 0.80 5.54 -3.77 33 0.62 34 0.8 33
0.80 5.50 -3.13 34

Mn 0.38 1.04 1.80 37 0.57 3.8 0.6 37
0.38 1.27 1.80 38

Hg 0.003 3.94 6.18 32 --- - -- -
0.004 4.77 6.02 34

Ni 0.073 16.6 1.42 27 0.51 4.4 0.4 25
0.079 14.0 141 35

Se 0.05 14.9 75.4 29
0.05 14.4 78.5 34

Table 3-14. Conclusions Regarding Relative Need
for Bench-Scale Investigations

| High Priority] Middle Priority] Low Priority
As Cd Be
Hg Sb Mn
Se Cr Co
Ni
Pb
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Table 3-15. Number of &lasets per Element

e

Number of Datasets when Coal
Element Number of Concentration Non-detect Replace
Datasets with Rank Average Value
Sh 9 13
As 34 36
Be 17 17
Cd 11 30
Cr 37 37
Co 18 20
Pb 33 34
Mn 37 38
Hg 32 34
Ni 27 35
Se 29 34
4
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Figure 3-28. Antimony emissionsatia versus CPM/f .
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Figure 3-29. Antimony emissionsatia plotted on log-logaordinates (empirical fit).

Because of the small number of datasets (nine sites) and the langetarh€atter in the
data, caution must be exercised in extrapolating these rissule purpose of estimating
emissions at other sites or with other coals. The large amourdttérsalso suggests that the
partitioning of antimony among ash particles of different size classes is highly variable. The lack
of apparent trends with coal rank or antimony concentration suggest that antimony transforma-
tions and partitioning in a combustion environment are not well understood. It is therefore
recommended that antimony transformations under combustion conditions be further studied at
the bench scale (see Table 3-14).

The complete tabulation of the antiny data used in preparing these figuregrisvided
in Appendix B.

Arsenic

No correlation was noted between thec& concentration E of arsenic and the parameter
(CPM/t) (Eq. (3-10)). The corresponding value of r wagdnined to b@.20 for the 36 sites
contained in the database (including thi@ewhich the rank average value of the concentration
of arsenic in the coal was used). In Figure 3-30, arsenic emissitan@retluding the three
additional points) are scattered haltigh there is clustering of thatd near the origin of the plot.
Using the empirical approach described in Eq. (3-11)?an r correlation coefficient of 0.72 was
reported by EPRI (34alasets). In all cases, the intercept (concentration at which E equal to
zero) was calcatedfrom the regression analysis.

The databastor arsenic is sufficiently large to permit consideration of subsets containing
datafor specific coal rank or type of air pollution control device. These trends are reported in
Table 3-16. A strong correlation is seen for the seven sites employing fabric filtration as the
method of air pollution control. A speculative explanation for this observation is that certain size
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Figure 3-30. Arsenic emissionsath versus CPMf .

Table 3-16. Correlation of Arsenicaasets Using E¢3-10)

Dataset i1 Slope Intercept # Sites
All data 0.20 3.53 11.0 36
Bituminous 0.14 3.04 20.8 23
Sub-bituminous 0.07 0.56 0.58 9
Lignite 0.14 1.26 0.89 4
ESP, ESP/FGP 0.18 3.35 14.9 29
FF, FF/IFGQ 0.92 2.65 -0.17 7
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These results suggest that bench scale

classes of ash particles are enriched in arsenic; further, these size classes are chosdyeff
captured by systems using fabric filtration. This is consistent with observed high particulate
capture efficiency for fabric filters (average of 0.999 for the 11 sites repodiagrdthis sidy)
and potential enrichment of arsenic in the smallest particulate, a phemombich has been
documented in field and laboratory measurem@its.
study of the combustion transformations of arseniadmrded a high priority in the remainder
of this program.

The complete tabulation of the arsenic data used in preparing these figuosdsd in
Appendix B.




Beryllium

Beryllium emissions ata were linearly arrelated with (G PM/f ) with a arrelation
coefficient of 0.74 obtained for the full group of 17 sites. There were no sites for which the coal
concentration was reported below the detedtmit. This compares feorably with the regres-
sion coefficient of 0.83 reported by EPRI in its analysis of Hta dsing the empirical relation of
Eq. (3-11). These trends are shown in Figures 3-31 through 3-33. From these results, it can be
concluded that beryllium is not enriched in smaller particles which may be more difficult to
capture. Rather, the correspondence betweeliibergapture and particate capture, and the
lack of any trend with coal rank or air pollution control device (see Appendix B) suggests that
beryllium is concentited in ash particles greater than 1 or 2 um in size. Because of this, it is
recommended that fundamental study of bieng be accorded a relatively low priority in the
remainder of this fundamental program. The cetgtabulation of betyum data used in
preparing these figures is provided in the Appendix B.

Cadmium

As shown in Figures 3-34 and 3-35, no correlation was noted betwednadke s
concentration E of cadmium and the parameter (CPM/f)(@0)). The corresponding value
of r* was determined to e02 for the 11 sites contained in tretabase. Addition of the 19
sites for which the rank average value of the concentration of cadmium in the coal was used did
not improve the correlation. In Figure 3-32, cadmium emissiates (@@hcluding the additional
points) are scattered, with most of the data clustered near the origin. Us(Bg1H{as
described in the original analysis of the data,’aomretation coefficient of 0.78 was reported by
EPRI (nine datasets); it is unclear which two datasets included here were not included in the
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Figure 3-31. Arsenic emisionsatia plotted on log-logaprdinates (empirical fit).
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Figure 3-32. Berjlium emissions dta versus CPM/f .
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Figure 3-33. Berjlium emissions dta plotted on log-logaordinates (empirical fit).
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Figure 3-34. Cadmium emissionsta versus CPM/f .
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Figure 3-35. Cadmium emissionsita plotted on log-logaordinates (empirical fit).
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EPRI analysis. Association of cadmium with calcium in the ash wb-dsuminous coal has

been reported in another field stully; no evidence for enhanced capture of cadmium by calcium
rich sub-bituminous coal ash was seen in the PISGES @The Querol et al. findings do suggest

that ash chemistry may have some effect on cadmium emiskiotisis reason, it is

recommended that examination of cadmium be accorded a middle priority in the remainder of
this program.

The complete tabulation of the cadmium data used in preparing these figan@sded
in Appendix B.

Chromium

Chromium emissions were uniformly low/lfiag well below 40 Ib/TBtufor most sites.
No correlation was noted, however, between theksconcentration E ohcomium and the
parameter (CPM/f) (Eq3-10)). The corresponding value éf r watatmined to b€.26 for
the 37 sites contained in the database. The scatteramiuim emissions data can be seen more
clearly in Figures 3-36 and 3-37, with Figure 3-36 presentingateeas dunction of (GPM/f),
sorted according to coal rank and air pollution control device type, and Figure 3-38 presenting
the same data sorted only aoding to coal rank. Using Eq. (3-11), &n r correlation coefficient
of 0.57 was reported by EPRI. High capture efficiencies noted for chromium (0.99 average)
indicate that fractionallmomium emissions will be low relative to thadtional emissions of
other trace elements; issues associated with oxidation state-specific t@xiqit§l)) warrant
further study, however. It is therefore recommended that further study of chromium transforma-
tions focus on speciation, and be afforded a middle range prioritization. Thest®hatlulation
of the chromium data jsrovided in Appendix B.
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Figure 3-36. Chromium emissions versus C PM/f sodedording to rank and APCD types.
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Figure 3-38. Chromium emissionsath plotted on log-logaordinates (empirical fit).
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Cobalt

Cobalt emissions were also uniformly lowlifay well below 10 Ib/1# Btifor most sites.
No correlation was noted between thec& concentration E of cobalt and the parameter
(CPM/) (Eg. (3-10)). The corresponding value of r wasedmined to b@.28 for the
20 sites contained in the database. The scatter in cobalt emissions data can be seen more clearly
in Figure 3-39, which presents emissioasadas dunction of the term (CPM/f). Using
Eg. (3-11), an’r correlation coefficient of 0.57 was reported by EPRI. doeat field sidy,
Querol et af' presented cobalt concentration data theglated with 1/¢f , suggesting a
mechanism of vaporization and sacé ondensatiofi! 8cause of the low levels of emissions
observed in the EPRI data, however, it is recommended at this tinfarthat study of cobalt
be afforded a relatively low priority.

The complete tabulation of the cobalt datprsvided in Appendix B.
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Figure 3-39. Cobalt emissionsath versus CPM/f.
Lead

Lead emissions weremrelted with the parameter (CPM/f) (E8-10)) with an ¥
value of 0.80 (34 atasets) (Figure3-40 and 3-41). This compares with a value of 0.62 reported
by EPRI in the original analysis of the data usingBel1) (Figure 3-42). This suggests that lead
emissions may be predictalfiem knowledge of coal parasters alone. These ddtather
suggest that the transformations of lead under combustion conditions are not dependent upon coal
rank, coal mineralogy, or ash particle size. doemtlypublished field studies, however, Querol
et al” and Martinez-Tarazona and Sp&ars reported that lead was enriched in the smallest fly
ash particles, suggesting possible vaporization andignrichment. Because of this, it is
recommended that lead be identified as a middle priority candmfafigrther fundamental study
under this program. A congdke tabulation of the lead datgpi®vided in Appendix B.
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Figure 3-41. Lead emissions data versus CPM/f (partial range of data).
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Figure 3-42. Lead emissions data plotted on log-lagpinates (empirical fit).

Manganese

Manganese emissions coated with the parameter (C PM/f) (E8-10)) with an f
value of 0.38 (38 atasets, including orfer which a rank average coal concentration value was
used) (Figure 3-43). This compares with a value of 0.57 reported by EPRI in the original analysis
of the data using the empiricg@oach described earlier (Figure 3-44). Despite this poor
correlation, an average manganese capture efficiency of 0.99 suggests that manganese emissions
are minimal and are less than particulate emisgmma capture efficiency basis). Manganese is
generally depleted in the smallest ash particles and enriched in the largest particles and in the
bottom ash, suggesting that it can be managed througttief particulate control. Manganese
is therefore a low priority element for further study in this program.

A complete tabulation of the manganese dapsasided in Appendix B.
Mercury

Mercury emissions showed no correlation with either CRPM/f (r = 0.004) or with the
logarithm of the same ternt(r = 0.15). Thatser inherent in the mamy emissions ata can be
seen in Figures 3-45 and 3-46. étter orrelation was obtained when the concentration of
mercury in coal, C, was used as the independent variable (Figure 3-47). A correlation
coefficient of 0.56 was obtained for the 3takets used faroduce this plot. This trend is
consistent with the expected completpmazation of highly volatile mercury.
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Figure 3-43. Managanese emissiorsalversus CPM/f .
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Figure 3-44. Manganese emissioreta plotted on log-logaordinates (empirical fit).
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Figure 3-45. Mercury emissionsath versus CPM/f .
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Figure 3-46. Mercury emissionsath plotted on log-logaordinates (empirical fit).
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Figure 3-47. Mercury emissionsath versus C.

Although mercury is exgcted to vporize comptelyunder combustion conditions, the
stack emissions of the resultingogat are not readily prectied. Mercury capture efficiencies
ranged from 0 to 97%, inckting highly variable removal. Rk-dependence was also noted,
with average capture efficiencies of 0.31 measured for lignitic and bituminous coals, and 0.45 for
sub-bituminous coals. Both the speciation of mercury (oxidized versus elemental forms) and the
presence of residual carbon in the fly ash are believed to contribute to mercury removal from
flue gases. Firm conclusions regarding mechanisms or trends cannot be drawn from the field
data, however, because of the large degree of uncertaingyoiried data, due in part to the
difficulty of measuring small concentrations of mercury. Laboratory study of the speciation of
mercury, and the intaction of merary with carbon in ash, should therefore remain high
priorities within this program. A comgtie tabulation of the meauty data isprovided in
Appendix B.

Nickel

Nickel emissions data are plotted in Figuse48 and 3-49. Eightada points for
which rank-averageada were usefbr the concentration of nickel in the coal are included. No
correlation analysis was performed for the nickathd

Laboratory studies have shown nickel to be generally non-volatile; fd¢dinddicating
a high degree of capture (average nickel removal efficiency of 0.98) are consistent with this
reported trend. Querol et‘dl.eaently r@orted nickel enrichment in small ash particles
produced from combustion of a sub-bituminous coal, however. It is therefore recommended that
further laboratory study of nickel lmecorded middle priority in this program. Nickeltd are
tabulated in Appendix B.
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Figure 3-48. Nickel emissionsth versus CPM/f .
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Selenium

Selenium emissions showed no correlation with either CPM/f (r = 0.05 for the 29 com-
plete datasets? r €.05 for 34 dtasets including fivéor which rank-average values of selenium
concentrations in coal were used). Correlations with the empirical equationateene(b =
0.49 for 34 dtasets including fiveor which rank-average values of selenium concentrations in
coal were used). No correlation with concentration of selenium in the coal was noted (Figures
3-50 through 3-52r = 0.03 for 34hsets). Selenium capture efficiencies rarigad 0 to
99%, indcating highly variable removal. Re-dependence was also noted, with average capture
efficiencies of 0.44, 0.98, and 0.68tdrminedor bituminous, sub-bituminous, and lignitic coals,
respectively. This rank dependence, and particularly the high capture efficiencies noted
for fadlities burning sub-bituminous coals, iedites that ash chemigt especially the presence
of calcium on particle surfaces, may bgaortant in determining selenium emissions. Querol
et al.’* in a published study of density seggpad ash obtaineidom a 1050 MW &tionburning
sub-bituminous coal, also noted an association between selenium and calcium in the ash. Further
study of this element at the bench scale shoulakclberded a high priority in the remainder of
this program. A comple tabulation of the selenium dat@isvided in Appendix B.

3.6  Toxics Partitioning Engineering Model (ToPEM) Development (PSI)

The primary objective of thisrogram is to develop a fundamentally-based predictive
model to allow utility operators to predicatre element emissiofrem their plants. This Toxics
Partitioning Engineering Model (ToPEM) will be applicableatbcombustion conditions
including new fuels and coal blends, low-NO combustion systems, and new power generation
plants. Development of TOPEM will be based on PSI's existing Engineering fdodesh
Formation (EMAF).
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Figure 3-50. Selenium emissionsi versus CPM/f .
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The work discussed earlier on the major mechanisms goveraggéfement partitioning
in the combustion zone allows us to determine whithiraodels must be further developed, and
to determine how thesels-models might be incorpated into the Engineering Modelr Ash
Formation. In the following substions the major coponents of the TOPEM model, and how
they will be integated, are discussed. Critical parameters to be examined as part of the Phase II
program vill also be identified.

3.6.1 Description of Engineering Model for Ash Formation (EMAF)

A simplified flowchart of the Engineering Model for Ash Formatioi@&F-) is shown in
Figure 3-53. Also shown (in the broken boxes) are the proposed catidifisfor the develop-
ment of the TOPEM. The EMAF is discussed é@tadl elsewher€ and will, thefoere, only be
discussed in here in general terms.

The model starts by reading in the appraj@input pararatersfrom the @ta file. These
parameters includaformation on the coal psd, mineral psd and composition (from CCSEM),
and parameters contling the modes of interctions between mineradsiring burnout. These
data are then used to generate a virtual assembly of ‘empty’ coal particles wipprberiate
size distribution. The mineral particles are then distributed among the virtual particles until the
average volume fraction of ash in any given size range of coal particles equals the volume
fraction of ash in the entire coal.

At this point the model has createdraup of particles, both mineral-containing coal
particles and excluded minerals, that simulate the size and composition distribution in the coal.
In order to simwdte the fly ash resultifigppm compéte char combustn, and neglcting vaori-
zation, the model jumps to the mineral iatetionroutine describedater in this seadn. To
simulate vaorization, or combustion under reducing conditions (resulting in inaephar
combustion), additional steps are required. Specifically, TOPEM needs to be modified to include
the effect of the combustion enmhment on the time-temperature, and burnout, history of
particles in the combustion zone.

In order to simwdte the chaburnout and &ce element y@orization a new submodel
must be developed. The existing EMAF contains a kinetic submodel thattedctile
fractionalburnout and the particle temperatures during the combustion process. This submodel is
similar to that discussed elsewhéte. In the kinetic submodelatigfralburnout of char in a
given size range is calculated by simultaneously sofanthe burnout of all the size ranges
present in the coal. For example, a coal with a particle size distribution ranging from 10 to
120 pum is divided into 12 size bins. The kinetic submodel then simultaneously solves the 12 rate
equations describing burnout in the individual size bins,eH balances on the particles in these
bins (to determine particle temperature), and the twxaigen, carbon monoxide, and carbon
dioxide concentrations. Using these relations the submodel predicts which particles burn out
first, and as a result predicts the degree of burnout for all size ranges.
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The kinetic submodel required to predict trace elemgmbnization Wil be incorporated
into the existing char combustion model. As discussed elsewhere in this reptdn$3.3)
trace element \@orization is probably domated by thermal effects and intraparticle tpors
effects. Therfore a model that takes theseeetis into acount, such as that proposed by Quann
will be used to calcale the fraction of a given element thapeazes from coal particles
(including extraneous minerals) in a given size range during the burnout process. By integrating
these results over the entire size range of coal particles we can predict the net vaporization from
the coal. The proposed vaporization submodel is discussed in ataiigrdSectior8.6.2.

In the current IAF the output of thidurnout submodel is used to define trectron
of minerals in each simulated coal particle thaiosexposed to the outer char particle surface
during the combustion process. These minerdilg@nerally maintain the same size and compo-
sition, since they cannot intest with other minerals. The remaining minerals are assumed to
coalesce and interact with other minerals. Based on these mechanisms, the model predicts the
size and composition distributions of the bulk ash.

At this point the model has predicted the size and composition of the sujerast,
and the existing EMAF writes the results to output files and ends. ToPEM, howéhaisow
include a submodel to predict the size and composition of the submicron ash, including the trace
elements. This model has been developed for bulk ash constituents as part of an earlier DoE
funded program (@ntract Number DE-FG02-92ER81376In Phase Il the model, discussed in
Section3.6.3, wil be modified to include andensation of &ice elements and iaporated into
ToPEM code. ToPEM will then combine the superoricand submicron distributions to
describe the entire ash particle size distribution and composition distribution. This tool will
provide an important starting point for the development of a commercial, user friendly, software
package to predict slagging and trace element emidsanoilers, snilar to PSI's Slagging
Advisor'™™ program.

3.6.2 Proposed Vaporization Model

Although development of the vaporization modéll me accomplished in Phask some
of the Phase | results and some existing vaporization models can be usedategegeneral
framework for the vaporization model. As discussed earlext{®3.3.3) several mechanisms
have been proposed that may control vaporizatioracttelementduring burnout. These
mechanisms include capture of the reactive mineralfjiyeite) into a glassy phase which may
inhibit reacton, pore diffusion control, vaporization from minerals exposed during burnout, and
film diffusion control. Of these mechanisms, tla¢adcollected to date in thpsogram, and those
data collected by earlier researchers at MIT suggest that inpemeabnd externailfin diffu-
sion control are the most important, and will thiere form the basis of the vaporization model.

The model we will use in TOPEM is based largely on earl@kwy Quann. He pro-

posed that for the conditions we proposed here (internal or external diffusion control) the
vaporization ate of an element (V) can be given by:
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VAR NAVAL (3-12)

where:

n = the effectiveness factor that takes intoauot internal and external diffusion control
N, = the number of inclusions that have not been exposed

V," = the vaporizationatefrom a single non-intacting inclusion.

The effectiveness factor is given by:

D ‘ 0 !
no3b L Ll e v oy (3-13)
b[tanhd, & || «Dg,| tanhb,
where:
¢i = Thiele modulus
D. = effective dffusivity of element
D.,, = diffusivity of oxygen
«; = Stephan flow parameter.

The number of inclusions that have not been exposediteddio the initial volume fraction of
minerals in the char and the volume of char that has been burned away. Vaporization of the
element from a single non-inteating inclusion is given by:

V' =4mcD,rx: (3-14)
where:
c = molar concentration
f = radius of the inclusion
Xm. = equilibrium mole fraction of element at the inclusiomface.

Although this model has been shown to work fairly well for major species (suiic @s)st has

not been tested for vaporization ci¢e elements. Mims etZal. usedrailar model, however,

to describe vaporization of arsenic from a Montana Lignite with good results. All of the model
parameters are readily available, or can be easily estimated, with the exception oiliireiequ
mole fraction of the element at the inclusiomface.Current eqiibrium data do not exit to

allow this parameter to be calculated. Theme, the kinetics of vaporization is a major issue that
must be addressed in the Phase II.
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One major mechanism that has not been discussed here is reactive scavenging of vapor
phase species by minerals. For example, sodium vapors have been slemaen wath gicate
minerals}’ thereby reducing the amount of sodium present in the submicron ash. If specific
interactions are identifiefibr trace elements (e.g., reaction of arsenic and calcium) a sink term
will have to be inorporated. This situation requires detailed information about the mechanisms
leading to the reactive scavenging and the kinetics of the scav@ngoess. These issues,
among others, will bedalressed in Phase Il of this program.

3.6.3 Submicron Ash Formation Submodel

One of the goals of this work is to incorpte an aerosébrmation submodel into the
engineering model for ash formationMBF). Development of this model was completedier
separate Dofunding as part of the program "Advanced Analytical Methods facBeh of
Coal and Coal Blends," Coattt Number DE-FG2-92ER81376. Modiiations to the model to
include description of trace element behavidrtake place in Phase Il of thigrogram.

Many investigators have measured two distinct modes in the submicr8f’ash,  ultrafine
and intermediate. The ultrafine mode is primarily deriireth vaporization and condensation
of inorganics during the combustion process. The inteatedaode is primarily derivefdom
submicron minerals present in the coal. The model addresses these modeslgepar

Ultrafine Ash Mode

In the submicron ash formation submodel the mass of the major species that vaporizes
is estimated based on thesk from Quanrt. In his work the general vaporization equation
described in the preceding subsection is simplifiedltress two specific modes of vaporization;
internal diffusion control (vaporization from inclusions), and external diffusion control
(vaporization of organically assatéd minerals). The required dipium vapor pressure is
derived from a reductioreaction at thewsface of the inclusin. Thus, the mass of major species
vaporized during the combustion process can begieztiwith a reasonable degree of accuracy.
And, as these species form the bulk of the submicron aerosol, the particle size distribution can be
calculatedrom the mass of the major species that vaporize, the mass aii¢bestements is
neglected.

The self-preserving aerosol model can be used to asdctile size distributioH.
Initially, let us neglect scavenging of small particles by large (supeymarticles). The total
volume of the aerosol is constant and equal to the amourdtefial vaorized:

\% :va ash (3‘15)

where M, is the ash loading in gfm . The initial number of particles is therefore
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N(0)-—-
D,

(3-16)

where 03 is the initial particle diameter, which can be calculfited nuckation thery. The
initial diameter can be estimated to be one or two molecules since the saturation ratio is generally
large. The rate of decay of the number distribution is given by

3 [ekT]”
o [7]
The size distribution is calculatém N(t) and V as

sz}\v(n) (3-18)

dN_ 1

d 2

%]I 1V 116\ 11/6 (3-17)

n=

wheren = vN/V. The functiorf?(n) is tabulated by Friedlandé.

To make the calculation, wellllassume that nuehktion and coagulation happen on much
faster time scales than those on which the gas temperature is changing. That is, we will impose a
temperature-temperature history on the gas. For example, Flagan and Friedlander used the
following temperature history to sinaik the boiler: T 4800 K for 0.5 s, T = 1800 to 1400 K
over1ls,and T = 1400 to 425 K over 2 s.

Intermediate Mode

Unfortunately, CCSEM analysis does nobvide information on particles less than
approxinately 1 pm in the coal which may contribute to the sutbmni@erosol. This
intermediate mode is significantly larger than the fine nmdeuced by the vaporization-
condensation process. From measurements made 5% VIT we believe that this mode does exist.
The aerosol appears to consist of dense spheres which would suggest that the intermediate mode
is not the product of a vaporization-condensation procesgabhsthis mode may result from
fine minerals in the coal. These have been observed vid®TEM in sub-bituminous coals.

The approach taken here is somewhat simplified but does produce results that appear

realistic. However, some refinement will be needed. The size distribution of minerals as
measured by CCSEM from eleven coals of various rank were examined. When the mineral
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distribution is calculated the largest number of minerdtsusd in the smallest size bin of
approxinately 1 to2.5 pum in diarater.

3-81



The number of submicron minerals is appratied by assuming that the number
distribution (on a log Dp basis) is symmetric about the 1 to 2.5 pm size range. The sizes chosen
for the bins are 0.156 to 0.313, 0.313 to 0.625, and 0.625 to 1.25 um. If the number distribution
denoted by n(Dp) is the number of minerals between Dp and Dp + dDp then my assumption is
equivalent to

n(0.625) = n(1.25)
n(0.313) = n(2.5) (3-19)

n(0.156) = n(5)

The calculation was be performed &ach mineral class and then summed over all mineral
classes. The mass distributiop, n (Dp) is then caedfor each mineral class of the submicron
mode as

n.{Dp) = p(r/6)Dp°nDp) . (3-20)
The entire mass distribution is then renormalized.

Once the amount of submicron minerals has beenqtegllive assume that some
fraction of the ultrafine minerals are releaeun the char during devolatation and char
combustion. These minerals melt but do not otherwiseaicter™d, therefore, are assumed to
form ash particles of the same size and composition as the original minexaént Risual
evidencé suggests that ultrafine aluminosilicate minerals are efemtedoal particles during
devolatilization.

3.6.4 Phase Il Research Needs

As can be seen by the preceding disausdghe Engineering Model for Ash Formation
and the Submicron Ash Formation Submodel are powerful tools for predicting the size and
composition of the fly ash generatiedm burning a wide range of coals under various condi-
tions. However, to modify these codes to include the trace element partitioning, thi#ie is st
great deal of wrk that must be done in the Phase Il program. In short we need to:

° Explore trace element parization and partitioning for a wider range of coals and
combustion conditions to further vadite the transortlimitationsproposed from the
Phase | data

° Perform a series of time resolved experiments under wide range of combustion

conditions, using well chacterizedoyrite particles to derive the atjorium vapor
pressure of elements associated \pyhte
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If the oxidation state gbyrite is shown to play a major role in vaporization, disbs
discussed in the next report, these experiments should éateeto determine the effect
of oxidation on the equilibrium vapor pressure att elements associated with the
oxidized pyrite (including reducing conditions)

Perform experiments to exploreactive scavenging by specific minerals (e.g., arsenic
by calcium)

Measure trace element partitioning in larger systems to test models and epadpated
condensation mechanisms.
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4. CONCLUSIONS

In the last quarter the trace element concentration analysis was confipietes
Wyodak coal. This analysis irwdited that the concentrations of trace elements in this coal are
within the range of the bituminous coals in this program, with the exception of arsenic. The
concentrations of this element, and that of chromium, are much lower than was found in the
other program coals. The CCSEM analysis of this coaliailusto most low-sdlr western
sub-bituminous coals. The mineradtter is richer in kaolinite thatlite, has a low content of
basic minerals (calcite, pyrite, siderite), and contains minor amounts of a Ca-Al phosphate
mineral, which is most probably crarida. This coal appears a little unusual in that the quartz
content is quite high and is somewhat coarser in particle size than the other minerals. The illite
content is also quite significant. It is also likely that there is significant organic calcium that is
not measured by CCSEM.

Another major activity in the last quarter was analysis of tipprzation éta obtained
at MIT and PSI to determine the mechanisms governing trace elenpemizaéion in the
combustion zone. Significant differences in the particle temperature between the two facilities
cause substantial differences in the amoumtagh element observed in the subyoncash. In
addition, Mdssbauer analysis of ash from these twibtias (from the same coal) incited that
the fraction ofrion that was captured into the glass was essentially the same. Therefore, capture
of pyrite by dicatesduring the combustion process, did not cause the difference in observed
vaporization as was hypothesized earlier. It is more likely that the significant differences in the
particle temperatures between these facilities caused the observed differences.

Based on earlier work by Quahn, and Mims ét al, relations were derivetetonihe
the effect of measurable coal parameters, such as particle sizgavizatgon from burning coal
particles. If trace elementsp@rized from inclusions (such as pyrite) that had been exposed
during burnout, no coal particle size dependence would bectegh Vaorization from
inclusions inside the char, limited by interndfuBion in the char, yields a }/r dependence. For
cases where vaporizationlimited by external dfusion, such as vaporization from the char
matrix or ultrafine inclusions, a 3Ir dependence should be found. dttéofral vaorization
data obtainedfom combustion of the size and density segted coal samples in the MIT
droptube furace (DTF) were examined to determine which of these trends were present. For
almost all elements, the data suggest thporization occurs from included mineral particles.
This is especially true for those elements that were found to beatssbaith thepyrite.

A number of kinetic calculations were performed at MIT ébedmine the partitioning of
chlorine between HCl and £l at temperatures consistent with the backpass of a utility boiler.
Although equlibrium predictions suggest that a high fraction of the chlorine is presenj as CI,
which may enhance oxidation of vapor phase mercury, the kinetic calculaticragéntiat the
reaction is actually kineticallymited. In fact, only 1% of the chlorine was predicted to be
present at Gl at the APCD outlet.

A review has been condted of the organic emissions parts of finér-volume EPRI
Report TR-104614, "Ektric Uility Trace Substances SynthesipBe." In evaluating the
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results, some key questions have arisen pertaining to species screening procedures, mass
balances on sampling and analytical procedures, and the inclusion/exclusion of other organic
species not mentioned in the Report. We are now working with repa&iges of ERI, DOE,

and the contracting companies whafpemed the field emission studies to address these key
guestions and others that may arise.

Trace element emissions datpaged in the EPRI PISCES report and in the scientific
literature (period 1995-1996) were examined to identify gaps in our understanding of trace
element combustion chemistry. A comparison aférelement emissions with particulate
emissions indicated that emissions of most coal-derived trace elements, while generally low, did
not correate with a parameter ingoorating particite emissions and trace element concentra-
tions in the coals. This was particularly true of the elements mercury, selenium, and arsenic. A
correlation would be exgrtedfor all elements if @ce element capture efficiencies were only
dependent on particulate capture efficiencies. This finding suggestsrilamental dta on
trace element chemistry in combustion systems is needed to extrapolate the emissions findings of
the field studies noted above to a broader range of fuels and sources.

Experiments were performed at PSI to explore thecefif cooling rate on mercury
speciation. These experiments suggest that the coatieg typical of the enomizer region of
a power plant are sufficient to ‘freeze’ the oxidation of mercury -- leading to a higle&ofr of
mercury in the elemental form than would be prestifrom equlibrium. Additional data are
required, however, to further substargi thishypothesis.

A series of important experiments was completed at the self-sustained combustor at UA.
These experiments suggest that there is little change in the fraction of the ash in the submicron
sizes between the combustion zone and the convective sections. This is consistepiowzh-va
tion of bulk species (silica) that recondense in the combustion zone. Sizeatedjeegh samples
have been sent to MIT for analysis anitl e presented irakter rgoorts.

Finally, the mechanisms obtained from analysis of the PSI and MIT vaporization data
were used to determine the submodels required to develop TOPEM. Specifically, the framework
of the existing Engineering Model for Ash Formatio&F) was reviewed to etermine which
models were required, and how these models should be inatedorEMAF arrently allows
the user to calculate the supemait ash composition and size distribution based on the coal
properties and mineralogy, from CCSEM. Included in this model is a submodel tatatte!
burnout and temperature of coal particlesach size class. brder to predict ice element
partitioning a vaporization model must be coupled with the burnout model. This combination will
provide the amount afach trace element in thepaa phase at the exit of the flame zone. This
information wil then be fed into a model to predict the sulmmicash composition and
distribution. The fundamental submicron ash model has already been developed, but must be
modified to include condensation of the vapor phaseetelements, particularly to determine
what fraction of the trace element remains in th@ovghase.
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APPENDIX A

Experimental Particle Size Distribution Data

Pittsburgh #8 Runs 9-12

[llinois #6 Runs 1-7
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APPENDIX B

Data from PISCES Study Used to Determine Trace Element Capture Effiencies
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