TOXIC SUBSTANCES FROM COAL COMBUSTION --A COMPREHENSIVE ASSESSMENT

Quarterly Report No. 6

Reporting Start Date: 1 January 1997 Reporting End Date: 31 March 1997

Dr. L.E. Bool III and Dr. C.L. Senior Physical Sciences Inc.20 New England Business Center Andover, MA 01810-1077

Prof. F.Huggins, Prof. G.P. Huffman, Prof. N. Shah University of Kentucky Lexington, KY 40506-0059

> Prof. J.O.L. Wendt and Mr. W. Seames University of Arizona Tucson, AZ 85721

Prof. A.F. Sarofim, Prof. I. Olmez, and Mr. Taofang Zeng Massachusetts Institute of Technology Cambridge, MA 02139

> Ms. S.Crowley and Dr. R. Finkelman U.S. Geological Survey Reston, VA 22092

> > Prof. Joseph J. Helble University of Connecticut Storrs, CT

Prof. M.J. Wornat Princeton University Princeton, NJ

DOE Contract No. DE-AC22-95PC95101

U.S. DEPARTMENT OF ENERGY Pittsburgh Energy Technology Center P.O. Box 10940 Pittsburgh, PA 15236

IN-HOUSE COVER

April 1997

Report Title Page from Disk

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agent thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ABSTRACT

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UKy), the University of Connecticut, and Princeton University to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO_x combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). During the last quarter coal analysis was completed on the final program coal, from the Wyodak Seam of the Powder River Basin. Combustion testing continued, including data collected on the self-sustained combustor at UA. Data from PSI and MIT were used to identify the governing mechanisms for trace element vaporization from the program coals. Mercury speciation and measurements were continued. Review of the existing trace element and organics emissions literature was completed. And, model development was begun.

TABLE OF CONTENTS

Se	<u>ection</u>	<u>Page</u>
1.	EXECUTIVE SUMMARY	. 1-1
2.	INTRODUCTION AND PROGRAM OVERVIEW	. 2-1
3.	RESULTS AND DISCUSSION	. 3-1
	3.1 Program Management (PSI) 3.2 Coal Characterization (UKy, USGS, PSI) 3.2.1 Coal Mineralogy - Wyodak Coal 3.2.2 Trace Element Concentrations 3.2.3 Trace Element Forms of Occurrence in the Wyodak Coal 3.2.4 Trace Element Forms of Occurrence Summary for Bituminous Coals 3.3 Combustion Zone Transformations (PSI, MIT, UKy) 3.3.1 The Effect of Coal Oxidation on Trace Element Vaporization in the Combustion Zone 3.3.2 XAFS Analysis of Char and Ash Samples 3.3.3 Trace Element Vaporization in the Combustion Zone 3.4 Mechanisms for Trace Element Vaporization in the Combustion Zone 3.4 Post-Combustion Transformations (UA, PSI, UKy) 3.4.1 XAFS Investigation of Hg Captured on Activated Carbons 3.4.2 Mercury Capture by Residual Carbon 3.4.3 Mercury Speciation Measurements 3.4.4 Large Scale Combustion Experiments 3.4.5 Chlorine Partitioning 3.5 Literature Review (UConn, Princeton) 3.5.1 Review of the EPRI Field Study: Organic Emissions 3.5.2 Field Data Review: Inorganic Species Emissions (Trace Elements) 3.6 Toxics Partitioning Engineering Model (ToPEM) Development (PSI) 3.6.1 Description of Engineering Model 3.6.3 Submicron Ash Formation Submodel 3.6.4 Phase II Research Needs	3-3 3-3 3-3 3-5 3-10 3-12 3-17 3-19 3-29 3-31 3-31 3-31 3-42 3-43 3-50 3-70 3-74 3-76
4.	CONCLUSIONS	. 4-1
5.	REFERENCES	. 5-1
Αŀ	PPENDIX A. Experimental Particle Size Distribution Data	A-1
Αŀ	PPENDIX B. Data from PISCES Study Used to Determine Trace Element Capture Efficiencies	. B-1

LIST OF GRAPHICAL MATERIALS

Figure 1	<u>No.</u>	age
2-1	Project organization	2-4
3-1	Mössbauer spectrum of the Wyodak coal	
3-2	Least-squares fitted sulfur XANES spectrum of Raw Wyodak coal	
3-3	XANES spectra for chromium, arsenic, and selenium in Wyodak coal	
3-4	Mössbauer spectrum of Illinois #6 coal oxidized for 90 days	
3-5	Arsenic XANES spectrum of Illinois #6 coal oxidized for 90 days. Least-	
	squares fitted spectrum showing contributions due to As(V) and As(pyr) 3	-12
3-6	Zinc XANES spectra for low density Elkhorn/Hazard ash samples	
	generated by MIT 3	-16
3-7	Zinc XANES spectra for high density Elkhorn/Hazard ash samples	
	generated by MIT 3-	-17
3-8	Measured ash particle size distributions for Illinois No. 6	-18
3-9	Fractional vaporization of trace elements from bituminous coals	-18
3-10	Predicted peak char temperatures (Pittsburgh coal)	-20
3-11	Fraction antimony in submicron ash	
3-12	Fraction iron in submicron ash	
3-13	Fraction arsenic in submicron ash	
3-14	Schematic of trace element vaporization mechanisms	
3-15	Ratio of functional vaporization rates	
3-16	Ratio of fractional vaporization rates - high density cuts, temperature corrected 3	
3-17	Ratio of fractional vaporization rates - low density cuts, temperature corrected 3	-27
3-18	Ratio of fractional vaporization rates - high density cuts, not temperature	
	corrected	-28
3-19	Ratio of fractional vaporization rates - low density cuts, not temperature	
	corrected	
3-20	Equilibrium mercury speciation in flue gas as a function of temperature	
3-21	Steady state temperature profile for the Pittsburgh coal	
3-22	Steady state temperature profile for the Illinois No. 6 coal	
3-23	Ash particle size distributions for Illinois No. 6 and Pittsburgh coals 3	
3-24	Gas temperature and predicted chlorine partitioning in a typical utility boiler 3	
3-25	Distributino of benzene emissions factors for coal-fired units	-44
3-26	Contributions by individual substances to MEI inhalation carcinogenic risk,	
	median plant by fuel type	
3-27	Contributions of individual substances to MEI inhalation hazard index	
3-28	Antimony emissions data versus C _i PM/f _a	-55
3-29	Antimony emissions data plotted on log-log coordinates (empirical fit)	
3-30	Arsenic emissions data versus C _i PM/f _a	
3-31	Arsenic emissions data plotted on log-log coordinates (empirical fit)	
3-32	Beryllium emissions data versus C _i PM/f _a	
3-33	Beryllium emissions data plotted on log-log coordinates (empirical fit)	
3-34	Cadmium emissions data versus C ₁ PM/f _a	-60

LIST OF GRAPHICAL MATERIALS (Continued)

Figure N	<u>Vo.</u>	<u>Page</u>
3-35 3-36	Cadmium emissions data plotted on log-log coordinates (empirical fit) Chromium emissions versus C_iPM/f_a sorted according to rank and	3-60
	APCD types	3-61
3-37	Chromium emissions data versus C _i PM/f _a sorted according to coal rank	3-62
3-38	Chromium emissions data plotted on log-log coordinates (empirical fit)	3-62
3-39	Cobalt emissions data versus C _i PM/f _a	3-63
3-40	Lead emissions data versus C _i PM/f _a (full range of data)	3-64
3-41	Lead emissions data versus C _i PM/f _a (partial range of data)	3-64
3-42	Lead emisions data plotted on log-log coordinates (empirical fit)	3-65
3-43	Manganese emissions data versus C _i PM/f _a	
3-44	Manganese emissions data plotted on log-log coordinates (empirical fit)	
3-45	Mercury emissions data verus C _i PM/f _a	3-67
3-46	Mercury emissions data plotted on log-log coordinates (empirical fit)	3-67
3-47	Mercury emissions data verus C _i	3-68
3-48	Nickel emissions data versus C _i PM/f _a	3-69
3-49	Nickel emissions data plotted on log-log coordinates (empirical fit)	3-69
3-50	Selenium emissions data versus C _i PM/f _a	
3-51	Selenium emissions data plotted on log-log coordinates (empirical fit)	
3-52	Selenium emissions data versus C _i	
3-53	Flow diagram of EMAF including planned submodels for ToPEM	3-73

LIST OF TABLES

Table N	<u>Page</u>
3-1	CCSEM Analysis of Discrete Inorganic Minerals in Wyodak Coal
3-2	Trace Element Concentrations in Program Coals
3-3	Preliminary Forms of Occurrence for Program Coals
3-4	Sample Analysis Yet to be Completed at Kentucky
3-5	Mössbauer Analysis of Ash Samples from Pittsburgh Coal
3-6	Particle Cut-off Diameters for Berner Low Pressure Impactor
3-7	A Summary of the Phase I Test Runs
3-8	Conditions for Phase I Experiments
3-9	Summary of the Normalized Particle Size Distributions for Four Runs from Pittsburgh Coal
3-10	Summary of the Normalized Particle Size Distributions for Seven Runs from Illinois #6 Coal
3-11	Organic Substance Emission Factors for Coal-Fired Units, lb/10 ¹² Btu
3-12	Data Interpretation
3-13	Data Correlation with Eqs. (3-10) and (3-11)
3-14	Concusions Regarding Relative Need for Bench-Scale Investigations
3-15	Number of Datasets per Element
3-16	Correlation of Arsenic Datasets Using Eq. (3-10)

SECTION 1

EXECUTIVE SUMMARY

1. EXECUTIVE SUMMARY

The technical objectives of this project are:

- a) To identify the effect of the mode-of-occurrence of toxic elements in coal on the partitioning of these elements among vapor, submicron fume, and fly ash during the combustion of pulverized coal,
- b) To identify the mechanisms governing the post-vaporization interaction of toxic elements and major minerals or unburnt char,
- c) To determine the effect of combustion environment (i.e., fuel rich or fuel lean) on the partitioning of trace elements between vapor, submicron fume, and fly ash during the combustion of pulverized coal,
- d) To model the partitioning of toxic elements between various chemical species in the vapor phase and between the vapor phase and complex aluminosilicate melts,
- e) To develop a frame work for incorporating the results of the program into the Engineering Model for Ash Formation (EMAF).

A description of the work plan for accomplishing these objectives is presented in Section 2.1 of this report.

The work discussed in this report highlights the accomplishments of the sixth quarter of this program. These accomplishments include completion of standard coal analysis on the final Phase I program coal. The selective leaching work, to determine the forms of occurrence of various trace elements, was completed for the three bituminous coals. Data from the combustion zone experiments at PSI and MIT were analyzed to explore the observed differences between the two facilities and to determine the dominant mechanisms for trace element vaporization. The review of the existing trace element and organics emissions data from power plants was completed. Two major combustion experiments were completed on the self-sustained reactor at UA. Finally, work was begun to identify the models, and model parameters, required for ToPEM development, and how these models can be incorporated into the existing Engineering Model for Ash Formation (EMAF)

Specifically, in the last quarter the trace element concentration analysis was completed for the Wyodak coal. This analysis indicated that the concentrations of trace elements in this coal are within the range of the bituminous coals in this program, with the exception of arsenic. The concentration of this element, and that of chromium, is much lower than was found in the other program coals. The CCSEM analysis of this coal are similar to most low-sulfur western subbituminous coals. It is also likely that there is significant organic calcium that is not measured by CCSEM.

Another major activity in the last quarter was analysis of the vaporization data obtained at MIT and PSI to determine the mechanisms governing trace element vaporization in the combustion zone. These data suggested that significant differences in the particle temperature between the two facilities rather than capture of pyrite by silicates during the combustion process, which was hypothesized earlier, caused the differences in trace element vaporization. These data also suggested that for almost all elements, vaporization occurs from included mineral particles. This is especially true for those elements that were found to be associated with the pyrite.

A number of kinetic calculations were performed at MIT to determine the partitioning of chlorine between HCl and Cl₂ at temperatures and cooling rates consistent with the backpass of a utility boiler. These indicate that a much smaller fraction is found in the as Cl₂ than would be predicted from equilibrium.

Trace element and organic species emissions data reported in the EPRI PISCES report and in the scientific literature (period 1995-1996) were examined to identify gaps in our understanding of trace element combustion chemistry. The results suggest that fundamental data on trace element chemistry in combustion systems is needed to extrapolate the emissions findings of the field studies noted above to a broader range of fuels and sources.

Experiments were performed at PSI to explore the effect of cooling rate on mercury speciation. The data from these experiments suggest that the cooling rates typical of the economizer region of a power plant are sufficient to 'freeze' the oxidation of mercury -- leading to a higher fraction of mercury in the elemental form than would be predicted from equilibrium. Additional data are required, however, to further substantiate this hypothesis.

A series of important experiments was completed at the self-sustained combustor at UA. These experiments suggest that there is little change in the fraction of the ash in the submicron sizes between the combustion zone and the convective sections. This is consistent with vaporization of bulk species (silica) that recondense in the combustion zone. Size segregated ash samples have been sent to MIT for analysis and will be presented in later reports.

Finally, the mechanisms obtained from analysis of the PSI and MIT vaporization data were used to determine the submodels required to develop ToPEM. In order to predict trace element partitioning a vaporization model must be coupled with the existing burnout model. Additional models must be developed or modified to described trace element condensation on the existing submicron ash.

SECTION 2

INTRODUCTION AND PROGRAM OVERVIEW

2. INTRODUCTION AND PROGRAM OVERVIEW

Before electric utilities can plan or implement emissions minimization strategies for hazardous pollutants, they must have an accurate and site-specific means of predicting emissions in all effluent streams for the broad range of fuels and operating conditions commonly utilized. Development of a broadly applicable emissions model useful to utility planners first requires a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion (specifically in Phase I, As, Se, Cr, and possibly Hg). Physical Sciences Inc. (PSI) and its team members will achieve this objective through the development of an "Engineering Model" that accurately predicts the formation and partitioning of toxic species as a result of coal combustion. The "Toxics Partitioning Engineering Model" (ToPEM) will be applicable to all conditions including new fuels or blends, low-NO_x combustion systems, and new power systems being advanced by DOE in the Combustion 2000 program.

Based on a goal of developing and delivering this ToPEM model, a 5-year research program was proposed. This program is divided into a 2-year Phase I program and a 3-year Phase II program. The objective of the ongoing Phase I program is to develop an experimental and conceptual framework for the behavior of selected trace elements (arsenic, selenium, chromium, and mercury) in combustion systems. This Phase I objective will be achieved by a team of researchers from MIT, the University of Arizona (UA), the University of Kentucky (UKy), Princeton University, the University of Connecticut, and PSI. Model development and commercialization will be carried out by PSI.

Our general approach to the development of the ToPEM model is to break the process for toxic formation into sub-processes, each of which will be addressed by team members who are experts in the area. Ultimately, this will result in new sub-models which will be added to the existing Engineering Model for Ash Formation (EMAF) to create ToPEM. Figure 2-1 illustrates the relationship between the elements of the Phase I Work Breakdown Structure and the sub-processes. Each of the areas identified in the figure will be addressed in the Phase I program as described below.

Program Overview

Forms of Occurrence of Trace Elements in Coal

One of the most important questions to be answered in the program as a whole is whether the form of a particular element in the coal affects its form of emission at the end of the process. The answer to this question will determine the shape of the sub-models that must be developed in this program. Thus, a detailed understanding of the forms of individual trace elements in coal provides a foundation for much of the rest of the program. Key issues that will be addressed in Phase I are the specific mineral associations of individual elements and the relationship between trace metal form and "standard" analyses.

Because of the importance of elemental form (e.g., sulfate versus silicate mineral) on partitioning, it is critical that coals representing a broad range of elemental forms be examined in

Figure 2-1. Project organization.

this program. In Task 2 we will select and acquire a total of four coals for study in this program. The coals chosen will (1) represent a broad range of elemental forms of occurrence; (2) represent the major coal ranks and commercial coal seams used for pulverized coal (PCS power generation in the US); and (3) include "future fuels" such as blends and beneficiated coals. Once selected fresh coal samples will be acquired and distributed to team members. These samples will be subjected to ultimate, proximate, and ASTM ash analysis. Coal samples will be analyzed for trace element concentrations by INAA at the MIT Nuclear Reactor Laboratory (Task 5).

Advanced analytical techniques such as Mössbauer spectroscopy and CCSEM will be used by UKy (Task 3) to determine the major mineral species present in the program coals and the combustion generated ash. This analysis will provide important insight on the minerals present in the coal, how they interact during the combustion process, and how this interaction may affect the partitioning of toxic elements.

Another important issue is the form-of-occurrence of the trace elements in the coal. In this task the mode of occurrence of As, Cr, and Se will be determined by combining XAFS and the Mössbauer/CCSEM derived data discussed above. Hg will also be evaluated. Other less critical trace elements (Mn, Ni, Zn, Pb, U, etc.) may also be evaluated, especially if their

abundance is unusually high in any of the program coals. In addition, the form-of-occurrence of Cl and S in coals and chars will be investigated.

As a complement to the time-intensive XAFS analysis mentioned above, a unique protocol developed by USGS will be used in Task 4 to analyze selected raw coal, and size and density segregated coal, samples for trace element forms of occurrence. This protocol combines low temperature (< 200 °C) ashing, chemical analysis, x-ray diffraction, coal segregation via flotation, ammonium acetate and selected acid leaching, electron microbeam measurements, and low and moderate temperature heating tests to determine the forms of elements in coal. Because of the unique combination of existing testing and analytical facilities available at USGS, the work will be conducted at USGS laboratories. In addition, a relatively new technique, synchrotron radiation x-ray fluorescence microscopy (SRXFM), available at the National Synchrotron Light Source, will be tested for application in this area by UKy (Task 3). This technique uses x-ray fluorescence excited by a focussed synchrotron x-ray beam for imaging and compositional analysis. The x-ray yield obtained from a given element is orders of magnitude greater than that possible in an electron microscope or microprobe; hence, its sensitivity to trace element modes is much better, particularly for modes of occurrence involving highly dispersed elements

Combustion Zone Transformations

The effect of coal type and combustion conditions on the emission of the toxic trace elements will be investigated using the MIT laminar-flow drop tube reactor (Task 5). The fundamental mechanisms of toxic species formation and partitioning will be determined from careful examination of the ash formed under a variety of combustion conditions. Measurements will be made of the partitioning of the trace elements in the four coals as a function of temperature and equivalence ratio. These measurements will provide the baseline data on the fraction vaporized for the different elements to be studied in greater detail in Phase II of the program. Individual size-segregated ash samples (collected with a cascade impactor) will then be analyzed by INAA for total composition, Auger and STEM for surface composition, TEM and SEM for particle morphology, and possibly water washing and/or chemical leaching to determine the solubility of selected trace elements in the ash samples. Samples will also be submitted to UKy for chemical species analysis by XAFS and other techniques.

PSI will perform a detailed experimental study to determine the fundamental behavior of toxic species during combustion, including low NO_x conditions (Task 8). The work will use the PSI Entrained Flow Reactor (EFR) that has been used in many previous combustion studies on mineral matter transformations during pc combustion. This reactor is on a scale intermediate between the bench top apparatus to be used by other team members (UA, MIT) and the UA laboratory-scale combustor. Therefore the combustor will yield a better understanding of the overall behavior of toxic species while avoiding some of the confounding influences related to self-sustained combustion in the larger furnace. Utility-grind samples of the program coals will be burned under three different stoichiometric ratios, and two temperatures. Size segregated ash samples, and carbon filter samples will be collected. Ash samples collected during the combustion experiments will be analyzed by INAA and other techniques at MIT. By performing an elemental analysis on the size classified ash samples, we will identify the major mechanisms (e.g.,

vaporization and condensation) that govern the behavior of specific toxic species during the combustion process -- especially under reducing conditions.

Post-Combustion Transformations

The goal of this task is an increased understanding of the transformations of selected metals as the flue gases cool following the high temperature combustion zone. Experiments will be performed on two very different scales at UA. In addition, PSI will perform thermodynamic equilibrium calculations and make measurements of submicron aerosol size and composition from the large self-sustained combustor (Task 8 and 9).

At the small scale, UA will conduct experiments to explore the fundamental kinetics and mechanisms for metal vaporization and metal vapor-mineral interactions. Metal vapor-mineral interactions will be studied in this task using thermogravimetric analysis (TGA). The primary experimental parameters to be studied are temperature, gas composition (particularly the concentration of the metal species in the gas phase), the composition of the sorbent (char, silica, alumino-silicate, etc.), sorbent particle size and porosity, and exposure time (residence time). The primary properties that will be analyzed are the concentration of toxic trace metals in the particles as functions of time, the final chemical form of the trace metal, the leachability of the trace metal in the final particles, and if possible, the distribution of metal in the particles.

On a larger scale, UA will determine how both coal composition, detailed mineralogy and combustion conditions (including low NO_x conditions) govern the fate of toxic metals under practical time/temperature, self sustained, yet still aerodynamically well defined, pulverized coal combustion conditions. Other tasks focus, one at a time, on individual aspects of toxic metal partitioning. In this task, experiments are performed with time-temperature profiles similar to those in pc combustors. Therefore, the hypothesis derived from the smaller scale facilities can be tested under 'real world' conditions to determine the dominant mechanisms for trace element partitioning. Results from this portion of the project, together with the other portions, will lead to a quantitative model that will predict the fate of all toxic species as functions of coal quality and combustion configurations.

Select coals will be burned in the UA self-sustained combustor under premixed conditions where all the coal is mixed with all the air prior to combustion. The baseline tests will employ the naturally occurring temperature profile for each coal at a stoichiometric ratio of 1.2. Samples will be withdrawn at the exhaust port. Complete impactor samples will be collected and analyzed for each toxic metal (11 as listed in the CAAA plus U and Th) plus major elements. This will yield the particle size segregated toxic metal composition, which can be compared to data obtained form other tasks of this program. This data will then be examined to determine particle size dependence in order to infer possible mechanisms governing the fate of each metal.

Organic Emissions

Some organic emissions associated with coal combustors can have deleterious effects on the environment and/or human health. It is therefore very important (1) to know the identities, quantities, and toxicities of the organic species released from coal combustion systems and (2) to understand the chemical and physical processes that govern these species' formation, destruction, and release. Organic emissions data from the DOE Air Toxics and EPRI PISCES programs have the potential of benefitting the evaluation of the problem of organic emissions from coal combustion. In Task 7, Princeton University will conduct a critical review of the available field data, focusing on (1) the appropriateness, thoroughness, and reliability of the experimental techniques employed; (2) comparison with previously published emissions data; (3) the implications of the results; (4) similarly evaluating comparable data available from other countries, particularly Europe and Australia; review emerging technical literature on coal pyrolysis and combustion processes that affect organic emissions; (5) staying abreast of new results in the toxicity literature, relating to organic emissions from coal; and (6) communicating regularly with the other principal investigators of the air toxics team so that all will be cognizant of the ties between the organic and inorganic air toxics issues.

It is expected that the above efforts of analysis and literature review will lead to (1) comprehensive understanding of what is currently known about organic emissions from coal and (2) identification of the important questions that may still need to be addressed in future research.

Model Validation

Also under Task 7, the University of Connecticut will conduct a preliminary review of the relevant field data on inorganic emissions. In Phase I we will use the field data to focus the experimental program and to validate the models we will develop in Phase II. The Phase I effort focuses on data from the following sources:

- EPRI PISCES
- DOE Program
- VTT (Finland)
- KEMA (Netherlands).

Important issues to be addressed when reviewing these data include mass balance closure, methods of analysis and sample collection, effect of APCD, effect of bulk coal ash chemistry, particle size distribution, and speciation of Hg.

Model Development

PSI will use its silicate equilibrium model accounts for the *non-ideal* behavior of multi component silicate solutions in combination with its trace element database to calculate Cr and As partitioning. These results will be compared with laboratory data generated under Tasks 5.1, 6.1, 6.2, and 8, and inorganic species field data reviewed as part of Task 7. These calculations

may be repeated for Se and/or other elements if experimental data warrant interpretation of vaporization under conditions where silicate chemistry is dominant.

SECTION 3

RESULTS AND DISCUSSION

3. RESULTS AND DISCUSSION

3.1 <u>Program Management (PSI)</u>

During the last quarter PSI and ABB personnel met to discuss the data collected by ABB during their ESP testing experiments performed as part of another DoE-funded program. ABB burned the Wyodak coal, the same sample as used in this program, in their pilot scale combustor under a wide range of firing conditions. A series of size-segregated ash samples were collected with a Berner Low Pressure Impactor at the inlet and outlet of the pilot scale ESP. A number of these ash samples were selected for trace element analysis (NAA) to provide additional data on trace element partitioning during the combustion process. Analysis of these samples was begun in the last quarter and will be discussed in more detail in the next report.

3.2 Coal Characterization (UKy, USGS, PSI)

3.2.1 Coal Mineralogy - Wyodak Coal

The discrete mineralogy of the Wyodak coal has been determined using computer-controlled scanning electron microscopy (CCSEM). The data are summarized in Table 3-1. These data are not unlike data we have determined previously³ for other low-sulfur western subbituminous coals. The mineral matter is richer in kaolinite than illite, has a low content of basic minerals (calcite, pyrite, siderite), and contains minor amounts of a Ca-Al phosphate mineral, which is most probably crandallite. This coal appears a little unusual in that the quartz content is quite high and is somewhat coarser in particle size than the other minerals. The illite content is also quite significant.

From both the CCSEM data as well as the Mössbauer data discussed below, it is clear that the iron-bearing minerals are relatively insignificant in this coal. The principal basic element in the coal is likely to be carboxyl-bound calcium, which is not detected in the Coal Minerals Analysis method.

Iron in the Wyodak coal has been investigated using both Mössbauer and XAFS spectroscopy. In comparison to the other three coals, the Mössbauer spectrum (Figure 3-1) of the Wyodak coal is comparable in intensity to that of the Elkhorn/Hazard coal, but significantly weaker than those of the Pittsburgh #8 and Illinois #6 coals. The Mössbauer spectrum of the Wyodak coal is complex; at least four different iron-bearing species appear to be present. Furthermore, the Mössbauer absorptions for jarosite and Fe²⁺/clay are very broad, indicating additional complexity, such as the likely presence of further undefined contributions, such as the presence of FeOOH, or other sulfates or clay types. In view of such complexities, no attempt was made to analyze the Fe XAFS spectrum.

3.2.2 Trace Element Concentrations

The trace element analysis, by NAA, was completed for the Wyodak coal during the last quarter. These results, and the results from the other program coals, are shown in Table 3-2.

Table 3-1. CCSEM Analysis of Discrete Inorganic Minerals in Wyodak Coal

						AVE	RAGE	SPE	CIES	COM	POSI	rion	
#	MINERAL SPECIES	Na	Mg	Al	Si	P	S	Cl	K	Ca	Ti	Fe	Weight %
300	Quartz	0.	0.	0.	99.	0.	0.	0.	0.	0.	0.	0.	26.7
192	Kaolinite	0.	0.	47.	51.	0.	0.	0.	0.	1.	0.	0.	19.1
110	Illite	0.	0.	30.	54.	0.	0.	0.	10.	2.	1.	1.	8.0
3	K-Feldspar	0.	0.	15.	62.	0.	0.	0.	18.	2.	0.	2.	1.5
27	Montmorillonite	0.	0.	26.	62.	0.	2.	0.	0.	6.	2.	0.	2.2
301	Misc. Silicates	0.	0.	27.	61.	0.	2.	0.	3.	3.	1.	1.	29.0
4	Pyrite	0.	0.	0.	0.	0.	63.	0.	0.	0.	0.	35.	0.9
3	Ferrous Sulfate	0.	0.	0.	1.	0.	52.	0.	0.	2.	1.	43.	0.1
1	Chalcopyrite	0.	0.	0.	0.	0.	55.	0.	0.	0.	0.	22.	0.2
7	Misc. sulf.	0.	0.	0.	3.	0.	49.	0.	1.	6.	8.	31.	0.7
23	Misc. Phosphate	0.	0.	33.	2.	28.	0.	0.	0.	34.	1.	1.	2.5
5	Fe-rich	0.	0.	0.	0.	0.	1.	0.	0.	1.	0.	98.	0.4
1	Calcite	0.	0.	0.	0.	0.	0.	0.	0.2	100.	0.	0.	0.1
5	Mixed Carbonate	0.	0.	2.	3.	6.	1.	1.	0.	32.	2.	53.	0.3
4	Ti oxide	0.	0.	0.	0.	0.	0.	0.	0.	6.	93.	0.	0.4
4	Ti-rich	0.	0.	4.	17.	0.	5.	0.	0.	13.	60.	0.	0.3
1	Sil-sulf	0.	0.	18.	44.	0.	20.	0.	0.	17.	0.	0.	0.1
1	Silicate-Pyrite	0.	0.	28.	28.	0.	23.	0.	0.	11.	0.	10.	0.1
1	Alumina-rich	0.	0.1	L00.	0.	0.	0.	0.	0.	0.	0.	0.	0.1
129	Misc. Mixed	0.	0.	29.	28.	7.	7.	1.	1.	23.	2.	0.	7.4
1122	GRAND TOTALS	0.	0.	23.	63.	1.	2.	0.	2.	4.	1.	2.	100.0

WEIGHT DISTRIBUTION

Size Ranges (Microns)

MINERAL SPECIES	WT. %	0.1	2.5	5.0	10.	20.	40.	80.
		2.5	5.0	10.0	20.	40.	80.	500.
Quartz	26.7	8.	21.	16.	23.	12.	10.	10.
Kaolinite	19.1	24.	33.	16.	21.	4.	1.	0.
Illite	8.0	11.	17.	23.	36.	8.	5.	0.
Misc. Silicates	29.0	38.	35.	12.	9.	5.	2.	0.
Misc. Mixed	7.4	56.	27.	12.	5.	0.	0.	0.
MINOR MINERALS	9.9	42.	29.	14.	9.	5.	1.	0.
GRAND TOTALS	100.0	27.	28.	15.	17.	7.	4.	3.

Figure 3-1. Mössbauer spectrum of the Wyodak coal.

As can be seen from this table, most of the trace element concentrations in the Wyodak coal are within the range shown by the bituminous coals. One important exception to this trend is the arsenic. The concentration of this element in the Wyodak is much lower than in the other program coals. The chromium content is also much lower.

3.2.3 Trace Element Forms of Occurrence in the Wyodak Coal

During the last quarter, new XANES data were obtained at both the Stanford Synchrotron Radiation Laboratory (SSRL), Palo Alto, CA, and the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, NY, on S, Cl, Cr, Fe, As, and Se in the Wyodak program coal. Attempts to prepare a density 2.88 sink fraction from this coal by flotation in bromoform were not successful as no appreciable amount of material settled to the bottom in bromoform. However, a float and tailings fraction were prepared from this coal using liquid of specific gravity 1.5. In this report, we have concentrated on data pertaining to elemental modes of occurrence in the raw coal.

(1) Sulfur:

Sulfur K-edge XANES data for the Wyodak coal were collected at NSLS over the energy range from 100 eV below the S K-edge at 2,472 eV to about 300 eV above the edge. In comparison to the other three program coals, the sulfur K-edge spectrum was rather weak, which reflects the low sulfur content (0.22 wt% as received) for this coal. However, the data were amenable to a least-squares fitting analysis (Figure 3-2), which showed that most (> 90%) of the sulfur was present in unoxidized forms (thiophene and thioether forms), except for a minor amount of organic sulfur as sulfone and inorganic sulfur as sulfate. Pyritic sulfur was not detected by this method.

Table 3-2. Trace Element Concentrations in Program Coals

Element	Pittsburgh Concentration (ppm)	Elkhorn/Hazard Concentration (ppm)	Illinois No. 6 Concentration (ppm)	Wyodak Concentration (ppm)		
Na	Na 600 340		400	710		
Sc	1.8	3.9	2.2	1.8		
Cr	13	20	14	7		
Fe	8220	2970	13700	2700		
Co	2.5	6.2	.6	1.7		
Zn	17	18	70	33		
As	4.1	4	2.7	1.3		
Se	0.62	3.1	2.2	1.6		
Br	17	25	3.7	2.4		
Rb	8	5.1	13	3.6		
Sr	160	120	ND	ND		
Mo	0.85	4	4.9	1.7		
Cd	0.06	0.31	0.15	0.30		
Sb	0.26	1	0.38	0.23		
Cs	0.55	0.45	0.99	0.26		
Ba	110	130	52	370		
La	4.5	14	4.7	4.9		
Ce	8.8	27	9.3	8.7		
Sm	0.78	2.5	0.9	0.71		
Eu	0.2	0.37	0.19	0.18		
Yb	0.38	1.4	0.032	0.35		
Lu	0.063	0.24	0.0054	0.057		
Hf	0.44	1.1	0.056	ND		
Au (in ppb)	0.95	0.98	0.51	1.1		
Hg	0.11	0.13	0.22	0.19		
Th	1.2	4.3	0.095	1.7		
U	0.31	1.9	ND	ND		

Figure 3-2. Least-squares fitted sulfur XANES spectrum of Raw Wyodak coal.

(2) Chlorine:

Chlorine K-edge XANES data for the Wyodak coal were collected at NSLS over the energy range from 100 eV below the Cl K-edge at 2,825 eV to about 300 eV above the edge. In comparison to the other three program coals, the chlorine XANES spectrum (not shown) was extremely weak, which indicates an extremely low chlorine content (estimated to be < 0.01 wt%) for this coal, and no useful fine structure could be discerned from the spectrum to assess the form of occurrence.

(3) Chromium:

The best chromium K-edge XANES data for the Wyodak coal were obtained at beamline IV-3 at SSRL, but the data were of poor statistical quality in comparison to data obtained for chromium in the other program coals. We also attempted to get data at X-19A at NSLS, but the quality of the data were of even poorer quality. Hence, these data suggest that the chromium content of the Wyodak coal is quite low (estimated to be < 10 ppm). This is consistent with the 7 ppm concentration of chromium noted in Table 3-2. The Cr XANES spectrum (Figure 3-3) is also relatively broad and featureless, with just the hint of a small peak at the maximum. The spectrum suggests that at least one major form of occurrence of chromium in the Wyodak coal is not the same as those (principally CrOOH and Cr/illite) reported for the other three program coals. The features of the spectrum are more like those for a totally hydrated Cr³⁺ ion. The spectra of the Wyodak coal tailings and float fractions, measured at NSLS, showed little variation from that of the raw coal in either step-height or appearance. Our best interpretation of these data suggest that Cr is probably in solution as Cr³⁺ with only a weak connection to the coal matrix. Such an interpretation is compatible with isolated Cr³⁺ ions held at carboxyl sites on the coal matrix.

Figure 3-3. XANES spectra for chromium, arsenic, and selenium in Wyodak coal.

(4) Arsenic:

Arsenic data were obtained at both synchrotrons at beam-line X-18B at NSLS and at beam-line IV-3 at SSRL. The quality of the data were poor from both synchrotrons and hence indicate a low (< 3 ppm) concentration of arsenic in the Wyodak coal (again this is consistent with the concentration in Table 3-2). The spectra (Figure 3-3) resembled those of other low-arsenic subbituminous coals we have examined in the past,³ and are compatible with the presence of significant As³⁺ in oxygen coordination (most probably, organically bound via carboxyl groups) and some As⁵⁺, also in oxygen coordination as arsenate, formed by oxidation.

(5) Selenium:

The selenium XAFS data (Figure 3-3) for the Wyodak coal are of poorer quality (in part due to the fact that a less than desired number of scans were run) than that found for the relatively high selenium coals, Illinois #6 and Elkhorn/Hazard, examined previously. However, the data do indicate a content of Se that is comparable to the arsenic content in the coal and we estimate that there is perhaps as much as 2 ppm Se in this coal. Again, this estimate is consistent with the concentration shown in Table 3-2. The peak position is positive by about 1 eV with respect to an elemental Se standard. Owing to the poor quality of the spectrum, plus the fact that the spectra of the fractions have not been obtained, it is premature to make any conclusions at this time.

In summary, the XAFS data for the Wyodak coal indicate that the trace element concentrations are lower than those found for the other three coals. This observation, coupled with the fact that our XAFS database for low-rank coals is relatively meager, means that our conclusions on elemental modes of occurrence for the Wyodak coal are not nearly as firm as for the other three coals.

3.2.4 Trace Element Forms of Occurrence in Coal - Summary of Data for Program Coals

The forms of occurrence results for three trace elements are summarized below in Table 3-3. In almost all cases the results derived from XAFS (Kentucky) analysis are comparable to those from the leaching analysis (USGS). USGS data are not yet available for the Wyodak coal. Arsenic in the bituminous coals is primarily associated with the pyrite. The Elkhorn/Hazard coal contains an appreciable amount of oxidized arsenic. Preliminary XAFS results suggest that arsenic in the Wyodak coal is primarily organically associated. Selenium in all the bituminous coals is found in both the pyrite and organically associated forms. Chromium is found primarily as the hydrated form and in silicates for all coals.

3.3 Combustion Zone Transformations (PSI, MIT, UKy)

Work on the transformations of trace elements in the combustion zone is proceeding along two major fronts. In the first area investigators at PSI and UKy are working to determine how the oxidation state of pyrite and arsenic influence trace element vaporization in the combustion zone. As part of this area PSI is also addressing vaporization of trace elements under a wide

Table 3-3. Preliminary Forms of Occurrence for Program Coals

Coal	As	Se	Cr
Pittsburgh	USGS: predominantly pyrite	USGS: pyrite or organics	USGS: silicates, carbonates or sulfides
	Kentucky: predominantly pyrite		Kentucky: predominantly CrOOH, minor amount in illite
Illinois 6	USGS: predominantly pyrite	USGS: pyrite or organics	USGS: silicates and possibly organic
	Kentucky: predominantly pyrite	Kentucky: pyrite and organics	Kentucky: predominantly CrOOH, minor amount in illite
Elkhorn/Hazard	USGS: fine pyrites Kentucky: 60% pyrite;	USGS: predominantly organic	USGS: silicates and possibly organic
	40% arsenate	Kentucky: predominantly organic? not associated with pyrite, except "Heavy" fraction	Kentucky: CrOOH, illite, minor amount chromite
Wyodak	Kentucky: organic, ions in carboxyl groups		Kentucky: CrOOH, ions in carboxyl sites

range of combustion conditions. In the second area investigators at MIT are working with the size and density segregated coals and a droptube reactor to evaluate vaporization behavior of trace elements. This work is expanded upon at PSI where investigators are using the utility grind coal and the PSI entrained flow reactor (EFR) to determine the net vaporization of trace elements in the combustion zone.

3.3.1 The Effect of Coal Oxidation on Trace Element Vaporization in the Combustion Zone

One question to be addressed in this program is the effect of the form of occurrence of a given element on its partitioning between the vapor and condensed phases in the combustion zone. For example, arsenic has been reported to be quite variable in how it partitions between these phases during the combustion process. It has been proposed that the mode of occurrence of the arsenic in the coal causes the variability. To address this issue team members from PSI and UKy are evaluating the difference in the measured arsenic vaporization between a 'raw' coal and a weathered sample of that coal. Specifically, combustion tests were done with the PSI entrained flow reactor (EFR) to measure the vaporization of trace elements from the Illinois No. 6. As discussed in Table 3-3, arsenic in this coal is primarily substituted into the pyrite matrix. A sample of this coal was subsequently subjected to accelerated weathering as discussed in the last

Quarterly Report.⁴ XAFS of the weathered sample indicated that the primary form of arsenic was as the oxide (arsenate).

To determine the degree of oxidation of both the pyrite and the arsenic, the weathered coal sample was analyzed by Mössbauer and XAFS. The Mössbauer data are summarized in Figure 3-4. The data show that about 45% of the pyritic iron has been oxidized to a mixture of iron sulfates (principally szomolnokite FeSO₄.H₂O, jarosite, and a minor amount of ferric sulfate). Further, there has been relatively little change in the iron forms of occurrence between the sample taken at the end of 60 days' oxidation and that taken after 90 days. This observation may indicate that a portion of the pyrite is relatively easily oxidized, whereas the remainder is much more resistant to oxidation.

The arsenic XAFS spectrum for the sample oxidized at 50° C for 90 days is shown in Figure 3-5. By means of a least-squares fitting routine, the amount of As in different forms can be determined with an experimental error of less than $\pm 5\%$. For the spectral data shown in Figure 3-5, the least-squares fitting procedure indicated that about 57% of the arsenic was oxidized to arsenate, with the remaining 43% as unoxidized arsenical pyrite. This percentage of oxidized arsenic is greater than the percentage of oxidized iron (approximately 45%), estimated from the Mössbauer ratio of pyritic sulfur contents determined on unoxidized and 90 days' oxidized aliquots of the Illinois #6 coal. This observation would appear to support the hypothesis that the arsenic is largely associated with a fraction of the pyrite that is more susceptible to oxidation.

Figure 3-4. Mössbauer spectrum of Illinois #6 coal oxidized for 90 days.

Combustion tests with this coal were completed in the last quarter. The weathered coal was combusted in the PSI EFR at a stoichiometric ratio of 1.2, and a furnace setpoint of 1500 °C - identical to the baseline combustion tests performed with the unweathered coal.

Figure 3-5. Arsenic XANES spectrum of Illinois #6 coal oxidized for 90 days (top). Least-squares fitted spectrum showing contributions due to As(V) and As(pyr) (bottom).

Ash samples were withdrawn from the furnace exit with the nitrogen quench probe and passed through the Mark III cascade impactor for size segregation and collection. These ash samples were sent to MIT for NAA, and will be discussed in more detail in the next quarterly report.

3.3.2 XAFS Analysis of Char and Ash Samples

During the last quarter, almost 4 weeks of synchrotron beam-time were made available to UKy personnel. As a result many new data have been obtained on the various samples generated

in the project. A listing of the new data obtained over during the quarter is shown in Table 3-4. Since much of this experimental time came towards the end of the quarter, there has not been sufficient time to analyze the data completely. However, most of the data have been at least cursorily examined and some of the conclusions pertaining to Hg in activated carbons are presented later in this report. Some additional findings on selected ash samples are also presented below.

Table 3-4. Sample Analyses Yet to be Completed at Kentucky

		XAFS DATA Obtained									
		Zn	As	Cr	Hg	Se	S	Cl	I	Ca	Mössbaue r
(a) Samples fr	om T. Zeng, MIT										
KYH4563	Stage 1 Stage 2 Presep.	✓ ✓ ✓	<i>y y y</i>	> > >	1						
KYH90106	Stage 1 Stage 5 Presep.	✓ ✓ ✓	<i>y y y</i>	✓ ✓ ✓							
KYL4563	Stage 1 Stage 5 Presep.	✓ ✓ ✓	<i>y y y</i>	√ √ √							
KYL90106	Stage 1 Stage 5 Presep.	√ √ √	<i>y y y</i>	√ √ √	1						
PTH90106	Stage 1 Stage 5 Presep.	✓ ✓ ✓	<i>y y y</i>								
PTL90106	Stage 1 Stage 5 Presep.	√ √ √	<i>y y y</i>								
ILH90106	Stage 1 Stage 5 Presep.	✓ ✓ ✓	<i>y y y</i>								
ILL90106	Stage 1 Stage 5 Presep.	1 1	√ √ √								

Table 3-4. (Continued) Sample Analyses Yet to be Completed

	XAFS DATA Obtained									
	Zn	As	Cr	Hg	Se	S	Cl	Ι	Ca	Mössbaue r
In addition, the major minerals in six related samples are also being determined by the CCSEM method.										
(b) Ash samples from L. Bool, PSI										
EH-13	1	1	1		1					✓
I6-9	1	✓	1		1					✓
P8-23	1	1	1							✓
P8-44	1	1	1							✓
(c) Char samples from L. Bool, PSI										
Pittsburgh #8		✓	✓							
Illinois #6		1	1							
Elkhorn/Hazard		1	1							
Sulfur XANES data reported for these samples in previous reports. ²										
(d) Char samples from B. Wu, UA										
Pittsburgh #8				1						
Illinois #6				✓						
Char samples from PSI that were treated in Hg-containing flue gas (see also narrative)										
(e) Char samples from G. Dunham, UNDEERC										
Char, LAC-1				1		✓	1	✓	1	
Char, LAC-2				1		✓	✓	✓	✓	
Char, LAC-3				1		✓	✓	✓		
Char, LAC (-400)				1						
Char, SAC-1				1		✓		✓	✓	
Char, SAC-2				✓		✓		✓	1	
Char, SAC (-400)				✓						

Table 3-4. (Continued) Sample Analyses Yet to be Completed

	XAFS DATA Obtained									
	Zn	As	Cr	Hg	Se	S	Cl	Ι	Ca	Mössbaue r
Char, IAC-1				1		1		1		
Char, IAC-2				1		✓		1		
Char, IAC (-400)				✓						
Char, LAC-5				✓						
Char, LAC-6				1						
Char, LAC-7				1						
Char, LAC-8				✓						
Fly-Ash-1				1						
Fly-Ash-4				1						
Fly-Ash-5				✓						
See also narrative.										

(f) Samples from Radian Corporation

In addition, the following ash and char sorbent samples from Radian Corporation were also examined at the Hg edge and/or at the S, As, or Ca edges. All of these samples showed either no evidence for the presence of mercury (estimated Hg content: < 2 ppm) or showed a very weak Hg edge that exhibited no discernable fine structure (estimated Hg content: 2 < 5 ppm) relative to the signal/noise ratio.

	Hg Response	Other Elements
PCARB-1	No signal	S, Ca, As (strong)
COMP-1A	No signal	S (weak), Ca
COMP-2A	Very weak signal	S (weak), Ca
PASH-1	No signal	S, Ca
PASH-2		S, Ca, As (strong)
PFLY-1		S, Ca, As
REAG-1A		S, Ca
REAG-2A		S, Ca
REAG-3A		S, Ca
U-I-A	No signal	
U-I-B	Weak signal	
U-I-C	Weak signal	

Table 3-4. (Continued) Sample Analyses Yet to be Completed

	XAFS DATA Obtained									
	Zn	As	Cr	Hg	Se	S	Cl	Ι	Ca	Mössbaue r
U-II-A	Very weak signal									
U-II-B	Weak signal									
U-II-C	Weak signal									
U-II-D	Weak signal									

The Zn XAFS spectra (Figures 3-6 and 3-7) of ash from the Elkhorn/Hazard coal over the complete suite of size/density segregated samples from MIT have been examined and were found to show significant variation among the different types of samples, which no doubt reflects a wide variation in the zinc speciation in these ash samples. The ash samples were obtained using a cyclone preseparator followed by a cascade impactor at the outlet of MIT's drop tube furnace (DTF). The preseparator sample, therefore, contains the largest ash particles (approximately greater than $10 \, \mu m$). Some of the spectra, such as that from the ash captured in the impactor preseparator when the high density, 90 to $106 \, \mu m$, coal was burned (KYH90106 Presep), appear to arise from zinc sulfide. Other spectra, such as those from ash from the low density fractions of this coal (KYL4563 presep., KYL90106 presep.), appear to arise from zinc oxide. Spectra of samples from Stages 1 and 5 do not generally show these specific phases and further work is needed to explain the basis of their profiles. The Cr and As data do not appear to show such obvious changes.

Figure 3-6. Zinc XANES spectra for low density Elkhorn/Hazard ash samples generated by MIT.

Figure 3-7. Zinc XANES spectra for high density Elkhorn/Hazard ash samples generated by MIT.

3.3.3 Trace Element Vaporization in the Combustion Zone

During the past quarter the data analysis was completed on the baseline Illinois No. 6 experiments performed at PSI (1500 °C furnace setpoint, stoichiometric ratio of 1.2). The NAA analysis and the particle size distribution shown in Figure 3-8 were used to calculate the fraction of each element that had vaporized during the combustion process. This fraction vaporized was defined as the mass smaller than or equal to 0.80 μ m (Stage 6). Figure 3-9 shows the fractional vaporization for selected elements for the three bituminous coals under baseline conditions. In general, vaporization for all elements was lower in the Illinois No. 6 than in the other two program coals. This is interesting because several elements, specifically arsenic and selenium,

Figure 3-8. Measured ash particle size distributions for Illinois No. 6 (PSI EFR, 1500°C,SR=1.2).

Figure 3-9. Fractional vaporization of trace elements from bituminous coals (furnace setpoint 1500°C, SR=1.2).

were shown to be associated with reactive minerals (pyrite) or organically associated in this coal. Thus one would expect these elements to be easily vaporized from this coal. More work is required to explain these results.

3.3.4 *Mechanisms for Trace Element Vaporization in the Combustion Zone*

In order to interpret the vaporization data collected in this program, it is useful to think about potential mechanisms for trace element vaporization during combustion. By performing 'thought experiments' for each mechanism, and comparing our predicted volatilization rates to those observed in the experiments, we can determine which mechanisms require further attention in Phase II and which mechanisms can be neglected.

There are several general mechanisms that may affect the volatilization of a given species during the combustion process. These mechanisms include:

- 1. Unconstrained vaporization (from excluded mineral particles)
- 2. Constrained vaporization (from included mineral particles)
- 3. Vaporization from included mineral particles that have been exposed as part of burnout
- 4. Capture of the reacting mineral (and associated trace elements) in glassy phases.

First we want to look at the effect of pyrite capture by silicates to form glassy phases on trace element vaporization. Many of the trace elements of interest have been shown to be associated with pyrite. If vaporization of these elements is delayed until the pyrite particle is exposed during char burnout, capture of the pyrite into a glassy melt may interfere with trace element vaporization. If, on the other hand, vaporization begins before the particle is exposed, this mechanism can be neglected. The relative importance of this mechanism can be estimated by comparing the observed vaporization rates from the two facilities, and the fraction of iron captured in the glassy phase. For example, since the MIT data show consistently higher vaporization rates than the PSI data for the same coal, we would expect a *lower* fraction of iron captured in the glassy phase (i.e., less interference from the glassy melt). A comparison of Mössbauer data collected during a previous DoE program is shown in Table 3-5. In one case a less than 75 µm size split of the Pittsburgh coal, from the same mine as the Pittsburgh coal in this program, was burned under at 20% oxygen in the MIT drop tube furnace (DTF). In the other case a utility grind sample of the same coal was burned in the PSI EFR at a stoichiometric ratio of 1.2. The MIT data show some unreacted pyrite in the ash, which may indicate that the residence time was too short to react all the pyrite. However, the PSI data show about the same

Table 3-5. Mössbauer Analysis of Ash Samples from Pittsburgh Coal (% Iron in Each Phase)

Species	MIT DTF	PSI EFR			
$Fe_{(1-x)}S$	9	0			
Magnetite	27	44			
Fe ⁺² glass	22	39			
Fe ⁺³ glass	42	17			

amount of iron in the glassy phase as the MIT data. This would indicate that the coalescence of pyrite with other minerals to form a glassy phase proceeds at about the same rate in the two systems. Since the observed vaporization rates are so different, capture mechanism number 4 can be neglected. This, in turn, suggests that vaporization may begin much earlier in the char burnout process while the pyrite grains are still encapsulated by the char matrix.

Earlier work on the vaporization of inorganics from coal during combustion ^{1,2} has indicated that vaporization is strongly dependent on particle temperature. Based on this observation, a likely explanation for the differences in observed volatilities may be due to differences in particle temperatures between the two facilities. To evaluate this effect, an existing char burnout model was used to estimate the particle temperature as a function of time for different sized char particles in each facility. The Pittsburgh coal was used as a representative coal in these simulations. As can be seen from Figure 3-10 the peak particle temperatures in the MIT DTF are much higher than in the PSI EFR. This result suggests that the differences in observed trace element vaporization are related to the differences in temperature.

Figure 3-10. Predicted peak char temperatures (Pittsburgh coal).

Although these data indicate a strong temperature dependence on vaporization, the exact vaporization mechanism is still unclear. The lack of correlation between the fraction vaporized and the fraction of iron in the glass demonstrated above suggests that vaporization begins early in the char burnout process. Thus we would expect trace element vaporization from inclusions to be limited by diffusion through the pores in the char (internal diffusion control), or diffusion through the char boundary layer (external diffusion control). If internal diffusion is important, we might expect to see more vaporization from the high density fraction of the MIT coal samples than the low density fraction, because internal diffusion resistance might be higher for the low density coal particles. The plots shown in Figures 3-11 through 3-13 express the percentage of selected elements appearing in the submicron ash for the three bituminous coals. The MIT data are plotted next to the PSI data for SR=1.2 and SR=1.0 or 0.9. In general, the high density fraction does show a higher fraction vaporized than the low density fraction.

Figure 3-11. Fraction antimony in submicron ash; (top) 90 to 106 micron particles, (bottom) 45 to 63 micron particles.

Figure 3-12. Fraction iron in submicron ash; (top) 90 to 106 micron particles, (bottom) 45 to 63 micron particles.

Figure 3-13. Fraction arsenic in submicron ash; (top) 90 to 106 micron particles, (bottom) 45 to 63 micron particles.

Another way to determine which mechanism might be controlling, external or internal diffusion control, is to look at the dependence of each mechanism on such parameters as char particle radius. Quann, in his doctoral thesis, outlined several limiting cases for vaporization from a burning char particle. These cases, and their expected particle size dependence, are discussed in detail below.

For the case where we have vaporization from both internal inclusions and exposed inclusions on the char surface (see Figure 3-14), Quann¹ gives:

$$N_{t_b} = N_I^0 + \pi + c + r_i + t_b \left[\frac{2}{5} D_e x_m^e + \frac{3}{5} D_m x_m^{es} \right]$$
 (3-1)

and:

$$N_{\rm I}^{0} = \theta \, \frac{r_0^3}{r_{\rm i}^3} \tag{3-2}$$

where:

 N_{tb} = is the moles of metal vaporized per gram coal burned

 N_1^0 = number of inclusions in the char particle

c = molar concentration $r_i = inclusion radius$

 r_0 = char radius t_b = burnout time

 D_e = effective diffusivity D_m = metal diffusivity

 x_m^e = equilibrium mole fraction metal at internal inclusion surface x_m^{es} = equilibrium mole fraction metal at surface of exposed inclusion

 θ = volume ratio of inclusions.

Based on these equations, the parameter derived by Mims et al.² can be derived (see Ref. 2 for derivation).

$$\frac{f_{v}}{t_{b}} = \frac{9 \pi \theta c}{r_{i}^{2} C_{o} \rho_{p}} \left[\frac{r_{i} D_{e} x_{m}}{2 r_{o} (3\theta)^{1/2}} + \frac{D_{m} x_{m}^{es}}{5} \right]$$
(3-3)

where $C_{\rm o}$ is the concentration of the metal in the coal, ρ_p is the density of the char particle, and $f_{\rm v}$ is the fraction of the element vaporized during the combustion process. For vaporization from the external particles we assume $D_e << D_m$ then:

$$\frac{f_{v}}{t_{b}} \sim \frac{1}{r_{i}^{2}} \tag{3-4}$$

This indicates that the parameter is *independent* of char radius.

Figure 3-14. Schematic of trace element vaporization mechanisms.

For the limit where internal diffusion is limiting, the effective diffusivity term in Eq. (3-3) is much higher than the metal diffusion term. Thus:

$$\frac{f_{v}}{t_{b}} \sim \frac{1}{r_{o}} \tag{3-5}$$

For external diffusion control, as would occur with very fine inclusions or organically associated elements, we have:²

$$\frac{f_{v}}{t_{b}} = \frac{4 D_{m} c x_{s}}{C_{o} r_{o}^{2}}$$
 (3-6)

Thus, when external diffusion is controlling we would expect to see a $1/r_{\rm o}^2$ dependence.

These equations suggest that if we can determine the effect of particle size on the fractional vaporization rate (f_v/t_b) we can begin to understand the mechanisms that drive trace element vaporization. In Figures 3-15 through 3-19 we plot the ratio of this parameter for two different particle sizes. f_v was calculated from the percentage of ash in submicron particles. t_b was estimated from calculated particle combustion histories. Also plotted is the behavior we would expect for either a $1/r_p$ or $1/r_p^2$ dependence. For example, the ratio of (f_v/t_b) for two different size ranges as measured by Mims² for several elements. These data have been corrected for the effect of particle temperature. As we can see, all of the elements measured by Mims et al. from a lignite coal demonstrated a $1/r_p^2$ dependence - suggesting that these elements either vaporized from very fine inclusions or from the carbon matrix. Unfortunately, the forms of occurrence of these elements in the coal were not measured in that program so we can not link the observed vaporization behavior with the forms of occurrence in the coal.

The data presented in Figures 3-16 and 3-17 were obtained by MIT in this program (20% oxygen, 1500°C). These data were corrected for the temperature difference due to differences in particle temperature (see Figure 3-10) using the temperature dependencies noted by Mims et al. 2 A $1/r_{\rm p}$ dependence was noted for sodium in almost all cases. This finding is interesting as it suggests that sodium is vaporizing from discrete minerals contained within the char -- an unusual vaporization mechanism for this element. More forms of occurrence of this element in the coals is required to better understand these results. The data shown in Figures 3-16 and 3-17 also suggest that the dominant vaporization mechanism for iron vaporization is different between the two density classes. In the high density class there seems to be a $1/r_{\rm p}^2$ dependence, whereas a $1/r_{\rm p}$ was noted

Figure 3-15. Ratio of functional vaporization rates - Mims et al.² data for Montana Lignite.

Figure 3-16. Ratio of fractional vaporization rates - high density cuts, temperature corrected (MIT DTF, 20% O₂, 1500°C).

Figure 3-17. Ratio of fractional vaporization rates - low density cuts, temperature corrected (MIT DTF, 20% O₂, 1500°C).

Figure 3-18. Ratio of fractional vaporization rates - high density cuts, not temperature corrected (MIT DTF, 20% O₂, 1500°C).

Figure 3-19. Ratio of fractional vaporization rates - low density cuts, not temperature corrected (MIT DTF, 20% O_2 , 1500°C).

for the low density case. The $1/r_p^2$ dependence may be related to extraneous pyrite grains in the high density fraction -- vaporization from which would be limited by external diffusion. Iron may vaporize from the low density fraction by a reduction type mechanism noted by Quann. The vaporization mechanism for zinc also seems to change between the different coals and density fractions, however more information on the forms of zinc in these fractions is required to explain these differences. In general, these data suggest that arsenic predominantly vaporizes from included pyrite. The only exception seems to be the low density fraction of the Pittsburgh coal. It is possible that the observed $1/r_p^2$ dependence for this sample may be caused by arsenic vaporization from fine pyrite grains in the coal. However, until the CCSEM analysis of this density split is complete, this mechanism is fairly speculative.

Figures 3-18 and 3-19 show the ratio of fractional vaporization rates for a number of elements. These data were not corrected for the difference in peak particle temperature associated with the particle size. These data suggest that most of the elements not discussed above, scandium, chromium, antimony, and cobalt also show a $1/r_p$ dependence, and therefore probably vaporize from discrete minerals.

3.4 <u>Post-Combustion Transformations (UA, PSI, UKy)</u>

Trace element transformations in the region between the furnace exit and the ESP play a critical role in determining the partitioning of that element between flyash captured in the ESP and vapors emitted from the stack. In this program we are investigating these post-combustion transformations on two different scales. Mercury capture by residual carbon, shown to be an important mechanism for mercury retention in the ash, is being evaluated in a small benchtop facility. Samples from other groups exploring mercury uptake by activated carbon were examined by XAFS to determine the forms of mercury that are retained in the char. Other interactions, such as condensation and reactive scavenging, between vaporized species and ash particles are being investigated using the larger self-sustained combustor at UA. Mercury speciation in flue gas is being evaluated in the PSI EFR. Finally, kinetic calculations are being performed at MIT to determine the partitioning of chlorine between HCL and Cl₂.

3.4.1 XAFS Investigation of Hg Captured on Activated Carbons

(1) UNDEERC Samples LAC-1,2,3, SAC-1,2, IAC-1,2:

The rationale for the investigation of these seven samples and preliminary Hg XAFS data obtained for this set of activated carbon samples provided by Grant Dunham of the University of North Dakota Energy and Environmental Research Center were described in the previous Quarterly Report.⁴ In the current quarter, new XAFS data have been obtained for these samples at the S, Cl, Ca K edges and the I L_{III} edge. A brief discussion of the principal results is presented on an element by element basis. However, it should be noted that the analysis of these spectra has not yet been fully completed; hence, the conclusions presented here should be regarded as preliminary.

Iodine: As expected, XAFS spectroscopy showed that iodine was present only in the two IAC samples and absent in all other samples. The step-height for IAC-2 was about four to five times as large as that for IAC-1 sample exposed to the flue gas, perhaps indicating that iodine was partially volatilized during exposure to flue gas at a temperature of about 225°F. The closest match to the iodine L_{III}-edge XANES spectra of the IAC chars was exhibited by elemental iodine; however, the spectra were not identical.

Sulfur: Sulfur XAFS spectroscopy showed that sulfur was present in all samples, except for the two IAC samples. In the LAC samples, sulfur was found to be present predominantly as sulfate, whereas in the SAC samples, sulfur was present predominantly in elemental form. The data suggest that sulfur present in the flue gas is not significantly captured by the activated carbons.

Chlorine: Chlorine was present in significant amounts in the LAC samples exposed to the flue gas. On the basis of the chlorine K-edge step-height, the Cl contents are estimated to be as follows: LAC-1 > LAC-2 >> LAC-3. It should be noted that the IAC and SAC samples have yet to be examined at the chlorine edge. However, the Cl XANES data appear to suggest that chlorine can be captured efficiently from flue gas as HCl. Hence, reaction between Cl and Hg may occur readily at the char surface. Certainly, the Hg XAFS data for the LAC samples are compatible with Hg-Cl bonding; however, the discrimination between Hg-Cl and Hg-S bonding is quite subtle in XAFS spectroscopy and further work is needed to resolve this point.

Calcium: Calcium is present in significant amounts in both SAC and LAC samples; however, no IAC samples have been examined. Ca XANES spectra are different for the LAC and SAC sample sets. The Ca XANES spectra of the two LAC samples are closely similar and suggest Ca as Ca sulfate; those of the two SAC samples are also similar, but are more suggestive of Ca as carboxyl-bound species.

(2) Hg XAFS Spectroscopy of New UNDEERC Activated Carbon Samples:

During the quarter, Hg XAFS data were obtained for a number of new activated carbon samples from UNDEERC. These new samples included a set of three samples exposed to the simulated flue gas containing Hg in the form of mercurous chloride (HgC ℓ_2), and a set of four LAC samples (LAC-5, 6, 7, 8) prepared under different conditions to the set of three samples (LAC-1, 2, 3) examined previously. Only a preliminary evaluation of the data will be given here as the analysis of the Hg XAFS data has only just commenced.

The Hg XANES spectra of the three samples [LAC (-400), SAC (-400), IAC (-400)] exposed to the flue gas containing mercurous chloride appear similar to the spectra obtained previously for the related samples (LAC-1, 2, SAC-1, IAC-1) exposed to the flue gas containing elemental Hg. Similar trends in the XANES data (e.g., separation of the two derivative peaks) to those seen previously have been noted for the current set of three samples.

Except, possibly for sample LAC-8, the Hg XANES spectra of the four new LAC samples are similar to the spectra of samples LAC-1 and LAC-2 examined previously. However, there is some significant variation in the step-height that will need to be evaluated.

(3) XAFS spectroscopy of Hg in Samples from UA:

The samples of PSI char exposed to mercury in experiments at UA have also been examined briefly. These spectra are not unlike those observed for the UNDEERC LAC-1,2 chars discussed in the previous Quarterly Report.⁴ Further work will be performed on these samples.

3.4.2 Mercury Capture by Residual Carbon

During the last quarter mercury capture experiments were performed with chars from three of the program coals, the Illinois No. 6, the Pittsburgh, and the Wyodak. The samples were sent to a commercial laboratory for analysis. The results were obtained late in the last quarter, and are currently being analyzed. These will be discussed in detail in the next report.

3.4.3 Mercury Speciation Measurements

Mercury represents one of the most difficult trace elements to control in utility boilers. Although most researchers agree that mercury in coal vaporizes completely in the combustion zone of a boiler, predicting emissions of mercury has been problematic because the transformations of mercury in the post-combustion gases are not well understood. Mercury leaves the combustion zone in the form of elemental mercury in the gas phase. Some oxidation of mercury occurs as the flue gas cools. At the air heater exit, where the flue gas typically enters the pollution control train, mercury can be found in the gas phase as elemental mercury (Hg⁰) or oxidized mercury species (Hg⁺²) or in the particulate phase.

The efficiency of mercury removal by air pollution control devices (APCDs) such as electrostatic precipitators (ESPs) or flue gas desulfurization (FGD) units depends on the form (gas versus particulate) and speciation (Hg⁰ versus Hg⁺²). For example, oxidized mercury is more likely to be captured by residual carbon in ash or to be removed in an FGD unit, while elemental mercury is more likely to escape the air pollution control devices and be emitted to the atmosphere. Understanding the *speciation* of mercury in the post-combustion zone is critical to predicting its final form of emission (solid, liquid, or gaseous).

In Quarterly No. 4 from this program, we hypothesized that the oxidation of mercury is frozen in coal combustion flue gas is frozen below some temperature between 750 to 900 K (900 to 1200°F). Equilibrium calculations suggest that mercury is entirely in the elemental form at the high temperatures associated with the combustion zone. As the gas cools equilibrium predicts that the mercury oxidizes. However, as discussed in Quarterly Report No. 4 some field data suggests that the mercury oxidation is 'frozen' at some temperature around 850 K. To test whether oxidation is indeed frozen at some temperature, a series of experiments were completed to measure the mercury speciation in real flue gas at a range of temperatures.

For these experiments the Illinois No. 6 coal was combusted under fuel lean conditions (stoichiometric ratio of 1.2). Flue gas was removed at the bottom of the reactor with either an unheated stainless steel tube or an unheated quartz tube. At the exit of the tube the sample was quenched with nitrogen. The temperature profile along the tube, including the quench point, was measured as part of the experimental protocol. Another set of experiments were performed using the standard nitrogen quench probe. By collecting data with the quench probe in the furnace, and at various other temperatures we hoped to test whether mercury speciation is, in fact, 'frozen' at some temperature. These mercury speciation measurements utilized the Ontario-Hydro method. This method was identified by a FETC-EPRI-UNDEERC team as one of the more reliable methods for measuring mercury speciation in flue gas.

Of the data collected, only two sets of samples yielded useable results. All of the samples using the quartz tube were found to have mercury concentrations in the impinger trains below the detection limit. The reason for this is unclear, as the duration of the runs was long enough to achieve concentrations several times higher than the detection limit. It is possible that leaks around the various metal-quartz seals may have caused dilution of the samples.

One sample yielded results, although with a low mass closure (32%). This sample was collected with the nitrogen quench probe and should represent the speciation in the furnace. Analysis of the particulate and the various impingers suggested that approximately 50% of the mercury was associated with the particulate. The gas phase mercury was approximately 66% elemental and 34% oxidized. The gas temperature at this location has been measured to be approximately 1300 K (1900°F) with the water-cooled probe installed.

The second sample that yielded good results was collected with a stainless steel tube. These data indicated that approximately 16% of the mercury was retained in the ash at 383 K. The measured cooling rate in this tube was approximately 200 k/s, which is comparable to the economizer in a power plant, where most of the mercury oxidation is predicted to occur. The vapor phase mercury was approximately 72% elemental mercury and 28% oxidized mercury. Mass closure for this experiment was approximately 100%.

Equilibrium predictions for this coal, shown in Figure 3-20, suggest that we should have found more elemental mercury at the high temperatures, and much less elemental mercury at the lower temperatures. Although the data at high temperatures should be considered preliminary, due to the low mass closure, the combination of the two data point suggest that the fraction of oxidized mercury is similar between the two samples -- contradicting the equilibrium predictions. Since the cooling rate of the low-temperature data is comparable to that found in the region of interest in a utility boiler, these data support the hypothesis that mercury oxidation is frozen due to kinetic effects.

Although these experiments provided some promising results, there exists the possibility that the sampling technique (i.e., the stainless steel tube) may have influenced the mercury speciation. In addition, much more work must be done to better understand the conditions required to 'freeze' mercury oxidation. These experiments are planned for Phase II of this program.

Figure 3-20. Equilibrium mercury speciation in flue gas as a function of temperature (Illinois No. 6 coal).

3.4.4 *Large Scale Combustion Experiments*

Laboratory Scale Combustor and Sampling Apparatus

The furnace used in these experiments is a 6 m (20 ft) long downfired combustor, with a 15 cm (6 in.) inner diameter. Sample ports are located at approximately 30.5 cm (1 ft) intervals along the length of the furnace. The furnace was designed to simulate the time/temperature histories and complex particle interactions of commercial-scale combustors while still providing a flow stream which is sufficiently well characterized to allow the mechanisms of trace element transformations and partitioning to be studied.

The combustor was fired with either natural gas or coal. Gas and particulate samples were collected along the length of the furnace using the systems described later in this section. When the particle laden flue gas exited the furnace it was routed through a baghouse to remove entrained particulate. The gas was then cooled to room temperature, combined with the purge air, chemically filtered, and discharged to the atmosphere. Condensed water was removed in a series of knockout pots. Gas flows through the system are controlled using two induced draft air blowers operating in series.

The temperature profile in the furnace was allowed to evolve naturally based on the coal feed rate, air feed rate, and pressure profile in the furnace. There are two fixed K-type thermocouples installed in the furnace. The post-combustion thermocouple is located 320 cm below the burner. The exhaust-point thermocouple is located below the final sample port, roughly 600 cm below the burner (this thermocouple was inoperable during these experiments).

The temperature profile for the furnace was measured using a portable thermocouple probe. This probe consisted of a type R thermocouple encased in a ceramic shell. The thermocouple bead extended approximately 6 mm beyond the end of the ceramic shell and ended at the centerline of the furnace.

A portable gas sampling probe was used to measure the gas profile in the furnace. Flue gas was drawn through a water-cooled stainless steel tube from the centerline of the furnace. To remove entrained water and particulate, the gas was then routed through a series of filters plus a cooler and additional filters. The dry gas stream was analyzed for CO, CO_2 , NO_x , and O_2 . CO and CO_2 were analyzed using Beckman Model 864 nondispersive infrared analyzers. NO_x was determined using a Thermo Electron Model 10A chemiluminescent analyzer (a Model 300 molybdenum converter was utilized). Oxygen was analyzed using a Beckman Model F3 paramagnetic analyzer.

Particle sampling was carried out using a portable, water-cooled, stainless steel, aspirated isokinetic sampling probe. This probe was used to probe extract samples from the centerline of the furnace. Extracted samples were routed through a Berner Low Pressure Impactor (BLPI) using a metered dilution nitrogen stream and a vacuum pump. Isokinetic sampling was accomplished by adjusting the dilution flow rate at a near constant total flow rate. A slipstream of gas from the particulate sampling system was also routed to the NO_x analyzer to verify the dilution rate during particulate sampling.

The BLPI consists of 11 collection plates designed to collect particles of decreasing size on each plate. A listing of the size distribution for the BLPI plates is shown in Table 3-6. For accurate results, the BLPI must be utilized in two separate configurations. For collection of small particles, those below 0.337 microns, a cyclone is used on the inlet of the impactor to collect the larger particles. This allows the sampling time to be extended long enough to collect a significantly large sample of particulate. When large particles are to be collected, the cyclone is removed and a shorter sample time is used.

Table 3-6. Particle Cut-off Diameters for Berner Low Pressure Impactor

Impactor Plate Number	Cut-off Diameter (microns)
11	15.7
10	7.33
9	3.77
8	1.98
7	0.973
6	0.535
5	0.337
4	0.168
3	0.0926
2	0.0636
1	0.0324

The collection plates are lined with a 0.4 µm thick polycarbonate membrane (Poretics Products) coated with a high purity grease. When operating with the cyclone, Plates 1 to 6 contained membranes while Plates 7 to 11 were lined with grease-coated aluminum foil. Similarly, when the cyclone was not utilized, Plates 6 to 11 contained membranes while Plates 1 to 5 were lined with grease-coated aluminum foil.

Experimental Procedure

At the beginning of each experiment the furnace was preheated by burning natural gas for an extended period of time. The maximum sustainable gas feed rate was used in this preheat period. Typically, the furnace was allowed to warm up overnight and the temperature in the furnace at steady-state was related to the gas rate used in the preheat step. During preheat, exhaust gas was routed through a bypass line instead of through the baghouse. Once the preheat period was over, the baghouse was commissioned and allowed to warm-up until the gas temperature in the baghouse was approximately 100 °C. This warm-up was normally accomplished in 15 min or less.

Once the furnace was hot enough to ignite the coal, the natural gas was turned off and the coal flow started. The temperature of the fixed post-combustion zone thermocouple was measured continuously during the coal feed warm-up period. The time that was required for furnace warm-up varied depending on how hot the furnace was at the time of switch over from gas to coal. A typical warm-up time was 1.5 to 3 h. During the coal feed warm-up period, the gas sampling and analysis system was commissioned. Each of the analyzers was calibrated with a certified calibration test prior to gas data collection.

After the gas sampling system was commissioned, the O_2 and CO_2 readings from Port 4b were then used to adjust the main air flow rate in order to set the stoichiometric ratio at 1.2. Port 4b is just below the combustion zone. It was our intention to adjust the exhaust gas blower speed to maintain a neutral pressure at Port 4b. It turns out that the exhaust blower speed was set to maximum throughout the experiment. Until slag buildup became significant, this speed corresponded to a near neutral pressure at Port 4b. Another reason for using Port 4b is that there is one appreciable crack in the furnace wall. It is located at the floor joint approximately 40 cm below Port 4b. Therefore readings from Port 5, which is below the floor joint, would not give a true reading of the excess oxygen content in the furnace.

In general, two sets of samples were obtained during each test run. Each set of samples consisted of a 'cyclone run' and a 'no-cyclone run.' The 'cyclone run' uses a cyclone in conjunction with the BLPI to allow more sample to be collected in the small size ranges. The 'no-cyclone run' is performed without the cyclone to measure the particle size distribution of the larger particles. Before sampling, the gas sampling probe was inserted into Port 4b and the main air rate was adjusted to insure stoichiometric combustion conditions. This final air flow rate was then used to calculate an isokinetic sampling rate at this port. The sampling rate was set at 90% of the maximum laminar gas velocity estimated in the furnace. A size segregated ash sample was then collected using the particle collection system described above.

When sampling was completed for each sampling run, the BLPI was unloaded. The polycarbonate membranes were folded and inserted in the sample vials. The combined vial/ash/membrane weight was obtained. Aluminum foil samples were weighed and stored in plastic Petri dishes. The cyclone catch, when collected, was emptied into a preweighed Petri dish. The dish containing the ash was weighed. The sample collection media for the next test run was weighed and loaded into the BLPI.

During the time period that the BLPI was being unloaded and reloaded, a gas profile of the furnace was obtained. All of the first floor sample ports below the combustion zone (Ports 4, 4b, and 4c) were sampled along with a representative sample of the ports on the basement floor (Ports 5 to 14). Once the BLPI was reloaded, the stoichiometry at Port 4b was reconfirmed with the gas sampling probe. The next sample test was then begun.

After the sampling was complete at the top of the furnace (1 set of samples), the gas sample probe was inserted into Port 12 to measure the difference in oxygen content between Ports 4b and 12. This difference is due to air leakage into the post-combustion section of the furnace which is under slightly negative pressure. Usually, the furnace has been operating on coal long enough that slag has built up over the crack at the floor joint and the isokinetic sampling rate at Port 12 is similar to the rate at Port 4b. However, during some of the runs, appreciable oxygen leakage was still detected. The difference in oxygen concentration was used to calculate a new, higher gas velocity in this section of the furnace, which was used in turn to determine an isokinetic sampling rate. The last set of samples, consisting of a 'cyclone' and 'nocyclone' run, was then collected.

Results

A total of 11 sets of particulate samples were collected during six test runs for the Pittsburgh coal. For Illinois #6, seven sets of particulate samples were collected during four test runs. The sample sets and test runs are summarized in Table 3-7. Table 3-8 shows the sampling conditions for the most important sample sets.

Figures 3-21 and 3-22 show steady-state temperature profiles for the Pittsburgh and Illinois coals. The results are similar and no appreciable difference in the temperature profiles for the two coals can be discerned from this data. Note that the results for Run P8-1 shown in Figure 3-16 were obtained at the lower coal feed rate, 1.4 kg/h, compared to 2.0 kg/h for the other three sets of data. There is no discernable difference in the temperature profile based on these two coal feed rates.

Table 3-9 provides a summary of the mass fractions for the Pittsburgh sample sets 9 through 12. These represent the sample sets taken at a coal feed rate of 2.0 kg/h plus the extended sampling period (2 h with the cyclone and 6 min without the cyclone). Similarly, the mass fractions for the Illinois #6 sample sets are shown in Table 3-10. A more detailed compilation of the data, including the mass loading calculations used to generate these mass fractions is given in Appendix A. Using the mass fractions from each test, an average mass loading can be calculated for each coal type/coal feed/sample port combination. The resulting particle size distributions are shown in Figure 3-23.

These samples were then sent to MIT for INAA and will be discussed in more detail in the next report.

Table 3-7. A Summary of the Phase I Test Runs

Test Run#	Date	Coal Feed Rate	Sample Set #	Sample Port Used
P8-1	1/29/97	1.4 kg/h	97P8-1c 97P8-1 97P8-2c 97P8-2	12 12 12 13
P8-2	1/30/97	1.4 kg/h	97P8-3c 97P8-3 97P8-4c 97P8-4	4b 4b 4b 4b
P8-3	2/4/97	1.4 kg/h	97P8-5c 97P8-5 97P8-6c 97P8-6 97P8-7c 97P8-7	4b 4b 4b 4b 4b
P8-5	2/18/97	2.0 kg/h	97P8-9c 97P8-9 97P8-10c 97P8-10	4b 4b 12 12
P8-6	2/20/97	2.0 kg/h	97P8-11c 97P8-11 97P8-12c 97P8-12	4b 4b 12 12
IL-1	2/25/97	2.0 kg/h	97IL-1c 97IL-1 97IL-2c 97IL-2	4b 4b 12 12
IL-2	2/27/97	2.0 kg/h	97IL-3c 97IL-3 97IL-4c 97IL-4	4b 4b 12 12
IL-3	3/3/97	2.0 kg/h	97IL-5c 97IL-5	4b 4b

IL-4	3/5/97	2.0 kg/h	97IL-6c	12
			97IL-6	12
			97-IL-7	12

Table 3-8. Conditions for Phase I Experiments

Sample Set # (Port Sampled)	Total Air Feed Rate (slpm)	Sampling Rate (slpm)	Sampling Temp. (°C at port where sample was taken)	Port 4b O ₂ Conc (%)	Port 4b CO ₂ Conc (%)	Port 12 O ₂ Conc (%)	Port 12 CO ₂ Conc (%)
97P8-9/9C (4b)	535	1.72	1167	3.3	18.6		
97P8-10/10c (12)	535	1.84	866	3.5	18.2	5.1	17.1
97P8-11/11c (4b)	535	1.72	1159	3.2	17.7		
97P8-12/12c (12)	535	1.72		3.0	17.3	3.0	16.2
97IL-1/1c (4b)	527	1.70		3.7	15.0		
97IL-2/2c (12)	527	1.70		3.6	15.0	3.8	15.0
97IL-3/3c (4b)	518	1.67	1170	3.4	15.2		
97IL-4/4c (12)	518	1.83	871	3.4	15.2	5.6	13.7
97IL-5/5c (4b)	547	1.70	1106	4.1	14.2		
97IL-6/6c (12)	540	2.10	842	3.9	16.1	7.0	12.2
97IL-7 (12)	540	1.96	842	3.6	15.6	6.8	11.9

Figure 3-21. Steady state temperature profile for the Pittsburgh coal (UA laboratory combustor, SR=1.2).

Figure 3-22. Steady state temperature profile for the Illinois No. 6 coal (UA laboratory combustor, SR=1.2).

Table 3-9. Summary of the Normalized Particle Size Distributions for Four Runs from Pittsburgh Coal (as Mass Fractions)

Impactor Stage	Run 9 (4b)	Run 11 (4b)	Average	Std Dev.	Run 10 (12)	Run 12 (12)	Average	Std Dev.
11	0.112174	0.064589	0.088381	0.033648	0.109563	0.042129	0.076	0.048
10	0.484779	0.389733	0.437256	0.067207	0.188224	0.67659	0.432	0.345
9	0.079228	0.137251	0.108239	0.041028	0.222872	0.071619	0.147	0.107
8	0.096485	0.25762	0.177053	0.11394	0.218189	0.039882	0.129	0.126
7	0.072168	0.086607	0.079388	0.01021	0.132974	0.048027	0.091	0.060
6	0.149565	0.049909	0.099737	0.070467	0.082406	0.046061	0.064	0.026
5	0.001712	0.005539	0.003625	0.002706	0.014544	0.023181	0.019	0.006
4	0.002594	0.004034	0.003314	0.001019	0.013689	0.010644	0.012	0.002
3	0.000415	0.002051	0.001233	0.001157	0.006844	0.012063	0.009	0.004
2	0.000882	0.001231	0.001056	0.000247	0.0077	0.019633	0.014	0.008
1	0	0.001436	0.000718	0.001015	0.002994	0.010171	0.007	0.005

Table 3-10. Summary of the Normalized Particle Size Distributions for Seven Runs from Illinois #6 Coal (as Mass Fractions)

Im- pactor Stage	Run 1 (4b)	Run 3 (4b)	Run 5 (4b)	Avg.	Std Dev.	Run 2 (12)	Run 4 (12)	Run 6 (12)	Run 7 (12)	Avg.	Std Dev.
11	0.14675 3	0.15206 4	0.23435	0.178	0.049	0.06705 1	0.07047 6	0.32781 8	0.12155 9	0.147	0.12
10	0.27819	0.33228 8	0.51782 2	0.376	0.126	0.24445 6	0.59452 8	0.37562 4	0.63767 1	0.463	0.18 5
9	0.16589 4	0.22903 5	0.08700 5	0.161	0.071	0.24305 9	0.07589 7	0.12293 2	0.07108 1	0.128	0.08
8	0.23097 6	0.08635 7	0.07156 9	0.130	0.088	0.12572	0.03072	0.04439	0.04326 7	0.061	0.04 4
7	0.10464 1	0.12765 9	0.05472 9	0.096	0.037	0.18439	0.12830 2	0.08024 7	0.06696 1	0.115	0.05
6	0.06380 6	0.06007 5	0.02245	0.049	0.023	0.07962 3	0.04879 1	0.03073 3	0.04120 7	0.050	0.02 1
5	0.00598 5	0.00472 9	0.00337 6	0.005	0.001	0.01324 6	0.01992 1	0.00524 1	0.00524 1	0.011	0.00 7
4	0.00194 8	0.00507 9	0.00647	0.004	0.002	0.01279 3	0.00932 5	0.00289 2	0.00289	0.007	0.00 5
3	0.00099	0.00271 5	0	0.001	0.001	0.00622 7	0.00847 7	0.00379 5	0.00379 5	0.006	0.00
2	0	0	0.00154 7	0.001	0.001	0.00645 3	0.00932 5	0.00271 1	0.00271 1	0.005	0.00
1	0.00080	0	0.00067 5	0.000	0.000	0.01698 2	0.00423 8	0.00361 5	0.00361 5	0.007	0.00 7

Figure 3-23. Ash particle size distributions for Illinois No. 6 and Pittsburgh coals (UA laboratory combustor, SR=1.2).

3.4.5 *Chlorine Partitioning*

Previous laboratory experiments can provide guidance on the most likely chemical pathways for gaseous elemental mercury as the flue gases in a coal-fired power plant cool. In a laboratory study,⁵ a small continuous flow reactor was used for kinetic investigations of the reactions of gas-phase mercury with flue gas constituents. The results show that elemental mercury is oxidized by HCl and Cl₂, by NO₂, and by O₂ in the presence of activated carbon. Laboratory experiments have also demonstrated the reduction of oxidized mercury back to elemental mercury by reaction with SO₂ and CO as well as steel surfaces. At this point, it is impossible to say how important reduction reactions are in a full scale system.

The reaction of elemental mercury with HCl is fast above 700 K ($800^{\circ}F$) and seems to proceed slowly (if at all) below 600 K ($600^{\circ}F$). There is no obvious reaction pathway for the gas-phase oxidation of $Hg_{(g)}$ by HCl. The ones identified as candidates are complicated--they probably involve many elementary steps which are not known.⁵ All this implies that attaining equilibrium when both HCl and Hg are present in trace concentrations may require a very long time. Indeed, there is evidence from laboratory and pilot data that the kinetics of Hg oxidation by HCl are slow at low temperatures. Based on pilot data, the addition of HCl to coal combustion flue gas at temperatures below 450 K (180° C) did not increase the amount of Hg^{+2} in coal combustion flue gas, indicating no reaction at those temperatures.⁶

On the other hand, the gas-phase reaction of Hg with Cl_2 is fast, even at 283 K (50°F). The reaction is probably a bimolecular reaction. In the continuous flow reactor previously cited,⁵ as little as 2 ppm Cl_2 was sufficient to oxidize half the elemental Hg in about 1 s (starting with a mercury concentration of 0.012 ppm). At high concentrations of Cl_2 (>5 ppm), the Hg was

almost completely oxidized in 1 s at temperatures in the range of 493 to 973 K. The authors speculated that, at low temperatures, gas-solid reactions are important to the oxidation of Hg by Cl₂ because of some difficulties in getting reproducible results with their mercury measurement cell.

The formation of Cl_2 in the gas phase is thermodynamically favored at low temperatures. For example, the equilibrium calculations carried out in Quarterly Report No. 4 on the four program coals predict that 30 to 60% of the chlorine to be Cl_2 at 423 K. However, the formation of Cl_2 may be kinetically limited in the rapidly cooling flue gas which might reduce the gas-phase oxidation of elemental mercury relative to the equilibrium value.

Kinetic calculations were carried out using the CHEMKIN-II package using a typical time-temperature history from furnace exit to APCD inlet in a power plant. The effects of combustion stoichiometry and coal chlorine content were explored for a typical bituminous coal composition. A set of 264 reactions was used to model the chemical kinetics of major species containing the elements H, O, N, C, and Cl. Figure 3-24 shows the time-temperature history used in the calculations and the results for a coal with 2000 ppm chlorine and a stoichiometric ratio of 1.25. These calculations show that only about 1% of the chlorine is converted to Cl₂ at the APCD inlet. Thus, the conversion of HCl to the more reactive Cl₂ seems to be kinetically limited in a power plant flue gas.

Figure 3-24. Gas temperature and predicted chlorine partitioning in a typical utility boiler. As discussed above, thermochemical equilibrium is not reached in coal combustion flue gas. The flue gas in a coal-fired power plant cools rapidly as heat is transferred to water and steam. Since mercury is present in such trace amounts, mercury species may not have time to equilibrate as the gas cools, particularly because the major gas-phase oxidation reaction is with other trace species (HCl or Cl₂). Other trace species in the flue gas such as CO and SO₂ do not have time to equilibrate as the gas cools. For example, the oxidation of SO₂ to SO₃ in coal combustion flue gas does not proceed at a fast rate below about 1500 K⁷ and thus the SO₃ concentration is effectively frozen below this temperature in the flue gas. Similarly for trace

species, present in ppm or ppb amounts, equilibrium may not be attained as the flue gas cools as demonstrated here by the results of kinetic calculations for chlorine in flue gas.

3.5 <u>Literature Review (UConn, Princeton)</u>

Under Task 7 of the program, field measurements of organic and trace element emissions from coal combustion are to be critically evaluated. The objective of this examination is the identification of areas in which our knowledge of trace element combustion chemistry is incomplete. In Phase I of this 5-year, two- phase program, the literature review and analysis will lead to (1) a comprehensive view of the state of knowledge obtainable from field measurements, and (2) identification of critical issues that need to be addressed in laboratory experimentation and modeling in the other program tasks. A subsequent extension of this task in Phase II will provide the basis for validation of the trace element transformation and emissions model being developed under Task 8 of this program. This section represents an interim summary of progress on Task 7 during the first year of the Phase I program.

3.5.1 Review of the EPRI Field Study: Organic Emissions

Summary of Report Findings

EPRI chose 16 substances for measurement in the field study, in accordance with two criteria: (1) the likelihood that the substances would be found in utility emissions (based on previous EPRI findings) and (2) the availability of toxicity factors. Of the chosen 16, the organic substances include: benzene, toluene, formaldehyde, polychlorinated dibenzodioxins and dibenzofurans (PCDD/PCDF), and polycyclic aromatic hydrocarbons (PAH).

As revealed in the EPRI Report, ⁸ the measured levels of each of these substances vary greatly from plant to plant, as illustrated in Figure 3-25 for benzene emissions from 22 coal-fired plants. Values range from 0.2 to 200 lb/10¹² Btu, spanning 3 orders of magnitude. In the absence of any obvious correlation between emission level and plant type, the data are treated in statistical fashion. The geometric mean of 3.8 lb/10¹² Btu is calculated, along with the 95% confidence interval, which lies between 1.6 and 8.8 lb/10¹² Btu. It is important to realize that the "95% confidence interval" does not correspond to a range in which 95% of the measurements fall. As Figure 3-25 illustrates, 9 of the 22 measurements fall within the 95% confidence interval for benzene; six lie below, and seven lie above. The lowest measurement corresponds to approximately one-fifteenth of the geometric mean; the highest measurement, a factor of 40 times the geometric mean. It might be noted that a straight arithmetic mean of the benzene emissions measurements would yield a value of approximately 22 lb/10¹² Btu, more than a factor of 5 higher than the geometric mean.

In the Report, the emissions measurements of each of the other organic substances are analyzed as in Figure 3-25, and the results are summarized in Table 3-11. PAH emissions and PCDD/PCDF emissions are reported as benzo[a]pyrene and 2,3,7,8-tetrachloro-p-dioxin equivalents, respectively, after appropriate toxicity-based weightings were assigned to the various measured PAH and PCDD/PCDF species, as explained in the Report, Appendix B. As Table 3-11 reveals, the 95% confidence intervals for the other organics are at least as broad as that of benzene, so it follows that the measured levels of these substances also vary by orders of magnitude from plant to plant, though the values themselves are small.

The Report uses toxicity data and emissions factors (the geometric means of the emissions measurements) to calculate carcinogenic risks and noncarcinogenic inhalation hazards for maximally and reasonably exposed individuals (MEI and REI) living within 50 km of the 600 power plants. The risks and hazards due to all 16 selected emissions are summed, and the results for each plant type are illustrated in Figures 3-26 and 3-27. For all three types of coal plants — bituminous, subbituminous, and lignite — the contributions to carcinogenic risk (Figure 3-26) and to noncarcinogenic hazard (Figure 3-27) are included in the "other" category. As shown in these figures, organics are calculated to contribute < 2% of the total carcinogenic risk and < 5% of the total noncarcinogenic hazard of coal power plant emissions. The Report concludes that organic emissions from the 600 U.S. power plants do not constitute any health risks to

Figure 3-25. Distribution of benzene emissions factors for coal-fired units. (Figure B-17 from the Report)¹

Table 3-11. Organic Substance Emission Factors for Coal-Fired Units, lb/10¹² Btu (Table 3-5 from the Report⁸)

Organic Substance/Class	Measurements	Geometric Mean	95% C.I. ^a
Benzene	23	3.8	1.6 to 8.8
Toluene	21	1.4	0.7 to 3
Formaldehyde	22	3	1.5 to 6
Benzo[a]pyrene equivalent	11	0.0018	0.0004 to 0.0082
2,3,7,8-tetrachloro-p-dioxin equivalent	9	2 x 10 ⁻⁶	(4 - 100) x 10 ⁻⁷

^a 95% confidence interval is about the geometric mean, not about all the data

humans: "Although uncertainty in organic compound emission factors is relatively high, neither carcinogenic inhalation risk estimates nor hazard index estimates are sensitive to these uncertainties for any plant type, due to the small contribution of organic compounds to cancer risk estimates and hazard index estimates." (EPRI Report, Pp. 7-24).

Figure 3-26. Contributions by individual substances to MEI inhalation carcinogenic risk, median plant by fuel type (Figure 7-4 from the Report).⁸

Figure 3-27. Contributions of individual substances to MEI inhalation hazard index (Figure 7-8 from the Report).⁸

Evaluation of Findings

In examining the results presented in the Report, it is necessary to consider the types of methods used in the emissions measurements. Aldehydes were collected by EPA Method 0011, converted to stable forms by treatment with dinitrophenylhydrazine, and the derivatives analyzed by high pressure liquid chromatography (HPLC). Volatile organics, including benzene and toluene, were sampled with an EPA Method 0030 sampling train, trapped by Tenax and charcoal sorbents, and analyzed by gas chromatography-mass spectrometry (GC-MS) with EPA Method 5041. PCDD/PCDF were sampled by a method similar to EPA Method 0011 and analyzed by EPA Method 23 with GC and high resolution MS. Semi-volatile organics, including PAH, were collected by EPA Method 0010 with a Modified Method 5 sampling train, trapped with a particulate filter and XAD-2 resin, and analyzed by GC-MS according to EPA Method 8270. Except for the aldehydes, therefore, all of the organics were analyzed by GC-MS.

In the following, we assess several aspects of the Report's results of organic emissions measurements: sample collection, analytical methods, species not included, and health effects. At the outset it should be noted that the power plant emissions testing program is an extremely ambitious undertaking, one of immense difficulty, particularly in view of the non-laboratory-like setting of the measurements. The proceeding comments, therefore, are not to be taken as criticisms but as guidelines for understanding the limitations of the reported measurements.

Sample Collection. First of all, it should be acknowledged that nine contracting companies participated in the plant measurements: Radian, SRI, Battelle, Weston, KVB, Acurex, Clean Air Engineering, Interpol, and Carnot. Even though the large scope of the field testing project may have necessitated the use of many contractors, it should be borne in mind that the multitude of contractors lends some variability to the data. Second, as stated in the Report (p. 2-1), the contractors employed the EPA-recommended methods for sampling, but some of the methods had not yet been validated for power plant streams, and others were being pushed to or beyond their limits. In several cases, low levels of organic species necessitated modification of collection techniques at the site so that detectable amounts of sample could be collected. The difficulty of obtaining quantifiable samples from extremely dilute streams is not to be overlooked. Third, errors can be introduced by the use of sorbents (e.g., Tenax) and resins (e.g., XAD-2) during sampling — either by irreversible retention of components or by the introduction of contaminants. Macroreticular resins used for sorption of PAH are particularly notorious for introducing artifacts. Therefore, even though many species can be collected by the EPA methods used, other species may have escaped detection.

Methods of Analysis. The derivatization, extraction, and HPLC analysis procedure used for the measurement of the aldehydes appears to be sound. GC-MS — the method used for analyzing volatile organics, PCDD/PCDF, and semi-volatile organics — is an excellent method for the volatile organics such as benzene and toluene. It is limited in application for semi-volatile organics such as PAH, however, for three primary reasons: (1) Sample components have to be vaporized in the injector of the GC before they can get onto the GC column for separation. Some components, particularly less-volatile ones, can be trapped in the injector so that they are never put onto the GC column or detected among the separated products. (2) Some components,

particularly polar compounds, can be irreversibly retained by the GC column so that they too are never detected. (3) Differentiation of PAH isomers is very important since some are carcinogenic and others are not (e.g., benzo[a]pyrene and benzo[e]pyrene). In GC-MS, a compound is identified by its retention time and mass spectrum. For PAH, each family of isomers (e.g., $C_{20}H_{12}$) has the same mass spectrum, so identification of a particular isomer requires a unique retention time. This requirement is not that serious for PAH of less than five rings because the number of isomers is manageable and reference standards are available to enable one to determine the retention time of all isomers. However, GC-MS is not very reliable for analysis of PAH of greater than five fused rings since: (1) the number of isomers goes up exponentially with the number of rings comprising the PAH, and the availability of reference standards of these isomers goes way down and (2) PAH of > five rings are also not easily vaporized at the temperatures used in most GC injectors. Because of these various problems of GC analysis injector trapping, irreversible retention on the column, indistinguishability between mass spectra of isomeric PAH, and lack of component vaporizability — sample components can either be missed or misidentified. It is thus extremely important to report mass balances on GC analyses: What proportion of the mass of material injected into the gas chromatograph is actually accounted for in the identified products?

Species Not Included. The Report gives emissions measurements of nine PAH benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene, and benzo[ghi]perylene all of which are four-, five-, and six-ring species. Surprisingly absent are phenanthrene, fluoranthene, and pyrene, the three-and-four-ring species observed to be among the most abundant PAH measured from coal-burning power plants. 10-12 Early EPRI studies, 12, 13 however, had found these species to be associated with particulate matter, so in later work the EPRI contractors may not have looked for these compounds in the gas phase, if they has not been aware of the more recent work 14,15 linking these species with the gas phase. Since PAH emissions from coal are the products of pyrolysis reactions, it is reasonable to compare the identified nine PAH with PAH products from coal pyrolysis. Years of experience 16-20 in this field tell us that it is most unusual to have the nine specified PAH without a host of other product species in the sample as well. Figure 3-28, for example, shows an HPLC chromatogram of PAH from the pyrolysis of a low-rank coal.²⁰ In addition to the nine PAH identified in the Report, this chromatogram displays 41 other PAH — some of which have greater than five rings, partially hydrogenated rings, alkyl substituents, carbonyl groups, or cyclopenta-fused rings. It should be noted that some of the species identified in Figure 3-28 — e.g., benzo[ghi]fluoranthene, cyclopenta[cd]pyrene, and naphtho[2,1-a]pyrene — have mutagenicities significantly greater than that of benzo[a]pyrene, 21,22 so omission of such species can lead to incomplete or misleading conclusions about health effects. The fact that the Report gives measurements of only nine PAH—none of which have greater than six rings, substituent groups, or cyclopenta-fused rings — is most probably a consequence of the GC-MS analytical methods used. Once again underlined is the importance of knowing what proportion of the sample mass is accounted for in the products measured by GC-MS.

It should also be noted that aromatic compounds having nitro substituent groups; N, S, or O ring heteroatoms; and oxygen-containing functionalities are also not included in the Report's

results. If present, these species — particularly the highly mutagenic nitro-PAH²³⁻³¹ and PAH with ring nitrogen³²⁻³⁹ — could also have impact on the health effects assessment. Nitro-PAH have been measured from other coal combustors. ^{10,26,40} Other coal-derived "organics" not mentioned in the Report are soot and unburned carbon associated with fly ash.

Health Effects. The Report assesses the health effects of organic emissions from power plants, using toxicity information and measured emissions levels of aldehydes, benzene, toluene, PCDD/PCDF, and nine particular PAH. A number of other organic species that could be present, however, are never mentioned. Since it is the objective of the Report to evaluate health effects of plant emissions, it is most important that there be an accounting of the strongly biologically active compounds such as nitro-PAH, PAH with ring nitrogen, and species such as cyclopenta[cd]pyrene and naphtho[2,1-a]pyrene, which are more mutagenic than benzo[a]pyrene. If these species have been specifically searched for by appropriate analytical techniques, then the documentation of the tests confirming the absence of these compounds needs to be presented. If it is the case, however, that steps have not been taken to measure these biologically active species, then it remains indeterminate whether the organic emissions from power plants do or do not pose a health concern. Of critical importance are mass balances on the sample collection and sample analysis processes: What percentage of the organics produced are collected, and what percentage of the mass collected is accounted for in the identified products?

Key Questions

In order to address some of the uncertainties that the above evaluation raises, we have formulated the set of questions listed below.

- 1. In the sampling from the power plants, what tests were conducted to ensure that the sampling methods did indeed pick up all the organic emissions and that none could get by the sampling system without being trapped?
- 2. Of the total organic mass that was collected during the sampling from the plants, what proportion is actually accounted for by the particular organic products whose identities and quantities are given in the reports? The EPRI Synthesis Report gives measurements of benzene, toluene, formaldehyde, nine particular PAH, and a number of PCDD/PCDF. Is there documentation that verifies that these particular organic compounds account for the whole of the organic samples collected? If so, what methods were used to make the determination? Were these methods capable of detecting and quantifying classes of organic compounds other than the particular ones reported? If these particular species do not account for the whole of the organic mass collected, on what basis were other organics excluded from consideration?
- 3. Apparently in the EPRI study, some early "screening" runs were conducted to establish which organic species were measurable and which were below detection limits. Were these results or similar ones used as screening guidelines in the DOE study, and if so, are

the results from these screening runs available? What methods were used to determine which species would be targeted and which would be below detection limits?

4. During the gas chromatographic analyses of the organic samples, were mass balances conducted to show (1) that all mass injected was in fact vaporized in the injector so that it could all get onto the GC column for analysis and (2) that there were no peaks in the chromatograms corresponding to species other than those identified and quantified in the Report? Are the actual chromatograms available for examination?

These questions have been shared with EPRI and DOE, who sponsored the field emissions studies, and both organizations have responded very helpfully by sharing additional reports and providing access to further data and information. We will be working together in the coming period of time to answer the above questions and others that may arise on organic emissions.

3.5.2 Field Data Review: Inorganic Species Emissions (Trace Elements)

Approach for Analysis of Trace Element Data in Literature

The data being considered under this task are measurements of the following parameters made at operating full scale coal-fired power stations. The term 'full scale' is meant to include any central station electric power generation facility burning pulverized coal.

- a) Trace element concentrations in the fly ash as a function of ash particle size.
- b) Corresponding data for trace element concentration in the parent coals.
- c) Trace element emissions for different types of air pollution control equipment.

At the start of the program in November 1995, two major sources of such data were identified. The first was the Electric Utility Trace Substances Synthesis Report, ⁸ published by the Electric Power Research Institute (EPRI) of Palo Alto, CA, in November 1994. The emissions data described in the EPRI report were obtained during the EPRI program Power Plant Integrated Systems: Chemical Emissions Study (PISCES). In the remainder of this report, the terms 'PISCES' and 'PISCES data' are used to identify the Synthesis Report. The other major source of trace element field data was a recently completed Department of Energy (DOE) led study of eight different US power plants. Although the DOE Summary Report was not yet available at the start of work on Task 7 (January 1996), the individual contractor reports for each facility were available.

Additional data identified at the outset of this program were those published by the utility KEMA in the Netherlands describing a measurements made in their boilers, and data available from the VTT Aerosol Technology Group of Espoo, Finland for several different European boilers. Subsequent to the start of our work, additional data from a British power station and a Spanish power station were published in the open literature.

Work described in this interim report includes an assessment of the EPRI PISCES data, preliminary evaluation of the DOE data, and evaluation of the recent British and Spanish data.

Summary of Results

The PISCES dataset provides a comprehensive examination of trace element chemistry at over 40 U.S. sites. In the PISCES study, coal rank, ash content, sulfur content, trace element concentrations, coal higher heating value, trace element emissions rate, and particulate matter emissions rate were all determined. From this dataset, the operating efficiency of air pollution control devices, both in collecting particulate matter and in removing trace elements from the stack gases can be determined. By calculating both of these parameters, it is possible to determine whether an individual trace element is collected more efficiently than the particulate matter, less efficiently than the particulate matter, or with the same efficiency as the particulate matter. This calculation was undertaken as the first task in the review of the PISCES dataset.

The particulate collection efficiency of an air pollution control device is defined as

$$\eta = \frac{PM_{in} - PM_{out}}{PM_{in}}$$
 (3-7)

where PM_{in} is the particulate matter concentration at the inlet of the air pollution control device (mass per unit energy content of the as-fired fuel, e.g. [lb/MBtu]) and PM_{out} , the particulate matter concentration at the device outlet (same units). This can be rearranged to

$$PM_{out} = PM_{in} (1 - \eta) = \frac{f_a (1 - \eta)}{H}$$
 (3-8)

where f_a is the ash content of the coal on an as-fired basis (mass/mass, e.g. [lb/lb]) and H is the higher heating value of the coal (energy content per unit mass, e.g., [Btu/lb]).

For any trace element I present in the coal, the emissions E_i (mass per unit energy content of the as-fired fuel, e.g., [lb I / MBtu]) can be determined from

$$E_{i} = A_{i,in} (1 - \eta_{i}) = \frac{C_{i} (1 - \eta_{i})}{H}$$
(3-9)

where $A_{i,in}$ is the concentration of the trace element in the gas stream entering the air pollution control device (mass per unit energy content of the as-fired fuel), C_i is the concentration of the trace element in the coal (mass/mass), and η_i is the capture efficiency of trace element I in the air pollution control device, defined by an expression analogous to Eq. (3-1). Combining Eqs. (3-2) and (3-3), an expression for trace element emissions as a function of coal parameters and air pollution control device efficiency is obtained,

$$E_{i} = \frac{C_{i} PM_{out} (1 - \eta_{i})}{f_{a} (1 - \eta)}$$
(3-10)

Measurements of E_i , C_i , PM_{out} , and f_a were all made as part of the PISCES data sets. A plot of E_i v. $(C_i PM_{\text{out}}/f_a)$ should therefore pass through the origin and be linear with slope equal to $(1 - \eta_i)/(1 - \eta)$. For trace elements that are captured with greater efficiency than the corresponding fly ash, the slope will be less than one, a result of η_i being greater than η . If the efficiency of trace element capture is identical to the efficiency of particulate capture, the slope will equal one.

The above analysis implicitly assumes that the relationship between trace element capture efficiency and particulate capture efficiency is not dependent upon the type of air pollution control equipment. Analysis of trace element emissions data grouped by type of air pollution control equipment can be used to test this assertion. Further, if the partitioning of trace elements among the vapor phase and fly ash particles of different sizes is *not* consistent from furnace to furnace, then poor correlations (Eq. (3-10)) would be obtained for any grouping of data. Under this latter scenario, the emissions from any facility are dependent upon the fate of the trace element during combustion. A poor correlation (Eq. (3-10)) is therefore indicative of poorly understood trace element combustion transformations. This reasoning is summarized in Table 3-12.

Table 3-12. Data Interpretation

Slope (Eq. (4))	R^2	Interpretation
1	Close to 1	Trace element capture equal to particulate capture
>1	Close to 1	Trace element capture less than particulate capture
< 1	Close to 1	Trace element capture greater than particulate capture
-	Close to 1 when identical APCD considered	Type of APCD affects trace element capture
-	Far from 1	Trace element capture cannot be predicted from particulate capture. Concentration of trace element in vapor and in ash as f(dp) dependent upon mineralogical and combustion parameters

In the original analysis of the PISCES data, an equation of the form

$$E_{i} \approx a_{i} \left[\frac{C_{i} PM}{f_{a}} \right]^{b}$$
 (3-11)

was used in correlating the emissions data. 8 This is identical to Eq. (3-10) when the exponent b_{i} is equal to 1.

The results of using Eqs.(3-10) and (3-11) to fit the PISCES data are summarized in Table 3-13. In generating Table 3-13, the entire set of available data was used for each element. For some elements, the database can be expanded by including those points for which the concentration of the element in the coal, C_i, was the only missing parameter. For those samples, an estimated concentration C_i can be determined from the rank average value of the concentration for that element in coal of the indicated rank, using only those values less than the reported detection limit for the site in question. These additional points expanded the database for several elements as indicated in Table 3-13. Regardless of the size of the database, Eq. (3-11) provided a better fit to the data than did Eq. (3-10) for 10 of the 11 elements considered. This is further reflected in the values of the exponent b_i not equaling 1 as shown in the table, suggesting that the combustion transformations of trace elements are dependent upon mineralogical and combustion parameters.

Based on the results of the field data analysis, recommendations regarding bench-scale fundamental study of the combustion transformations and capture of individual elements were made. The resulting prioritization is shown in Table 3-14.

Element-Specific Discussion

Antimony (Sb)

No correlation was noted between the stack concentration Ei of antimony and the parameter (C_iPM/f_a) (Eq. (3-10)). The corresponding value of r^2 was determined to be 0.15 for the nine sites for which complete datasets were available. When the database is expanded to include sites for which the antimony concentration in the coal was estimated, four additional sites can be added (Table 3-15). Addition of these datasets does not change the lack of correlation with the group (C_iPM/f_a), however. In Figure 3-28, antimony emissions data (including the four additional points) are broadly scattered, with no trends apparent. Using the empirical approach described in the original analysis of the data (Eq. (3-11)), an r^2 correlation coefficient of 0.65 was reported by EPRI. Data from these nine sites plus the four others for which coal antimony concentrations were estimated are plotted in Figure 3-29.

Table 3-13. Data Correlation with Eqs. (3-10) and (3-11)

Element	R ² (Eq.(3-10))	Slope (Eq. (3-10))	Intercept	Data Pairs	R ² (Eq. (3-11))	a_{i}	b_{i}	N#
Sb	0.15 0.05	0.15 0.11	1.00 1.06	9 13	0.65	0.92	0.63	8
As	0.20 0.20	3.53 3.50	11.6 11.0	36 34	0.72	3.1	0.85	34
Be	0.74	1.23	0.116	17	0.83	1.2	1.1	17
Cd	0.02 0.01	-0.09 0.07	2.59 1.43	11 30	0.78	3.3	0.5	9
Cr	0.26	0.95	5.84	37	0.57	3.7	0.58	38
Со	0.28 0.28	0.80 0.80	2.09 2.14	18 20	0.57	1.7	0.69	20
Pb	0.80 0.80	5.54 5.50	-3.77 -3.13	33 34	0.62	3.4	0.80	33
Mn	0.38 0.38	1.04 1.27	1.80 1.80	37 38	0.57	3.8	0.60	37
Hg	0.003 0.004	3.94 4.77	6.18 6.02	32 34				
Ni	0.073 0.079	16.6 14.0	1.42 1.41	27 35	0.51	4.4	0.48	25
Se	0.05 0.05	14.9 14.4	75.4 78.5	29 34				

Table 3-14. Conclusions Regarding Relative Need for Bench-Scale Investigations

High Priority	Middle Priority	Low Priority
As Hg Se	Cd Sb Cr Ni Pb	Be Mn Co

Table 3-15. Number of Datasets per Element

Element	Number of Datasets	Number of Datasets when Coal Concentration Non-detect Replaced with Rank Average Value		
Sb	9	13		
As	34	36		
Ве	17	17		
Cd	11	30		
Cr	37	37		
Со	18	20		
Pb	33	34		
Mn	37	38		
Hg	32	34		
Ni	27	35		
Se	29	34		

Figure 3-28. Antimony emissions data versus C_iPM/f_a.

Figure 3-29. Antimony emissions data plotted on log-log coordinates (empirical fit).

Because of the small number of datasets (nine sites) and the large amount of scatter in the data, caution must be exercised in extrapolating these results for the purpose of estimating emissions at other sites or with other coals. The large amount of scatter also suggests that the partitioning of antimony among ash particles of different size classes is highly variable. The lack of apparent trends with coal rank or antimony concentration suggest that antimony transformations and partitioning in a combustion environment are not well understood. It is therefore recommended that antimony transformations under combustion conditions be further studied at the bench scale (see Table 3-14).

The complete tabulation of the antimony data used in preparing these figures is provided in Appendix B.

Arsenic

No correlation was noted between the stack concentration E_i of arsenic and the parameter (C_iPM/f_a) (Eq. (3-10)). The corresponding value of r^2 was determined to be 0.20 for the 36 sites contained in the database (including three for which the rank average value of the concentration of arsenic in the coal was used). In Figure 3-30, arsenic emissions data (including the three additional points) are scattered, although there is clustering of the data near the origin of the plot. Using the empirical approach described in Eq. (3-11), an r^2 correlation coefficient of 0.72 was reported by EPRI (34 datasets). In all cases, the intercept (concentration at which E_i equal to zero) was calculated from the regression analysis.

The database for arsenic is sufficiently large to permit consideration of subsets containing data for specific coal rank or type of air pollution control device. These trends are reported in Table 3-16. A strong correlation is seen for the seven sites employing fabric filtration as the method of air pollution control. A speculative explanation for this observation is that certain size

Figure 3-30. Arsenic emissions data versus C_iPM/f_a.

Table 3-16. Correlation of Arsenic Datasets Using Eq. (3-10)

Dataset	r^2	Slope	Intercept	# Sites
All data	0.20	3.53	11.0	36
Bituminous	0.14	3.04	20.8	23
Sub-bituminous	0.07	0.56	0.58	9
Lignite	0.14	1.26	0.89	4
ESP, ESP/FGD _w	0.18	3.35	14.9	29
FF, FF/FGD _d	0.92	2.65	-0.17	7

classes of ash particles are enriched in arsenic; further, these size classes are more effectively captured by systems using fabric filtration. This is consistent with observed high particulate capture efficiency for fabric filters (average of 0.999 for the 11 sites reporting data in this study) and potential enrichment of arsenic in the smallest particulate, a phenomenon which has been documented in field and laboratory measurements. These results suggest that bench scale study of the combustion transformations of arsenic be accorded a high priority in the remainder of this program.

The complete tabulation of the arsenic data used in preparing these figures is provided in Appendix B.

Beryllium

Beryllium emissions data were linearly correlated with (C_iPM/f_a) with a correlation coefficient of 0.74 obtained for the full group of 17 sites. There were no sites for which the coal concentration was reported below the detection limit. This compares favorably with the regression coefficient of 0.83 reported by EPRI in its analysis of the data using the empirical relation of Eq. (3-11). These trends are shown in Figures 3-31 through 3-33. From these results, it can be concluded that beryllium is not enriched in smaller particles which may be more difficult to capture. Rather, the correspondence between beryllium capture and particulate capture, and the lack of any trend with coal rank or air pollution control device (see Appendix B) suggests that beryllium is concentrated in ash particles greater than 1 or 2 µm in size. Because of this, it is recommended that fundamental study of beryllium be accorded a relatively low priority in the remainder of this fundamental program. The complete tabulation of beryllium data used in preparing these figures is provided in the Appendix B.

Cadmium

As shown in Figures 3-34 and 3-35, no correlation was noted between the stack concentration E_i of cadmium and the parameter (C_iPM/f_a) (Eq. (3-10)). The corresponding value of r^2 was determined to be 0.02 for the 11 sites contained in the database. Addition of the 19 sites for which the rank average value of the concentration of cadmium in the coal was used did not improve the correlation. In Figure 3-32, cadmium emissions data (including the additional points) are scattered, with most of the data clustered near the origin. Using Eq. (3-11) as described in the original analysis of the data, an r^2 correlation coefficient of 0.78 was reported by EPRI (nine datasets); it is unclear which two datasets included here were not included in the

Figure 3-31. Arsenic emisions data plotted on log-log coordinates (empirical fit).

Figure 3-32. Beryllium emissions data versus C_iPM/f_a.

Figure 3-33. Beryllium emissions data plotted on log-log coordinates (empirical fit).

Figure 3-34. Cadmium emissions data versus C_iPM/f_a.

Figure 3-35. Cadmium emissions data plotted on log-log coordinates (empirical fit).

EPRI analysis. Association of cadmium with calcium in the ash of a sub-bituminous coal has been reported in another field study;⁴¹ no evidence for enhanced capture of cadmium by calcium rich sub-bituminous coal ash was seen in the PISCES data. The Querol et al. findings do suggest that ash chemistry may have some effect on cadmium emissions; for this reason, it is recommended that examination of cadmium be accorded a middle priority in the remainder of this program.

The complete tabulation of the cadmium data used in preparing these figures is provided in Appendix B.

Chromium

Chromium emissions were uniformly low, falling well below 40 lb/TBtu for most sites. No correlation was noted, however, between the stack concentration E_i of chromium and the parameter (C_iPM/f_a) (Eq. (3-10)). The corresponding value of r^2 was determined to be 0.26 for the 37 sites contained in the database. The scatter in chromium emissions data can be seen more clearly in Figures 3-36 and 3-37, with Figure 3-36 presenting the data as a function of (C_iPM/f_a), sorted according to coal rank and air pollution control device type, and Figure 3-38 presenting the same data sorted only according to coal rank. Using Eq. (3-11), an r^2 correlation coefficient of 0.57 was reported by EPRI. High capture efficiencies noted for chromium (0.99 average) indicate that fractional chromium emissions will be low relative to the fractional emissions of other trace elements; issues associated with oxidation state-specific toxicity (C_r (VI)) warrant further study, however. It is therefore recommended that further study of chromium transformations focus on speciation, and be afforded a middle range prioritization. The complete tabulation of the chromium data is provided in Appendix B.

Figure 3-36. Chromium emissions versus C₂PM/f₂ sorted according to rank and APCD types.

Figure 3-37. Chromium emissions data versus C_iPM/f_a sorted according to coal rank.

Figure 3-38. Chromium emissions data plotted on log-log coordinates (empirical fit).

Cobalt

Cobalt emissions were also uniformly low, falling well below $10 \text{ lb}/10^{12}$ Btu for most sites. No correlation was noted between the stack concentration E_i of cobalt and the parameter (C_iPM/f_a) (Eq. (3-10)). The corresponding value of r^2 was determined to be 0.28 for the 20 sites contained in the database. The scatter in cobalt emissions data can be seen more clearly in Figure 3-39, which presents emissions data as a function of the term (C_iPM/f_a). Using Eq. (3-11), an r^2 correlation coefficient of 0.57 was reported by EPRI. In a recent field study, Querol et al.⁴¹ presented cobalt concentration data that correlated with $1/d_p^2$, suggesting a mechanism of vaporization and surface condensation.⁴⁴ Because of the low levels of emissions observed in the EPRI data, however, it is recommended at this time that further study of cobalt be afforded a relatively low priority.

The complete tabulation of the cobalt data is provided in Appendix B.

Figure 3-39. Cobalt emissions data versus C_iPM/f_a.

Lead

Lead emissions were correlated with the parameter (C_iPM/f_a) (Eq. (3-10)) with an r² value of 0.80 (34 datasets) (Figures 3-40 and 3-41). This compares with a value of 0.62 reported by EPRI in the original analysis of the data using Eq. (3-11) (Figure 3-42). This suggests that lead emissions may be predictable from knowledge of coal parameters alone. These data further suggest that the transformations of lead under combustion conditions are not dependent upon coal rank, coal mineralogy, or ash particle size. In recently published field studies, however, Querol et al.⁴¹ and Martinez-Tarazona and Spears⁴² reported that lead was enriched in the smallest fly ash particles, suggesting possible vaporization and surface enrichment. Because of this, it is recommended that lead be identified as a middle priority candidate for further fundamental study under this program. A complete tabulation of the lead data is provided in Appendix B.

Figure 3-40. Lead emissions data versus C_iPM/f_a (full range of data).

Figure 3-41. Lead emissions data versus C_iPM/f_a (partial range of data).

Figure 3-42. Lead emissions data plotted on log-log coordinates (empirical fit).

Manganese

Manganese emissions correlated with the parameter (C_iPM/f_a) (Eq. (3-10)) with an r² value of 0.38 (38 datasets, including one for which a rank average coal concentration value was used) (Figure 3-43). This compares with a value of 0.57 reported by EPRI in the original analysis of the data using the empirical approach described earlier (Figure 3-44). Despite this poor correlation, an average manganese capture efficiency of 0.99 suggests that manganese emissions are minimal and are less than particulate emissions (on a capture efficiency basis). Manganese is generally depleted in the smallest ash particles and enriched in the largest particles and in the bottom ash, suggesting that it can be managed through effective particulate control. Manganese is therefore a low priority element for further study in this program.

A complete tabulation of the manganese data is provided in Appendix B.

Mercury

Mercury emissions showed no correlation with either C_iPM/f_a ($r^2=0.004$) or with the logarithm of the same term ($r^2=0.15$). The scatter inherent in the mercury emissions data can be seen in Figures 3-45 and 3-46. A better correlation was obtained when the concentration of mercury in coal, C_i , was used as the independent variable (Figure 3-47). A correlation coefficient of 0.56 was obtained for the 34 datasets used to produce this plot. This trend is consistent with the expected complete vaporization of highly volatile mercury.

Figure 3-43. Managanese emissions data versus C_iPM/f_a.

Figure 3-44. Manganese emissions data plotted on log-log coordinates (empirical fit).

Figure 3-45. Mercury emissions data versus C_iPM/f_a.

Figure 3-46. Mercury emissions data plotted on log-log coordinates (empirical fit).

Figure 3-47. Mercury emissions data versus C_i.

Although mercury is expected to vaporize completely under combustion conditions, the stack emissions of the resulting vapor are not readily predicted. Mercury capture efficiencies ranged from 0 to 97%, indicating highly variable removal. Rank-dependence was also noted, with average capture efficiencies of 0.31 measured for lignitic and bituminous coals, and 0.45 for sub-bituminous coals. Both the speciation of mercury (oxidized versus elemental forms) and the presence of residual carbon in the fly ash are believed to contribute to mercury removal from flue gases. Firm conclusions regarding mechanisms or trends cannot be drawn from the field data, however, because of the large degree of uncertainty in reported data, due in part to the difficulty of measuring small concentrations of mercury. Laboratory study of the speciation of mercury, and the interaction of mercury with carbon in ash, should therefore remain high priorities within this program. A complete tabulation of the mercury data is provided in Appendix B.

Nickel

Nickel emissions data are plotted in Figures 3-48 and 3-49. Eight data points for which rank-average data were used for the concentration of nickel in the coal are included. No correlation analysis was performed for the nickel data.

Laboratory studies have shown nickel to be generally non-volatile; field data indicating a high degree of capture (average nickel removal efficiency of 0.98) are consistent with this reported trend. Querol et al.⁴¹ recently reported nickel enrichment in small ash particles produced from combustion of a sub-bituminous coal, however. It is therefore recommended that further laboratory study of nickel be accorded middle priority in this program. Nickel data are tabulated in Appendix B.

Figure 3-48. Nickel emissions data versus C_iPM/f_a.

Figure 3-49. Nickel emissions data plotted on log-log coordinates (empirical fit).

Selenium emissions showed no correlation with either C_iPM/f_a ($r^2 = 0.05$ for the 29 complete datasets; $r^2 = 0.05$ for 34 datasets including five for which rank-average values of selenium concentrations in coal were used). Correlations with the empirical equation were better ($r^2 = 0.49$ for 34 datasets including five for which rank-average values of selenium concentrations in coal were used). No correlation with concentration of selenium in the coal was noted (Figures 3-50 through 3-52; $r^2 = 0.03$ for 34 datasets). Selenium capture efficiencies ranged from 0 to 99%, indicating highly variable removal. Rank-dependence was also noted, with average capture efficiencies of 0.44, 0.98, and 0.63 determined for bituminous, sub-bituminous, and lignitic coals, respectively. This rank dependence, and particularly the high capture efficiencies noted for facilities burning sub-bituminous coals, indicates that ash chemistry, especially the presence of calcium on particle surfaces, may be important in determining selenium emissions. Querol et al., in a published study of density separated ash obtained from a 1050 MW station burning sub-bituminous coal, also noted an association between selenium and calcium in the ash. Further study of this element at the bench scale should be accorded a high priority in the remainder of this program. A complete tabulation of the selenium data is provided in Appendix B.

3.6 Toxics Partitioning Engineering Model (ToPEM) Development (PSI)

The primary objective of this program is to develop a fundamentally-based predictive model to allow utility operators to predict trace element emissions from their plants. This Toxics Partitioning Engineering Model (ToPEM) will be applicable to *all* combustion conditions including new fuels and coal blends, low-NO_x combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF).

Figure 3-50. Selenium emissions data versus C_iPM/f_a.

Figure 3-51. Selenium emissions data plotted on log-log coordinates (empirical fit).

Figure 3-52. Selenium emissions data versus C_i.

The work discussed earlier on the major mechanisms governing trace element partitioning in the combustion zone allows us to determine which sub-models must be further developed, and to determine how these sub-models might be incorporated into the Engineering Model for Ash Formation. In the following subsections the major components of the ToPEM model, and how they will be integrated, are discussed. Critical parameters to be examined as part of the Phase II program will also be identified.

3.6.1 Description of Engineering Model for Ash Formation (EMAF)

A simplified flowchart of the Engineering Model for Ash Formation (EMAF) is shown in Figure 3-53. Also shown (in the broken boxes) are the proposed modifications for the development of the ToPEM. The EMAF is discussed in detail elsewhere 45 and will, therefore, only be discussed in here in general terms.

The model starts by reading in the appropriate input parameters from the data file. These parameters include information on the coal psd, mineral psd and composition (from CCSEM), and parameters controlling the modes of interactions between minerals during burnout. These data are then used to generate a virtual assembly of 'empty' coal particles with the appropriate size distribution. The mineral particles are then distributed among the virtual particles until the average volume fraction of ash in any given size range of coal particles equals the volume fraction of ash in the entire coal.

At this point the model has created a group of particles, both mineral-containing coal particles and excluded minerals, that simulate the size and composition distribution in the coal. In order to simulate the fly ash resulting from complete char combustion, and neglecting vaporization, the model jumps to the mineral interaction routine described later in this section. To simulate vaporization, or combustion under reducing conditions (resulting in incomplete char combustion), additional steps are required. Specifically, ToPEM needs to be modified to include the effect of the combustion environment on the time-temperature, and burnout, history of particles in the combustion zone.

In order to simulate the char burnout and trace element vaporization a new submodel must be developed. The existing EMAF contains a kinetic submodel that calculates the fractional burnout and the particle temperatures during the combustion process. This submodel is similar to that discussed elsewhere. In the kinetic submodel, the fractional burnout of char in a given size range is calculated by simultaneously solving for the burnout of all the size ranges present in the coal. For example, a coal with a particle size distribution ranging from 10 to 120 µm is divided into 12 size bins. The kinetic submodel then simultaneously solves the 12 rate equations describing burnout in the individual size bins, 12 heat balances on the particles in these bins (to determine particle temperature), and the bulk oxygen, carbon monoxide, and carbon dioxide concentrations. Using these relations the submodel predicts which particles burn out first, and as a result predicts the degree of burnout for all size ranges.

Figure 3-53. Flow diagram of EMAF including planned submodels for ToPEM.

The kinetic submodel required to predict trace element vaporization will be incorporated into the existing char combustion model. As discussed elsewhere in this report (Section 3.3.3) trace element vaporization is probably dominated by thermal effects and intraparticle transport effects. Therefore a model that takes these effects into account, such as that proposed by Quann will be used to calculate the fraction of a given element that vaporizes from coal particles (including extraneous minerals) in a given size range during the burnout process. By integrating these results over the entire size range of coal particles we can predict the net vaporization from the coal. The proposed vaporization submodel is discussed in more detail in Section 3.6.2.

In the current EMAF the output of this burnout submodel is used to define the fraction of minerals in each simulated coal particle that is **not** exposed to the outer char particle surface during the combustion process. These minerals will generally maintain the same size and composition, since they cannot interact with other minerals. The remaining minerals are assumed to coalesce and interact with other minerals. Based on these mechanisms, the model predicts the size and composition distributions of the bulk ash.

At this point the model has predicted the size and composition of the supermicron ash, and the existing EMAF writes the results to output files and ends. ToPEM, however, will also include a submodel to predict the size and composition of the submicron ash, including the trace elements. This model has been developed for bulk ash constituents as part of an earlier DoE funded program (Contract Number DE-FG02-92ER81376). In Phase II the model, discussed in Section 3.6.3, will be modified to include condensation of trace elements and incorporated into ToPEM code. ToPEM will then combine the supermicron and submicron distributions to describe the entire ash particle size distribution and composition distribution. This tool will provide an important starting point for the development of a commercial, user friendly, software package to predict slagging and trace element emissions from boilers, similar to PSI's Slagging AdvisorTM program.

3.6.2 Proposed Vaporization Model

Although development of the vaporization model will be accomplished in Phase II, some of the Phase I results and some existing vaporization models can be used to generate a general framework for the vaporization model. As discussed earlier (Section 3.3.3) several mechanisms have been proposed that may control vaporization of trace elements during burnout. These mechanisms include capture of the reactive mineral (i.e., pyrite) into a glassy phase which may inhibit reaction, pore diffusion control, vaporization from minerals exposed during burnout, and film diffusion control. Of these mechanisms, the data collected to date in this program, and those data collected by earlier researchers at MIT^{1,2} suggest that internal pore and external film diffusion control are the most important, and will therefore form the basis of the vaporization model.

The model we will use in ToPEM is based largely on earlier work by Quann. He proposed that for the conditions we proposed here (internal or external diffusion control) the vaporization rate of an element (V_c) can be given by:

$$V_{c} = \eta N_{I} V_{I}^{ni}$$
 (3-12)

where:

 η = the effectiveness factor that takes into account internal and external diffusion control

 N_I = the number of inclusions that have not been exposed

 V_{I}^{ni} = the vaporization rate from a single non-interacting inclusion.

The effectiveness factor is given by:

$$\eta = \frac{3\left[\frac{1}{\phi_{i}\left[\tanh\phi_{i}} - \frac{1}{\phi_{i}}\right]\left[1 + \frac{D_{e}}{\alpha_{i}D_{O2}}\left(\frac{\phi_{V}}{\tanh\phi_{V}} - 1\right)\right]^{-1}$$
(3-13)

where:

 ϕi = Thiele modulus

 D_e = effective diffusivity of element

 D_{o2} = diffusivity of oxygen α_1 = Stephan flow parameter.

The number of inclusions that have not been exposed is related to the initial volume fraction of minerals in the char and the volume of char that has been burned away. Vaporization of the element from a single non-interacting inclusion is given by:

$$V_c^{ni} = 4 \pi c D_e r_i x_m^e$$
 (3-14)

where:

c = molar concentration r_i = radius of the inclusion

 x_m^e = equilibrium mole fraction of element at the inclusion surface.

Although this model has been shown to work fairly well for major species (such as silicon) it has not been tested for vaporization of trace elements. Mims et al.² used a similar model, however, to describe vaporization of arsenic from a Montana Lignite with good results. All of the model parameters are readily available, or can be easily estimated, with the exception of the equilibrium mole fraction of the element at the inclusion surface. Current equilibrium data do not exit to allow this parameter to be calculated. Therefore, the kinetics of vaporization is a major issue that must be addressed in the Phase II.

One major mechanism that has not been discussed here is reactive scavenging of vapor phase species by minerals. For example, sodium vapors have been shown to react with silicate minerals, 47 thereby reducing the amount of sodium present in the submicron ash. If specific interactions are identified for trace elements (e.g., reaction of arsenic and calcium) a sink term will have to be incorporated. This situation requires detailed information about the mechanisms leading to the reactive scavenging and the kinetics of the scavenging process. These issues, among others, will be addressed in Phase II of this program.

3.6.3 Submicron Ash Formation Submodel

One of the goals of this work is to incorporate an aerosol formation submodel into the engineering model for ash formation (EMAF). Development of this model was completed under separate DoE funding as part of the program "Advanced Analytical Methods for Selection of Coal and Coal Blends," Contract Number DE-FG02-92ER81376. Modifications to the model to include description of trace element behavior will take place in Phase II of this program.

Many investigators have measured two distinct modes in the submicron ash, ^{48,49} ultrafine and intermediate. The ultrafine mode is primarily derived from vaporization and condensation of inorganics during the combustion process. The intermediate mode is primarily derived from submicron minerals present in the coal. The model addresses these modes separately.

Ultrafine Ash Mode

In the submicron ash formation submodel the mass of the major species that vaporizes is estimated based on the work from Quann. In his work the general vaporization equation described in the preceding subsection is simplified to address two specific modes of vaporization; internal diffusion control (vaporization from inclusions), and external diffusion control (vaporization of organically associated minerals). The required equilibrium vapor pressure is derived from a reduction reaction at the surface of the inclusion. Thus, the mass of major species vaporized during the combustion process can be predicted with a reasonable degree of accuracy. And, as these species form the bulk of the submicron aerosol, the particle size distribution can be calculated from the mass of the major species that vaporize, the mass of the trace elements is neglected.

The self-preserving aerosol model can be used to calculate the size distribution.⁵⁰ Initially, let us neglect scavenging of small particles by large (supermicron particles). The total volume of the aerosol is constant and equal to the amount of material vaporized:

$$V = f_v M_{ash}$$
 (3-15)

where M_{ash} is the ash loading in g/m^3 . The initial number of particles is therefore

$$N(0) = \frac{6V}{\pi D_o^3}$$
 (3-16)

where D_0 is the initial particle diameter, which can be calculated from nucleation theory. The initial diameter can be estimated to be one or two molecules since the saturation ratio is generally large. The rate of decay of the number distribution is given by

$$\frac{dN}{dt} = -\frac{1}{2} \left[\frac{3}{4\pi} \right]^{1/6} \left[\frac{6kT}{\rho_p} \right]^{1/2} \left[\frac{p}{RT} \right] I_1 V^{1/6} N^{11/6}$$
(3-17)

The size distribution is calculated from N(t) and V as

$$n = \left| \frac{N^2}{V} \right| \Psi(\eta) \tag{3-18}$$

where $\eta = vN/V$. The function $\Psi(\eta)$ is tabulated by Friedlander.⁵¹

To make the calculation, we will assume that nucleation and coagulation happen on much faster time scales than those on which the gas temperature is changing. That is, we will impose a temperature-temperature history on the gas. For example, Flagan and Friedlander used the following temperature history to simulate the boiler: T = 1800 K for 0.5 s, T = 1800 to 1400 K over 1 s, and T = 1400 to 425 K over 2 s.

Intermediate Mode

Unfortunately, CCSEM analysis does not provide information on particles less than approximately 1 μ m in the coal which may contribute to the submicron aerosol. This intermediate mode is significantly larger than the fine mode produced by the vaporization-condensation process. From measurements made by VTT⁵² we believe that this mode does exist. The aerosol appears to consist of dense spheres which would suggest that the intermediate mode is not the product of a vaporization-condensation process. Instead, this mode may result from fine minerals in the coal. These have been observed via TEM⁵³ in sub-bituminous coals.

The approach taken here is somewhat simplified but does produce results that appear realistic. However, some refinement will be needed. The size distribution of minerals as measured by CCSEM from eleven coals of various rank were examined. When the mineral

distribution is calculated the largest number of minerals is found in the smallest size bin of approximately 1 to 2.5 μm in diameter.

The number of submicron minerals is approximated by assuming that the number distribution (on a log Dp basis) is symmetric about the 1 to 2.5 μm size range. The sizes chosen for the bins are 0.156 to 0.313, 0.313 to 0.625, and 0.625 to 1.25 μm . If the number distribution denoted by n(Dp) is the number of minerals between Dp and Dp + dDp then my assumption is equivalent to

$$n(0.625) = n(1.25)$$

 $n(0.313) = n(2.5)$ (3-19)
 $n(0.156) = n(5)$.

The calculation was be performed for each mineral class and then summed over all mineral classes. The mass distribution, $n_m(Dp)$ is then calculated for each mineral class of the submicron mode as

$$n_m(Dp) = \rho(\pi/6) Dp^3 n(Dp)$$
 (3-20)

The entire mass distribution is then renormalized.

Once the amount of submicron minerals has been predicted, we assume that some fraction of the ultrafine minerals are released from the char during devolatilization and char combustion. These minerals melt but do not otherwise interact. And, therefore, are assumed to form ash particles of the same size and composition as the original minerals. Recent visual evidence⁵⁴ suggests that ultrafine aluminosilicate minerals are ejected from coal particles during devolatilization.

3.6.4 Phase II Research Needs

As can be seen by the preceding discussion, the Engineering Model for Ash Formation and the Submicron Ash Formation Submodel are powerful tools for predicting the size and composition of the fly ash generated from burning a wide range of coals under various conditions. However, to modify these codes to include the trace element partitioning, there is still a great deal of work that must be done in the Phase II program. In short we need to:

- Explore trace element vaporization and partitioning for a wider range of coals and combustion conditions to further validate the transport limitations proposed from the Phase I data
- Perform a series of time resolved experiments under wide range of combustion conditions, using well characterized pyrite particles to derive the equilibrium vapor pressure of elements associated with pyrite

- If the oxidation state of pyrite is shown to play a major role in vaporization, as will be discussed in the next report, these experiments should be repeated to determine the effect of oxidation on the equilibrium vapor pressure of trace elements associated with the oxidized pyrite (including reducing conditions)
- Perform experiments to explore reactive scavenging by specific minerals (e.g., arsenic by calcium)
- Measure trace element partitioning in larger systems to test models and evaluate proposed condensation mechanisms.

SECTION 4

CONCLUSIONS

4. CONCLUSIONS

In the last quarter the trace element concentration analysis was completed for the Wyodak coal. This analysis indicated that the concentrations of trace elements in this coal are within the range of the bituminous coals in this program, with the exception of arsenic. The concentrations of this element, and that of chromium, are much lower than was found in the other program coals. The CCSEM analysis of this coal are similar to most low-sulfur western sub-bituminous coals. The mineral matter is richer in kaolinite than illite, has a low content of basic minerals (calcite, pyrite, siderite), and contains minor amounts of a Ca-Al phosphate mineral, which is most probably crandallite. This coal appears a little unusual in that the quartz content is quite high and is somewhat coarser in particle size than the other minerals. The illite content is also quite significant. It is also likely that there is significant organic calcium that is not measured by CCSEM.

Another major activity in the last quarter was analysis of the vaporization data obtained at MIT and PSI to determine the mechanisms governing trace element vaporization in the combustion zone. Significant differences in the particle temperature between the two facilities cause substantial differences in the amount of each element observed in the submicron ash. In addition, Mössbauer analysis of ash from these two facilities (from the same coal) indicated that the fraction of iron that was captured into the glass was essentially the same. Therefore, capture of pyrite by silicates during the combustion process, did not cause the difference in observed vaporization as was hypothesized earlier. It is more likely that the significant differences in the particle temperatures between these facilities caused the observed differences.

Based on earlier work by Quann, and Mims et al, relations were derived to determine the effect of measurable coal parameters, such as particle size, on vaporization from burning coal particles. If trace elements vaporized from inclusions (such as pyrite) that had been exposed during burnout, no coal particle size dependence would be expected. Vaporization from inclusions inside the char, limited by internal diffusion in the char, yields a $1/r_p$ dependence. For cases where vaporization is limited by external diffusion, such as vaporization from the char matrix or ultrafine inclusions, a $1/r_p^2$ dependence should be found. The fractional vaporization data obtained from combustion of the size and density segregated coal samples in the MIT droptube furnace (DTF) were examined to determine which of these trends were present. For almost all elements, the data suggest that vaporization occurs from included mineral particles. This is especially true for those elements that were found to be associated with the pyrite.

A number of kinetic calculations were performed at MIT to determine the partitioning of chlorine between HCl and Cl_2 at temperatures consistent with the backpass of a utility boiler. Although equilibrium predictions suggest that a high fraction of the chlorine is present as Cl_2 , which may enhance oxidation of vapor phase mercury, the kinetic calculations indicate that the reaction is actually kinetically limited. In fact, only 1% of the chlorine was predicted to be present at Cl_2 at the APCD outlet.

A review has been conducted of the organic emissions parts of the four-volume EPRI Report TR-104614, "Electric Utility Trace Substances Synthesis Report." In evaluating the

results, some key questions have arisen pertaining to species screening procedures, mass balances on sampling and analytical procedures, and the inclusion/exclusion of other organic species not mentioned in the Report. We are now working with representatives of EPRI, DOE, and the contracting companies who performed the field emission studies to address these key questions and others that may arise.

Trace element emissions data reported in the EPRI PISCES report and in the scientific literature (period 1995-1996) were examined to identify gaps in our understanding of trace element combustion chemistry. A comparison of trace element emissions with particulate emissions indicated that emissions of most coal-derived trace elements, while generally low, did not correlate with a parameter incorporating particulate emissions and trace element concentrations in the coals. This was particularly true of the elements mercury, selenium, and arsenic. A correlation would be expected for all elements if trace element capture efficiencies were only dependent on particulate capture efficiencies. This finding suggests that fundamental data on trace element chemistry in combustion systems is needed to extrapolate the emissions findings of the field studies noted above to a broader range of fuels and sources.

Experiments were performed at PSI to explore the effect of cooling rate on mercury speciation. These experiments suggest that the cooling rates typical of the economizer region of a power plant are sufficient to 'freeze' the oxidation of mercury -- leading to a higher fraction of mercury in the elemental form than would be predicted from equilibrium. Additional data are required, however, to further substantiate this hypothesis.

A series of important experiments was completed at the self-sustained combustor at UA. These experiments suggest that there is little change in the fraction of the ash in the submicron sizes between the combustion zone and the convective sections. This is consistent with vaporization of bulk species (silica) that recondense in the combustion zone. Size segregated ash samples have been sent to MIT for analysis and will be presented in later reports.

Finally, the mechanisms obtained from analysis of the PSI and MIT vaporization data were used to determine the submodels required to develop ToPEM. Specifically, the framework of the existing Engineering Model for Ash Formation (EMAF) was reviewed to determine which models were required, and how these models should be incorporated. EMAF currently allows the user to calculate the supermicron ash composition and size distribution based on the coal properties and mineralogy, from CCSEM. Included in this model is a submodel to calculate the burnout and temperature of coal particles in each size class. In order to predict trace element partitioning a vaporization model must be coupled with the burnout model. This combination will provide the amount of each trace element in the vapor phase at the exit of the flame zone. This information will then be fed into a model to predict the submicron ash composition and distribution. The fundamental submicron ash model has already been developed, but must be modified to include condensation of the vapor phase trace elements, particularly to determine what fraction of the trace element remains in the vapor phase.

SECTION 5

REFERENCES

5. REFERENCES

- 1. Quann, R.J., Sc.D. Thesis, Massachusetts Institute of Technology, 1992.
- 2. Mims, C.A., Neville, M., Quann, R.J., and Sarofim, A.F., "Laboratory Studies of Trace Element Transformations During Coal Combustion", 87th AIChE Meeting, Boston, MA, August 1979
- 3. G. P. Huffman, and F. E. Huggins in: "The Chemistry of Low-Rank Coals", ed. H. H. Schobert, ACS Symposium Series, Vol. <u>264</u>, pp. 159-174, 1984.
- 4. Bool, III, L.E., Senior, C.L., Huggins, F., Huffman, G.P., Shah, N., Wendt, J.O.L., Sarofim, A., Olmez, I., and Zeng, T., "Toxic Substances from Coal Combustion -- A Comprehensive Assessment", Quarterly Report No. 5 prepared for Department of Energy, PETC, under Contract No. DE-AC22-95PC95101, PSIT-1245, January, 1996
- 5. Nordin, A., Schager, P., Hall, B., "Mercury Speciation in Flue Gases: A Comparison of Results from Equilibrium Calculations with Results from Laboratory Experiments," presented at Swedish-Finnish Flames Days, Turku, Finland, September, 1990.
- 6. Galbreath, K.C and Zygarlicke, C.J. "Mercury Speciation in Coal Combustion and Gasification Flue Gases," *Env. Sci. Tech.*, **1996**, *30*, 2421-2426.
- 7. Flagan, R.C and Seinfeld, J. H *Fundamentals of Air Pollution Engineering*, Prentice Hall: Englewood Cliffs, NJ, 1988
- 8. EPRI Report TR-104614, "Electric Utility Trace Substances Synthesis Report," Project 3081, November, 1994.
- 9. W. H. Griest and J. E. Caton, "Extraction of Polycyclic Aromatic Hydrocarbons for Quantitative Analysis," Chapter 3 in *Handbook of Polycyclic Aromatic Hydrocarbons*, ed. by A. Bjorseth. New York: Marcel Dekker (1983), pp. 95-148.
- 10. G. M. Sverdrup, J. C. Chuang, L. Slivon, A. R. McFarland, J. A. Cooper, R. W. Garber, and B. S. Smith, "Comparison of Chemical Composition of Fly Ash Particles Collected in the Plume and Stack of a Coal-Fired Power Plant," presented at Workshop on Managing Hazardous Air Pollutants: State of the Art, Washington D. C., 1991.
- 11. KVB, Inc., "Measurements of POM Emissions from Coal-Fired Utility Boilers," EPRI REport CS-2885, Project 1075-1, Final Report, February, 1983.
- 12. Oak Ridge National Laboratory, "Identification and Quantification of Polynuclear Organic Matter (POM) on Particulates from a Coal-Fired Power Plant," EPRI Report EA-1092, Project 1057-1, Interim Report, June, 1979.

- 13. Southern Research Institute, "Planning Studies for Measurement of Chemical Emissions in Stack Gases of Coal-Fired Power Plants," EPRI Report EA-2892, Project 1776-1, Final Report, March, 1983.
- 14. Szpunar, C.B., "Air Toxics Emissions from the Combustion of Coal: Identifying and Quantifying Hazardous Air Pollutants from U.S. Coals," Argonne National Laboratory Report ANL/EAIS/TM-83, September, 1992.
- 15. Sloss, L.L., and Smith, I.M., "Organic Compounds from Coal Utilisation," International Energy Agency Coal Research Report IEACR/63, October, 1993
- 16. Warnot, M.J., Sarofim, A.F., J.P., Longwell, "Changes in the Degree of Substitution of Polycyclic Aromatic Compounds from Pyrolysis of a High-Volatile Bituminous Coal," *Energy & Fuels*, 1987
- 17. Warnot, M.J., Sarofim, A.F., J.P., Longwell, "Pyrolysis-Induced Changes in the Ring Number Composition of Polycyclic Aromatic Compounds from a High Volatile Bituminous Coal, "Twenty-Second Symposium (International) on Combustion, Pittsburgh, 1988
- 18. Grimmer, G., Jacob, J., Dettbarn, G., and Naujack, K.W., "Determination of Polycyclic Aromatic Hydrocarbons, Azaarenes, and Tiaarenes Emitted from Coal-Fired Residential Furnaces by Gas Chromatography/Mass Spectrometry," *Fesnius Zeitschrift fur Analytische Chemie*, 1985
- 19. Vernaglia, B.A., Warnot, M.J., Li, C.Z., and Nelson, P.F., "The Effects of Pyrolysis Temperature and Ion-Exchanged Metals on the Composition of Brown Coal Tars Produced in a Fluidized Bed Reactor," *Twenty-Sixth Symposium (International) on Combustion*, The Combustion Institute, 1996
- 20. Vernaglia, B. A., Wornat, M. J., Lafleur, A. L., Plummer, E. F., Nelson, P. F., and Li, C.-Z., in preparation, 1997.
- 21. Durant, J. L., Busby, W. F., Lafleur, A. L., Penman, B. W., and Crespi, C. L., "Human Cell Mutagenicity of Oxygenated, Nitrated, and Unsubstituted Polycyclic Aromatic Hydrocarbons Associated with Urban Air," *Mutation Research 371*: 123-157 (1996).
- 22. A. L. Lafleur, J. P. Longwell, J. A. Marr, P. A. Monchamp, E. F. Plummer, W. G. Thilly, P. P. Y. Mulder, B. B. Boere, J. Cornelisse, and J. Lugtenburg, "Bacterial and Human Cell Mutagenicity Study of Some C₁₈H₁₀ Cyclopenta-Fused Polycyclic Aromatic Hydrocarbons Associated with Fossil Fuels Combustion," *Environmental Health Perspectives 101:* 146-153 (1993).

- 23. S. C. Ruckmick, R. J. Hurtubise, *Journal of Chromatography 321*: 343-352 (1985).
- 24. E. J. Calabreese and E. M. Kenyon, *Air Toxics and Risk Assessment*. Chelsea, Michigan: Lewis Publishers (1991).
- 25. J. Lewtas and M. G. Nishioka, "Nitroarenes: Their Detection, Mutagenicity and Occurrence in the Environment," in *Nitroarenes*, ed. by P. C. Howard, S. S. Hecht, and F. A. Beland. New York: Plenum Press (1990), pp. 61-72.
- 26. C. Wei, O. G. Raabe, L. S. Rosenblatt, Environmental Mutagenesis 4: 249 (1982).
- 27. H. Tokiwa and Y. Ohnishi, "Mutagenicity and Carcinogenicity of Nitroarenes and Their Sources in the Environment," *CRC Critical Reviews in Toxicology* 17: 23-60 (1986).
- 28. P. A. Andrews, D. Bryant, S. Vitakunas, M. Gouin, G. Anderson, B. E. McGarry, M. A. Quilliam, and D. R. McCalla, in *Polynuclear Aromatic Hydrocarbons: Formation, Metabolism, and Measurement*, ed. by M. Cooke and A. J. Dennis. Colombus, Ohio: Battelle Press (1983), p. 89.
- 29. S. S. Hecht and K. El-Bayoumy, "The Possible Role of Nitroararenes in Human Cancer," in *Nitroarenes*, ed. by P. C. Howard, S. S. Hecht, and F. A. Beland. New York: Plenum Press (1990), pp. 309-316.
- 30. M. R. Plasterer, G. M. Booth, M. L. Lee, W. R. West, P. Smith, M. L. Tedjamulia, Y. Tominaga, and R. N. Castle, "Comparative Mutagenicity of Analogous Amino- and Nitropolycyclic Aromatic Hydrocarbons," in *Health and Environmental Research on Complex Organic Mixtures*, ed. by R. H. Gray, E. K. Chess, P. J. Mellinger, R. G. Riley, and D. L. Springer. Springfield, Virginia: National Technical Information Service (1987), pp. 251-258.
- 31. R. Mermelstein, H. S. Rosenkranz, and E. C. McCoy, "The Microbial Mutagenicity of Nitroarenes," in *Genetic Effects of Airborne Agents*, ed. by R. R. Tice, D. L. Costa, and K. M. Schiach. New York: Plenum Press (1982), pp. 369-396.
- 32. D. W. Later, M. L. Lee, K. D. Bartle, R. C. Kong, and D. L. Vassilaros, *Analytical Chemistry 53*: 1612-1620 (1981).
- 33. D. W. Later, M. L. Lee, R. A. Pelroy, and B. W. Wilson, in *Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry*, ed. by M. Coole. A. J. Dennis, G. L. Fisher. Colombus, Ohio: Battelle Press (1982), pp. 427-438.
- 34. D. A. Haugen, V. C. Stamoudis, M. J. Peak, A. S. Bopari, in *Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry*, ed. by M. Coole. A. J. Dennis, G. L. Fisher. Colombus, Ohio: Battelle Press (1982), pp. 347-356.

- 35. M. Nishioka, P. A. Smith, G. M. Booth, M. L. Lee, H. Kudo, D. R. Muchiri, R. N. Castle, and L. H. Klemm, *Preprints of Papers—American Chemical Society, Division of Fuel Chemistry* 30 (4): 93-98 (1985).
- 36. C.-h. Ho, B. R. Clark, M. R. Buerin, B. D. Barkenbus, T. K. Rao, and J. L. Epler, *Mutation Research* 85: 335-345 (1981).
- 37. M. Dong, I. Schmeltz, E. Lavoie, and D. Hoffmann, in *Carcinogenesis—A Comprehensive Survey, Vol. 3. Polynuclear Aromatic Hydrocarbons*, ed. by P. W. Jones and R. I. Freudenthal. New York: Raven Press (1978), pp. 97-108.
- 38. P. Burchill and A. A. Herod, *Fuel 62*: 20-29 (1983).
- 39. C. E. Ostman, A. L. Colmsjo, Fuel 67: 396-400 (1988).
- 40. R. L. Hanson, T. R. Henderson, C. H. Hobbs, C. R. Clark, R. L. Carpenter, J. S. Dutcher, "Detection of Nitroaromatic Compounds on Coal Combustion Particles," *Journal of Toxicological and Environmental Health 11:* 791-800 (1983).
- 41. Querol, X., Fernandez-Turiel, J.L., and Lopez-Soler, A., Fuel 74, 1994
- 42. Martinez-Tarazona, M.R., and Spears, D.A., Fuel Processing Technology, 47, 1996
- 43. Quann, R.J., Neville, M., and Sarofim, A.F., *Combustion Science and Technology*, **74**, 1990
- 44. Neville, M., and Sarofim, A.F., *Fuel*, **64**, 1984
- 45. Bool, III, L.E., Helble, J.J., Shah, N., Shah, A., Huffman, G.P., Huggins, F.E., Rao, K.R.P.M., Sarofim, A., Zeng, T., Reschke, R., Gallien, D., and Peterson, T.W., "Fundamental Study of Ash Formation and Deposition: Effect of Reducing Stoichiometry," Final Report prepared for Department of Energy, PETC, under Contract No. DE-AC22-93PC92190, PSIT-1178/TR-1407, September 1995.
- 46. Bool, L.E., Peterson, T.W., Wendt, J.O.L, "The Partitioning of Iron During the Combustion of Pulverized Coal.", *Comb. and Flame*, **99**, 1995
- 47. Boni, A. et al., "Transformations of Inorganic Coal Constituents in Combustion Systems", Phase I Final Report, U.S. DoE Contract No. DE-AC22-86PC90751, 1991
- 48. Schmidt, E.W., Gieseke, J.A., and Allen, J.M., "Size Distribution of Fine Particulate Emissions from a Coal-Fired Power Plant," *Atm. Env.* **10**, 1976.
- 49. McElroy, M.W., Carr, R.C., Ensor, D.S., and Markowski, G.R., "Size Distribution of Fine Particles from Coal Combustion," *Science* **215**, 13-19, 1982.

- Flagan, R.C. and Friedlander, S.K., <u>Recent Developments in Aerosol Science</u>, J. Davis ed., John Wiley and Sons, N.Y., p.25, 1978.
- 51. Freidlander, S.K., Smoke, Dust and Haze, John Wiley and Sons, NY, 1977.
- 52. Joutensaari, J., Kauppinen, E.I., Jokiniemi, J.K., and Helble, J.J., "Studies on ash vaporization in power plant scale pulverized coal combustion," paper presented at the Engineering Foundation Conference on The Impact of Ash Deposition on Coal Fired Power Plants, Solihull, UK, 20-25 June, 1993.
- 53. Hurley, J.P., and Shobert, H.H., "Ash Formation During Pulverized Subbituminous Coal Combustion, 1. Characterization of Coals, Inorganic Transformations during Early Stages of Burnout", *Energy & Fuels*, **6**, 1992
- 54. Lunden, M., "Impact of Mineral Matter on Char Reactivity", presented at IEA Workshop on Emerging Issues in Coal Combustion, Livermore, CA, April 15-17, 1997

APPENDIX A

Experimental Particle Size Distribution Data

Pittsburgh #8 Runs 9-12

Illinois #6 Runs 1-7

Particule Size Distribution Calculations Test: 97P8-9 NOCYCLONE

Gressed Filter Weights

Net Mass Collected

Tite.

Normalized Distribution	(X X)	11.21737	46.47786	7.92276	9.64851	7.21677	14.95649	0.17119	0.25838	0.04150	0.08819	0.0000		100.00000																										
žŏ		11.0000	10.0000	9.00000	8.00000	7.00000	8.00000	5.00000	4,00000	3.00000	2.00000	1.0000	Cyclone TOTAL	AASS																										
Normalized		0.11217	0.48478	0.07923	0.09649	0.07217	0.14956	0.00171	0.00259	0.00042	0.00088	0.00000	0 F	1.00000 MASS																										
Mass Fraction		0.000	0.00689	0.01261	0.01774	0.01307	0.00472	0.00171	0.00259	0.00042	0,00088	0.0000	0.83516	1.00000	0.99440	0.00580																								
Mass MASS (no Fraction (no	cyclone)	0.11281	0.48751	0.07967	0.09703	0.07257	0.15041							1.00000	×0.337	40.337																								
AASS (no	cyclone)	0.00071	0.00309	0.00051	0.00061	0.00046	0.00095	0.00007	0.00016	0,0000	0.0000	0.00002		0.00634																										
•	STAGE	11.00000	10.00000	9.0000	8.00000	7.0000	6.0000	5.00000	4.0000	3.0000	2.00000	1.0000	Cyclone	TOTAL MASS																										
	Filter+Ash+Vial 8	0.97485	1.00075	1.00075	1.00576	1.00347	1.00547	0.13739	0.13690	0.14064	0.13710	0.13810	•	•																										
	Vial Average F	0.96737	0.96862	0.96979	0.97350	0.97179	0.97487	0.0000	0.0000	0.00000	0.0000	0.0000																												
	Average	0.00677	0.03104	0.03046	0.03165	0.03122	0.02965	0.13731	0.13664	0.14075	0.13711	0.13806			Average	0.96737	0.96862	0.96979	0.97350	0.97179	0.97487								Average	0.97485	1.00075	1,00075	1.00576	1.00347	1.00547	0.13739	0.13680	0.14064	0.13710	0.13810
	Ę		0.03 30 30 30			0.03122	0.02963	0.13732	0.13685	0.14078	0.13710				g			0.96979			0.97562								gg gg	0.97464	1,00072	1,00072	1,005/5	•	1,00547		0.13681		0.13709	
	2nd	0.00678	0.03103	0.03045	0.03163			0.13730	0.13663		0.13718	0.13806			24	0.96737	0.96664	0.96978	0.97352	0.97180	0.97349								24				1.00577	1.00348	1,00546	0.13740	0.13683	0.14063	0.13708	0.13809
	**	0.00676		0.03047	0.03166	0.03121	0.02966			0.14072	0.13705	0,13809		Weights		0.96736	0.96660		0.97348	0.97178	0.97559						,			0.97486	1.00078	1.00078				0.13737	0.13676	0.14065	0.13714	0.13610
		11.00000	10,00000	9.00000	8,00000	7,00000	8.00000	2,00000	4.00000	3,00000	2,0000	1.0000		Emoty vial Weights	STAGE	11.00000	10.00000	9,0000	8.00000	2,00000	6.00000	5.00000	4.00000	3.00000	2.00000	1.00000		Ę		11.0000	10.00000	9.0000	8,00000	7.00000	8.00000	5.00000	4.00000	3.00000	2.00000	1.0000

Distribution Calculations		
Particule Size D	Test: 97P8-9	NO IOAU MILIM

GIBESON PIKOL WONDING	COL AVOIGNAS						The state of the s		!
									MASS
STAGE	# #	2nd	3rd	Average	Viel Average	Fitter+Ash+Vial	STAGE	MASS	FRACTION
11.00000	0.02533	0.02536		0.02535	0.00000	0.02577	11.00000	0.00043	0.00441
10.00000	0.14148	0.14145		0.14146	0.0000	0.14210	10.0000	0.00065	0.00869
9.00000	0.13717	0.13703	0.13724	0.13707	0,0000	0.13829	_	0.00121	0.01261
8.00000	0.1386	0.13963	0.13960	0.13961	0.0000	0.14132	_	0.00171	0.01774
7.00000		0.13242	0.13246	0.13244	0.0000		_	0.00126	0.01307
8.00000	0.03256		0.03256	0.03256	0.96673	0.99975	-	0.00046	0.00472
5.00000	0.03114	0.03111		0.03113	0.96299		•	0.00017	0.00171
4,0000	0.02747	0.02746		0.02747	0.96706	0.99478	4.0000	0.00025	0.00258
3.00000	0.03071	0.03071	0.03077	0.03073	0.96370	0.99447		0.00004	0.00042
2.00000	0.03202	0.03205		0.03204	0.97119	1.00331	2,00000	0.00008	0.0008
1.00000		0.02940	0.02904	0.02922	0.97471	1.00382	1,00000	0.00000	0.0000
Cyclone					2.80967		2.70000 Cyclone	0.09014	0.93516
4th wt on plate 9:	tate 9:	0.13684					TOTAL MASS	0.09539	1.0000
Empty vial Weights	Weights								
STAGE	뚕	Znd	3rd	Average					
11.00000									
10.00000									
9.00000									
\$.00000									
7,00000									
6.00000	0.99675	0.96671		0.98673					
5,00000		0.96296	0.96299	0.96299					
4.00000	0.98705	0.96707		0.96706					
3.00000	0.96371	0.96368		0.96370					
2.00000	0.97118	0.9712		0.97119					
1.00000	0.97472	0.97469		0.97471					
Cyclone	2.59258	2.62715		2.60967					
Filter+Ash+Vial	¥.								
STAGE	₩	2nd	3rd	Average					
11,0000	0.02578		0.02576	0.02577					
10.0000	0.14211	0.14209		0.14210					
9.0000	0.13830	0.13827		0.13829					
8.00000	0.14131	0.14133		0.14132					
7,00000	0.13371	0.13369		0.13370					
8.00000	0.99874	0.99975		0.99975					
5.00000	0.89427	0.99428		0.89428					
4.0000	0.99476	_		0.99478					
3.00000	0.9947	0.99446		0.99447					
2.00000	•	1,00336	1.00330	1,0033					
1.0000	1.00383	1.00381		1.00382					

Calculations	
Distribution	
Particule Size	

Management		
Particula Giza Distribution Caliculation	Test: 97P8-10	NOCYCLONE

Net Mass Collected

#

Greased Filter Weights

Normafzed	Distribution	€	10.95630	18.82236	22.28717	21.81895	13.29730	8.24063	4 4 4	36889	0.68444	0.77000	0.2994		100,00000																									
Ş	2	*			_			8	8	8	8	8	8		-																									
		w	11.00000	10.00000	9.00000	8,00000	20000	8.0000	20000	4.0000	3.0000	2.00000	1.0000	Cyclone TOTAL	SS.																									
		STAGE		e N	Ŀ	<u>o</u>	Ŀ	=	X.	92	x	٥	_	Cycler TOTAL	1.00000 MASS																									
	Normalized	9	0.10956	0.18822	0.22287	0.21819	0,13297	0.06241	0.045	0.01368	0.00684	0.00770	0,00298		90.																									
		Mass (2	g	7	8	듄	×	Z,	8	2	2	8	\$	8	ស	Ę.																							
Mass	Fraction	(cyclone)	0.01312	0.02363	0.01041	0.02695	0.02781	0.02738	0.0145	0.01368	0.00684	0.00770	0,00299	0.825 A2	1,0000	0.95423	0.0457																	,						
18	<u>و</u> ع	ê	0.11482	0.19725	0.23358	0.22866	0.13935	0.08636							1,00000																									
Mass	Fraction	cyclone)	Ö	0	ö	ö	<u>.</u>	ŏ								×0.337	6.337																							
	MASS (no Fraction (no	cyclone)	0.00020	0.00033	0.00040	0.00039	0.00024	0.00015	00000	0.0000	0.00000	0.0000	0.0000		0.00170																									
	₹	បិ			_	_	_	_	_	_	_	-	-																											
			11.00000	10,00000	9,0000	8.0000	7.0000	9000	5.0000	4.0000	3.0000	2.00000	1.00000		TOTAL MASS																									
		STAGE												Cyclone	TOTAL																									
		7	0.97049	0.88910	0.99354	1.01136	1,000	1.00241	0.14136	0.14024	0.13808	0.13596	0.14120																											
		Filler+Ash+Vial STAGE	o	Ó	0	-	+	•	ø	0	Ö	0	•																											
		£		<u>5</u>	8	8	ĕ	2	8	8	8	8	8																											
		erade	0.96436	0.96951	0.96259	0.96189	0.97031	0.97104	0.0000	0,0000	0,0000	0.0000	0.0000																											
		Viel Average																																						
		Average	2	0.02926	0.03055	0.02909	0.03037	0.03122	0.14156	0.14048	0.13819	0.13614	0.14122			Average	0.96439	0.96951	0.96259	0.86189	0.97031	0.97104							Average	0.97049	0.99910	0.99354	1913	1,000	1.00241	0.14135	0.14024	0.13808	2000	514.5
		Ave	0			٥	٥	0	•	0		_	-			¥		_											ş			_						_		_
		Ę	<u>!</u>	0.02925	0.03060						0.13817		0.14123			gg 3g	0.96441	0.96953	0.96267		0.97028	0.97102							Ę	0.97049	0.99900	0.99354	10138	1.00088	1.00238	0.14136	0.14025	0.13909	0.130	<u> </u>
		•	000590	0.02823		0.02908	0.03034	0.03121	0.14153	0.14048		0.13613				6 7			0.96252	0.96187									• •		0.99916	0.99362	1.01143	1.00088	00246	0.14131	0.14019	0.13803	13341	
		Ž	i		_											2nd					•	<i>(</i> *							7J		_	_	•	•	•	-			_	_
			0.00590	0.02931	03050	0.02909	0,03039	0.03123	D.14159	0.14048	0.13821	0.13615	0.14120			1	0.96437	0.96948	0.96259	0.98191	0.97033	0.97/106						_		0.97048	0.99906	0.58346	1,01131	1.00086	1,00237	0.14138	0.14028	0.13812	0000	141.0
		\$	· 8						_	_	_	_	_		rad We	#					_		8	8	81	8	8	SV TAN	18. 18.	Q	_	_			•			_		_
		STAGE	11 00000	10 0000	9.0000	8,00000	7,0000	6.0000	5.0000	4,0000	3,0000	2,0000	00000		Emoty vial Weights	STAGE	11,00000	10,00000	9.0000	8,0000	7.0000	00000	5.0000	4.0000	3.0000	2,00000	1.0000	Filter+Astr+Via	STAGE	11,0000	10,00000	9.00000	8.00000	7.0000	6.0000	2.00000	4.0000	3.0000	2.00000	0000
		J.	•																									_												

ze Distribution Calculations	70	LONE
Particule Size	Test: 97P8-10	WITH CYCLON

WINCTCLONE	Ę						Net Mass		
Greatest Fi	Breased Filter Weights						Collected		
									MASS
STAGE	<u>*</u>	2 <u>rd</u>	Ę	Average	Vial Average	Fitter+Ash+Vial	STAGE	MASS	FRACTION
11,00000	0.02754	0.02748	0.02750	0.02751			•		0.01312
10,00000		0.13722	0.13720	0.13721	0.0000	0.13749	10,00000	0.00028	0.02353
000006	0.14218		0.14213	0.14213					0.01041
8,00000	0.13676			0.13676					0.02695
7,00000	0.13501			0.13500					0.02781
6.00000	0.03154		0.03152	0.03153					0.02738
5.00000	0.03125		0.03124	0.03125					0.01454
4.00000	0.03319			0.03320					0.01369
3.00000	0.03322			0.03323					0.00684
2.00000	0.03004			0.03004					0.00770
1,0000	0.02719	0.02716		0.02718					0.00296
Cyclone	!				8.00562		Cyclone	0.00964	0.8250
•							TOTAL MASS	0.01169	1.00000
Empty vial Weights	Weights								
STAGE	15	2nd	3rd	Average					

Average						0.96417	0.98470	0.98063	0.96021	0.97367	0,97573	8.00552			Average	0.02766	0.13749	0.14228	0.13707	0.13533	0.99602	0.99611	0.99399	0.99351	1.00380	1.00294	
3rd										0.97351	0.97572	8.00577			20	0.02765	0.13747	0.14225									
2nd						0.96417	0.96472	0.96064	0.96022	0.97385		8.00345			2nd		0.1375		0.13708	0.13534	0.99601	0.99610	0.99397	0.99351	1,00378	1.00292	
						0.96416	0.96467	0.96062	0.96019	0.97365	0.97573	8.00734	j	<u> </u>	164	0.02767		0.14226	0.13706	0.13531	0.99602	0.99612	0.99400	0.99351	1.00382	1,00295	
STAGE 184	11,00000	10.00000	9.00000	8.00000	7,00000	000009	5.00000	4,00000	3,00000	2.00000	1.00000	Cyclone			STAGE	11.0000	10.0000	9,00000	8,00000	7.00000	6,00000	5.00000	4.00000	3.00000	2.00000	1,0000	

Particule Size Distribution Calculations
Test: 97P8-11
NOCYCLONE

	Normalized	Distribution	¥	6.45885	36.97329	13,72506	25.76201	8.86073	4.99083	0.55387	0.40344	0,20514	0.12308	0.14360		100.00000												
	_			11.00000	10.00000	9.00000	8,00000	7.00000	6,00000	5.00000	4.00000	3.00000	2.00000	1.0000	Cyclone TOTAL	MASS												
		Normalized	Mass	0.06459	0.38973	0.13725	0.25762	0.08961	0.04994	0.00554	0.00403	0.00205	0.00123	0.00144	O F	1.00000 MASS												
	Mass		(cyclone) M	0.02038	0.03720	0.02585	0.02161	0.00814	0.00485	0.00654	0.00403	0.00205	0.00123	0.00144	0.96769	1.0000	0.98571	0.01429										
	Mass	raction (no	cyclone)	0.06552	0.39538	0.13924	0.26136	0.08786	0.05063							1,0000	70.337	40.337										
		MASS (no Fraction (no	cyclone)	0.00044	0.00266	0.00093	0.00176	0.00059	0.00034	0.00006	0.00004	0.00003	0.0000	0.00000		0.00672	^	•										
Net Mass Callected			FAGE	11.00000	10.0000	8,00000	8,0000	7.00000	6.00000	5.00000	4.00000	3,00000	2.00000	1.0000	Cyclone	TOTAL MASS												
žŏ			Fither+Ash+Vial STAGE	0,68585	0.70569	0.70700	0.71192	0.70003	0.70466	0.13826	0.12479	0.13654	0.14162	0.13621	_	ř												
			Vial Average Fi	¥	0.67544	0.67792	0.67824	0.67090	0.67269	00000	0.0000	0.0000	0.0000	0.00000														
Filter			Average V	90	0.02760	0.02815	0.03193	0.02855	0.03163	0.13820	0.12475	0.13651	0.14207	0.13924			Average	0.67943	0.67544	0.67792	0.67824	0.67090	0.67289					
-			E S	0.00607		0.02813	0.03194	0.02855	0.03165	0.13820	0.12475	0.13850	0.14205				Pe					_						
			2nd	00000			0.03194	0.02854						0.13825			Sud 2md	0.67942	0.67542	0.67791	0.67923	0.67089	0.67267					
er Weights			18	76520	0.02757	0.02816			0.03181	0.13819	0.12475	0.13851	0.14208	0.13023		Weights	¥	0.67944	0.67545	0.67792	0.67725	0.67090	0.67270					
Gressed Filter Weights			STAGE	8	10,00000	9.00000	8.00000	7.00000	6.00000	2 00000	4 00000	3,0000	2 00000	00000		Empty vial Weights	STAGE	11.00000	10.00000	8-00000	8.00000	7.00000	6.00000	5.00000	4,00000	3.0000	2.00000	1-
																٨	7	,										

Average 0.68585 0.70569 0.70700 0.71192 0.70003 0.70466 0.13826 0.13826 0.13854 0.13654

Filter+Ash+Vial STAGE 1st 2n 11.00000 0.88584 10.00000 0.70569 9.00000 0.7183 7.00000 0.7183 5.00000 0.13824 4.00000 0.13824 2.00000 0.13824 1.00000 0.13824

0.13827 0.12480 0.13655 0.14164 0.13922

2nd 3 0.68586 0.70568 0.70589 0.71191

STAGE 1st									
₽ _									MASS
_		2nd	P.	Average	Visi Average	Fifter+Ash+Vial	STAGE	MASS	FRACTION
	02973	0.02975		0.02974				0.00149	0.0203
_	0.13891	0.13990		0.13991				0.00272	0.0372
	14106	0.14105		0.14106				0.00189	0.0258
		0.13827	0.13827	0.13627				0.00158	0.0218
	14094	0.14094		14094				0,00059	0.0081
00000		0.03010	0.03009	0,03040	0.67486	0.70531	8,0000	0.00035	0.0048
	3,03118			0.03117				0.00040	0.0055
	3,03076			0.03078				0.00030	0.00
	3,02978			0.02980				0.00015	0.0020
	0.03138			0.03138				0.00000	0.0012
	0.03102			0.03102				0.00010	0.0014
							Cyclone	0.06345	0.8676
•							TOTAL MASS	0.07312	000.

Average	0. 67.486 0.67772	0.67282	0.67551	0.67534	7,75880		0.03123	0.14263	0.14295	0.13985	0.1415	0.70631	0,70829	0.70389	0.70617	0.70698	0.70647	7.82225
Pee					7.75874	Į	03122	0.14262	0.14294	0.13986	0.14154	0.70533	0.70928	0.70369	0,70617	0.70898	0.70648	7.82228
Sud	0.67486	0.67281	0.67551	0.67533	7,75883	į	2			0.13879	0.14153	0.70529	0.70830	0.70388	0.70616	0.70897	0.70647	7.82232
Ħ	0.67486	0.67282	0.6755	0.67535	7,75883		0.073124	0.14263	0.14295	0.13990								7.82216
5TAGE 11.00000 10.00000 9.00000 8.00000 7.00000	6.00000	4.0000	2.0000	1.00000	Cyclone	÷	44 00000	10.00000	9.0000	8.00000	7,0000	6.0000	5,00000	4.00000	3,00000	2,00000	1.00000	Cyclone

Calculations	
Distribution	
Particule Size	
_	

			Not Mass	Collected
				Filter
Particular Size Distribution (Astronomore)	Test: 97P8-12	NOCYCLONE		Gressed Filter Weights

		Mormalized	cyclone) (cyclone) Mass STA	0.04558 0.01490 0.04213	0.73200 0.07522 0.67659 1	0.07748 0.03241 0.07162	0.04315 0.01892 0.03988	0.05196 0.00323 0.04803	0.04983 0.02673 0.04608	0.02318 0.02318	0.01064 0.01064	0.01206 0.01208	0.01963 0.01963	0.01017	U./5250 Cyclone TOTAL	8	-	<0.337 0.07569																				
Net Mass	Collected	2	Filter+Ash+Vial STAGE	0.68146	0.70801	0.70605	0.71669		0.71088		0.13751		0.13563 2	0.00000 0.14315 1.00000	Cyclore	TOTAL MASS																						
	Filter		3rd Average Vial Average	0.00967 0.00668 0.	0.02956			0.02888 0.02887 0.	0.02803 0.02804 0.	0.13894 0.13994 0.	0.13746		0.13561	0.14315 0.14314 0.			3rd Average			0.67377	0.68687	-	0.68261 0.66253 0.68257							3rd Average	0.68145 0.68146 0.68146		0.70606	0.71668	U./UD4/ U./UD4/ U./UD4/ U./UD4/			
NOCYCLONE	Gressed Filter Weights		STAGE 1st 2nd	11.00000 0.00669 0.00	10.00000 0.02958 0.02	9,00000 0,03181 0.03	8.00000 0.02838 0.02	7.00000 0.02886 0.02	6.00000 0.02804 0.02	5.00000 0.13983 0.13	4.00000 0.13746 0.13	3,00000 0.13913 0.13		1.00000 0.14313 0.14		Empty vial Weights	ন	00 0.67453	0.67445		0.68729	0.67629	0.68256	5.00000	4.00000	3.00000	2.00000	1.00000	Filter+Ash+Val	STAGE 1st 2nd	11.00000 0.6	0.70796	0.70804		7.0000 0.70543 U.A	2000	0.13753	3

Greesed Fit	Greesed Filter Weights			Fifter			Collected		
				į					MASS
STAGE	16	2nd	S	Average	Vial Average	Fitter+Ash+Vial	STAGE	MASS	FRACTION
11,00000	0.02983	0.02984	! !	0.02988	0,0000	0.03018	11.0000	0.00032	0.01490
10,00000	0.13897	0.13883		0.13895	0,0000		10.0000	0.00159	0.07522
8.00000	0.14163	0.14154	0.14157	0.14158	0.0000		9.0000	0.00068	0.0324
8.00000	0.13834	0.13930		0.13932	0.0000		8.00000	0.00040	0.0189
7.00000	0.14158		0.14152	0.14152	0.0000			700007	0.0032
6.00000	0.03231			0.03231	0.67171			0.00056	0.0267
5,00000	0.03017	0.03018		0.03017	0.67703	0.70768			0.02318
4,00000	0.03120	_		0.03120			4.0000	0.00023	0.0106
3,00000	0.03127	_		0.09127				0.00028	0.0120
2,00000	0.03214	_		0.03213	0.68444		2,0000	0.00042	0.0196
1.00000	0.03250	0.03250		0.03250	0.68066	0.71338	1,0000	0.00021	0.0101
Cyclone					7.64602	7	.66193 Cyclone	0.01591	0.7529
•							TOTAL MASS	0.02114	1.0000
Empty vial Weights	Weights								
STAGE	<u> </u>	2nd	ę	Average					
11,0000				1					
10.0000									
9.00000									
8.00000									
7.00000									
6.00000	0.67173		0.67169						
5.00000			0.67701	0.67703					
4.00000		0.68183							
3.00000	_	_		0.67508					
2,00000				0.68444					
1,00000				0.68066					
September 1				7 64802					

	Average	0.03018	0.14054	0.14227		0.14159	0.70458	0.70768	0.71323	0.70658	0.71699	0.71338	7.08193
	æ	0.00018			0.13971	0.14158							
	2nd		0.14055	0.14227	0.13973	0.14159	0.70458	0.70767	0.71323	0,70657	0.71698	0.71337	7.66195
Viel	표	0.03017	0.14053	0.14226			0.70458	0.70769	0.71323	0.70659	0.71699	0.71338	7.66191
Fitter+Ash+Via	STAGE	11.00000	10.0000	8.00000	8.00000	7.00000	6.00000	5.00000	4.0000	3.00000	2.0000	1.00000	Cyclone

Particle Size Distribution Calculations Test: 97iL1 NOCYCLONE

		1					z	Net Mass						
	Greated Fi	Greated Filter Weights			Filter		0	Collected						
		,								MASS			~	Normalized
								_	MASS (NO	FRACTION	_	alized		Distribution
	STAGE	<u> </u>	2nd	Ę	Average V	Vial Average	Filter+Ash+Vial S	STAGE	Cyclone)	(No Cyclone)	(Octobe)			€
	11,00000		0.00679		Я	0.96575	0.97312	11.0000	0.00057	0.14820	0.00000	0.14863	11,00000	14,66347
	10,00000		0.03246		0.03248	0.96718	1,00074	10,0000	0.00109	0,28093	0.06678	0.27797	10.00000	27.79684
	9.0000	0.03515		0.03515	0.03515	0.97369	1.00948	9,0000	0.00065	0.16753	0.04324	0.16576	8.0000	16.57610
	8.00000	0.03046	800	_	0.03045	0.95979	0.99114	8.00000	0.00090	0.23325	0.02680	0.23079	8.00000	23.07903
	7,00000	0.02945	_	_	0.02943	0.97146	1.00130	7,00000	0.00041	0.10567	0.01131	0.10456	7.00000	10.45569
	6.00000	0.02945	0.02945	,~	0.02945	0.97470	1.00440	9:00000	0.00025	0.06443	0.00303	0.06375	6.00000	6.37542
	5.00000	0.14073	0.14077		0.14075	0.0000	0.14090	5.0000	0.00015		0.00647	0.00647	2.00000	0.64748
	4,0000	0,14145	0.14146	"	0.14146	0.0000	0.14147	4.00000	0.00001		0.00211	0.00211	4.00000	0.21069
	3.00000	_	0.14100	_	0.14098	0.0000	0.14099	3.00000	0.00001		0.00108	90100	3,0000	0.10791
	2.0000		0.14069	_	0.14068	0,0000	0.14044	2.00000	0.0000		0.0000	0.00000	2,00000	0.00000
	1,0000	0.14088	D.14069	_	0,14088	000000	0.14082	1.00000	0.0000		0.00087	0.00087	1.0000	0.08736
							o	Cyclone			0.83830	•	TOTAL	
		;					•	00111 1110	000000	1	,		000	00000
Δ.	Empty vial Weights	Weights					-		0.00388	33.		3333	2	3
-1	STAGE	¥	2 <u>nd</u>	P.G	Average					18.87	0.98947			
1	11.00000	0.96575	0.96574	**	0.96575					40.337	0.01053			
	10.00000	0.96718	0.96717		0.96718									
	9.0000	0.97370	0.97367		0.97369									
	8.00000	0.95980	0.95977		0.95979									
	7,00000	0.97146	0.97145	ıc	0.97146									
	6,00000	0.97471	0.97468	~	0.97470									
	20000													
	9000													
	4.0000	_												
	3,0000	_												
	2.0000	_												
	1.0000	_												
	Filter+Ash+Via	+Vial												
	STAGE	12	2nd	and Dec	Average									
	11,00000				0.97312									
	10,00000				1,00074									
	00000	_	•		1,00949									
	00000	_	_		0.00114									
) =	20130									
	10000				2									
	6.00000			œ.	100440									
	5.00000			~	0.14090									
	4.0000	0.14145	0.14149	œ	0.14147									
	3.00000	0.14097	0.14101	_	0.14099									
	2.00000	0.14044	0.14044	4	0.14044									

Distribution Calculations		ONE
Particle Size	Test: 97iL1	WITH CYCLONE

	WITH CYCLONE	<u> </u>						Net Mass				
	Grassed Fi	Grassed Filter Weights			Ti			Collected				
	STAGE	7	2nd	P.	Average	Vial Average	Fitter+Ash+Vial	STAGE	MASS		Mass Fraction	
	11,00000		83008		0.03008	8.3348	1 0.0367	_		00000	0,0000	
	10,00000				0,13897		0.16496	=		002599	0.06678	
	9,0000				0.13862					0.01683	0.04324	
	8,00000		0.13779		0.13779					0,01043	0.02680	
	7.00000	0.13859			0.13859	00000				000440	0.01131	
	8.00000		0.03147		0.03147					3,00116	0.00303	
	5,00000				0.02866					000252	0.00647	
	4 00000				0.03132					000082	0.00211	
	3,0000			D.02847	0.02848					3,00042	0.00108	
	2 00000				0.17987					000000	0.0000	
	1,0000		0.02911		0.02910					3,00034	0.00087	
								Cyclone		32627	0.83830	
	Emoty vial Weights	Veight						TOTAL MASS		0,38920	1,00000	
	STAGE	<u>=</u>	2nd	84	Average							
	11.00000		8.33479		8.33484							
	10.00000											
	9.00000											
	8.00000											
_	7,00000											
	6.00000				0.97128							
	5.00000				0.98556							
	4.00000				0.96691							
	3,0000				0.96331							
	2.00000	0.96048	0.96048		0.96048							
	,				00000							

	0.97128	0.96556	0.96691	0.96331	0.96048	0.98236	7.96201			Average	0.03673	0.16496	0.15545	0.14822	0.14299	.00392	0.99673	9068610	0.99221	0.98351	1.01179	8.28828	
	ò	ö	Ö	Ö	o	o	7.96018 7.				Ó	Ö	Ö	0,14823 0,	0.14300 0.	+	0	0	o	o	1,01180 1,	8.28829 8	
	0.97127	0.96374	0.96689	0.96330	0.96048	0.98235	7.96176	7.95991		2nd 3rd	0.03672	0.16494	0.15547	_	0.14304	1.00394	0.99674	0.99905	0.99222	0.98352		8.28832	
	0.97128	0.96737	0.96692	0.96332	0.96048	0.98236	7,98359	7.96463	層	1st 2	0.03673	0.16498	0.15543	0.14821	0.14294	1.00390	0.99672	0.99904	0.99220	0.8835	1.01178	8.28823	
}	6.00000	5,00000	4.00000	3,00000	2.00000	1.00000	Cyclone		Filter+Ash+Vial	STAGE	11,0000	10.0000	9.0000	8.00000	7,00000	6.00000	5.00000	4,00000	3,00000	2,00000	1,0000	Cyclone	

Particle Size Distribution Calculations Test: 97IL2 NOCYCLONE

					Net Mass						
Greated Filter Weights					Collected						
							MASS	MASS		_	Normalized
						MASS (NO	FRACTION	FRACTION	Normalized		Distribution
STAGE 1st	2rd 3rd	Average	Vial Average	Filter+Ash+Vial STAGE		Octone)	(No Cyclone)	(Cyclone)	Mass	STAGE	(M %)
00 000733	26700	0.00734	0.97574	0.98316	11,0000	0.0000	0.07101	0.00702	0.06705	11,00000	6.70509
	0.03100	0.03101	0.97142	1.00272	10.0000	0.00029	0.25888	0.00577	0.24446	10.00000	24.44563
_	0.03294	0.03294	0.97303	•		0.00029	0.25740	0.01042			24.30594
_	0.03168	0.03169	0.96846	Ī		0.00015	0.13314	0.04766		8.00000	12.57204
_	0.03018	0.03019	0.97505	1,00546		0.00022	0.19527	0.05174		7.0000	18,43899
		0.02984	0.98742	1.01736		0.00010	0.08432	0.02343	0.07962	6.00000	7.96229
5,00000 0.14042		0.14043	0,0000	0.14018		000000		0.01325	0.01325		1.32458
	0.13946	0.13946	00000	0.13943		0.0000		0.01279			1.27929
		0.13761	00000	0.13755		0.0000		0.00623			0.62267
_		0.13855	000000	0.13856		0.00002		0.00645		2.00000	0.64531
1,00000 0.14221		0.14223	0.0000	0.14208		0.0000		0.01698		1,00000	1.69818
	•				Cyclone			0.79626			
					•					TOTAL	
Empty vial Weights					TOTAL MASS	0.00113	1.00000	1.00000	1.00000 MASS	MASS	100,00000
STAGE 1st	2nd 3rd	Average					76.337	0.94430			
11.00000 0.97576	0.97572	0.97574					<0.337	0.05570			
		0.97142									
9,00000 0.97304		0.97303									
_		0.98646									
_		0.97505									
_		0.98742									
5.0000											
4.00000											
3,0000											

Average 0.96316 1.00272 1.00546 1.01736 0.14018 0.13843 0.1385 0.1385 0.14208

0.98316 1.00270 1.00628 0.98831 1.00547 1.01738 0.14015 0.13557 0.13554 0.14209

Fifter+Ash+Vial
STAGE 1st 2nd
11.00000 0.98315 0
10.00000 1.0023 1
8.00000 0.9828 0
7.00000 1.00544 1
6.00000 1.01733 1
5.00000 0.14021 0
3.00000 0.13940 0
3.00000 0.13952 0
2.00000 0.14206 0

2

Particle Size Distribution Calculations Test: 971L2 WITH CYCLONE

WITH CACLONE	1 1						Net Mass		
Gressed Fi	Gressed Filter Weights			riiiter F			Collected		
STAGE	1	2 <u>7</u> 4	Ę	Average	Val Average Fi	Fitter+Ash+Vial STAGE		MASS	Mass Fraction
11,00000	0.03049	0,03049		0.03049	0.00000	0.03080	11.00000	0.00031	0.00702
10.00000	0.13960	0.13862		0.13861	000000	0,13887	10,0000	0.00028	0.00677
9,0000	0.14192	0.14192		0.14192	0.0000	0.14238	9.0000	0.00046	0.01042
8.00000	0.13778	0.13779		0.13779	0.00000	0.13989	8.00000	0.00211	0.04766
7,00000	0.13733	0.13732		0.13733	0.0000	0.13961	2,0000	0.00229	0.05174
6.00000		0.03250	0.03250	0.03250	0.96711	1,00064	6.00000	0.00103	0.02343
5.0000		0.03046	_	0.03045	0.96778	0.99881	2.00000	0.00058	0.01325
4,0000		0.03146		0.03145	0.96695	0.99897	4.0000	0.00057	0.01279
3.00000	0.03055	0.03068		0.03057	0.96822	90666'0	3.00000	0.00027	0.00623
2.00000	0.03214	0,03218		0.03216	0.97384	1.00629	2,0000	0.00029	0.00645
1,0000	0.03097	0.03010		0.03054	0.96617	0.99745	1.0000	0.00075	0.01698
					7.72191	7,75717	.75717 Cyclone	0.03528	0.79826
Empty vial Weights	Weights						TOTAL MASS	0.04417	1,0000
STAGE	ĕ ‡	2nd	3rd	Average					
11.00000									
10.00000									
9.0000									
8,00000									
7,00000									
6.00000	0.96711	0.96710		0.96711					
5.0000	0.96779	0.96776		0.96778					
4,00000	0.96696			0.96695					
3.0000	0.96822			0.96822					
2.00000	0.97385	0.97383		0.97384					
1,0000				0.98617					
Cyclone			7.72191	7.72191					
•									

Average 0.03080 0.13887 0.13883 0.13861 1.00084 0.99887 0.99897 0.99897 0.99897 0.99897 0.99897 0.99897

0.13865 0.14237 0.13880 0.13880 1.00065 0.99888 0.99898 1.00626 0.99746 7.75716

Filter+Ash+Visit 21
11.00000 0.03079
10.00000 0.03079
10.00000 0.03079
7.00000 0.99980
6.00000 0.999905
3.00000 0.99905
2.00000 1.00831
1.00000 0.99744
Cyclone 7.75717

0.13886 0.14239 0.13890 0.13962

동

0.03081 2

Particle Size Distribution Calculations
Test: 97IL3
NOCYCLONE

	į						Net Mass						
Greened	Greated Filter Weights						Collected						
									MASS	MASS		_	Normalized
								MASS (NO	FRACTION	FRACTION	Normalized		Distribution
STAGE	#	2nd	3rd	Average	Vial Average	Filter+Ash+Vial STAGE	STAGE	Cyclone)	(No Cyclone)	(Cyclone)	Mass		(x x)
11 00000	0.00620	00624		ĸ	0.68485	0.69128	11.00000	0,00040	0.15399	0.00525	0.15206	11,00000	15.20640
10,00000		0.02985		0.02963	0.68236	0.71317	10.00000	0.00089	0.33650	0.00219	0.33229	10.0000	33.22880
000006		0.03088		0.03088	0.67960	0.71108		_	0.23194	0.01743	_	8.0000	22.90346
8,0000	_	0.03027		0.03026	0.87651	0.70700			0.08745	0.02794	0.09636	8,00000	8.83573
7,0000	_	0.02964		0.02962	0.67771	0.70767	7 7,00000	0.00034	0.12928	0.01541	_	2,00000	12,76586
9	_	0.02934		0.02932	0.67240	0.70188	9 6.00000	_	0.06084	0.01016	0.06007	6.00000	6.00747
2,0000	_	0.14130		0.14215	0.0000		3 5.0000			0.00473	0.00473	2.0000	0.47289
4,0000	_	0.14217		0.14217	0,0000	0.14215	5 4.00000	000000		0.00508	0.00508	4.0000	0.50792
3.00000		0.14388		0.14388	00000	0.14386	3.0000	0.00000		0.00271	0.00271	3.00000	0.27147
2 00000	_	0.14177		0.14178	000000	0.14170	2.0000	_		0,0000	0.0000	2.00000	0.00000
1,0000	_	0.14399		0.14399	0.0000	0.14388	3.0000	0.00000		0.0000	0.0000	1,00000	0,0000
							Cyclone			0.90910			
							•					TOTAL	
Emoty vial Weights	Weights						TOTAL MASS	0.00263	1.00000	1,00000	1.00000 MASS	MASS	100,00000
STAGE		2nd	Pe	Average					×0.337	0.98748			
11,00000	1 —	0.68466	68464	0.88465					40.337	0.01252			
10.00000	0.68237	0.88234		0.68236									
9,0000		0.67959		0.67960									
8.00000	_	0.67655	0.67647	0.67851									
7.00000	0.67772	0.67769		0.67771									
6.0000		0.67239		0.67240									
5.0000													
4.0000	_												
3.0000	_												

Average 0.69128 0.71317 0.71108 0.70767 0.70188 0.14138 0.14215 0.142386 0.14388

2nd 5 1 0.69129 0.71318 0.7110 0.70707 0.70767 0.70767 0.14138 0.14169 0.14385 0.14169

0.99128 0.71318 0.7108 0.70788 0.70788 0.70187 0.14137 0.14215 0.14218

Filter+Aah+Vial \$TAGE 1st 11.00000 0.75 9.00000 0.77 7.00000 0.77 6.00000 0.14 4.00000 0.14 2.00000 0.14 1.00000 0.14

ĕ

Particle Size Distribution Calculations Test: 97IL3 WiTH CYCLONE

Net Mass

2nd 3rd Average Vial Average Filter+Ash+Vial STAGE MASS Mass 59 0.03000 0.03000 0.03000 0.03000 0.00000 0.14138 11.00000 0.0003 25 0.14125 0.04175 0.00000 0.14274 9.00000 0.0003 44 0.14175 0.04175 0.00000 0.14274 9.0000 0.0003 44 0.14041 0.00000 0.14276 7.0000 0.00156 84 0.03165 0.00000 0.14676 7.0000 0.00156 84 0.03165 0.00000 0.14676 7.0000 0.00058 84 0.03165 0.03165 0.03165 0.0000 0.00058 84 0.03165 0.03461 0.67307 0.77187 6.0000 0.00029 84 0.03047 0.03047 0.6926 3.0000 0.00009 85 0.03047 0.03047 0.03047 0.03049 0.0000 86 0.03047<	Gressed Fil	Sreased Filter Weights	·		Filter			Collected			
0.02999 0.03000 0.03000 0.03000 0.03000 0.00000 0.04138 11,00000 0.00000 0.14125 0.14125 0.014126 0.14126 0.00000 0.14274 9,0000 0.00013 0.14674 0.14175 0.00000 0.14274 9,0000 0.0009 0.14687 0.14688 0.00000 0.1476 7,0000 0.00159 0.03461 0.03461 0.03462 0.03463 0.03463 0.0000 0.00068 0.03461 0.03461 0.03463 0.03463 0.03463 0.03463 0.0000 0.00068 0.03568 0.03461 0.03461 0.03463 0.03463 0.03463 0.0000 0.0000 0.03577 0.03047 0.03946 0.03464 0.03047 0.0000 0.0000 0.03046 0.03047 0.03047 0.03047 0.03047 0.03041 0.03047 0.03041	STAGE	<u>16</u>	Z,	ğ	Average	Vial Average	Filter+Ash+Vial	STAGE	MASS	3	ss Fraction
0.14125 0.14125 0.14125 0.00000 0.14138 10.0000 0.00013 0.14174 0.14175 0.00000 0.14274 9.0000 0.00099 0.14677 0.14041 0.00000 0.14274 9.0000 0.00159 0.14687 0.14688 0.14586 0.00000 0.14676 7.0000 0.00159 0.03164 0.03165 0.03165 0.03167 0.00000 0.00058 0.00058 0.03461 0.03461 0.03461 0.03461 0.03462 0.00000 0.00029 0.02907 0.02907 0.03462 0.03004 0.00000 0.00000 0.03673 0.03047 0.03047 0.03047 0.00000 0.00000 0.03047 0.03047 0.03047 0.03047 0.05047 0.05010 Meidliks 0.03047 0.03047 0.05047 0.05047 0.05010	11,00000	0.02999	0.03000		0.03000	0.00000	0.03030			0630	0.00525
0.14174 0.14175 0.00000 0.14274 9.00000 0.00099 0.14041 0.14041 0.00000 0.14274 9.00000 0.00159 0.14687 0.14688 0.00000 0.14676 7.0000 0.00159 0.03461 0.03461 0.03745 0.14676 7.0000 0.0008 0.03461 0.03461 0.03461 0.03461 0.0000 0.0008 0.03641 0.03461 0.03461 0.03462 0.0000 0.00029 0.02506 0.02907 0.02907 0.02907 0.0000 0.0000 0.03047 0.03047 0.03047 0.0000 0.0000 0.03048 0.03047 0.03047 0.0091 0.0000 0.03048 0.03047 0.03047 0.0691 0.0691 Meidliks 0.03047 0.03047 0.0691 0.0091	10.00000	0.14125	0.14125		0.14125	0.00000		-	_	013	0.00219
0.146041 0.14041 0.00000 0.14201 8.00000 0.00159 0.14587 0.14588 0.00000 0.14676 7.0000 0.00088 0.03164 0.03461 0.67347 0.71167 8.00000 0.00088 0.03461 0.03461 0.67307 0.77187 8.00000 0.00058 0.03041 0.03461 0.67307 0.77188 4.00000 0.00028 0.02506 0.02907 0.02907 0.68748 3.00000 0.00001 0.03047 0.03904 0.03948 0.03004 0.00000 0.03048 0.03047 0.03047 0.0000 0.00000 0.03048 0.03047 0.03047 0.05040 0.0000 0.03048 0.03047 0.03047 0.05040 0.0511 Meidliks 0.03047 0.03047 0.05040 0.0511	9.00000	0.14174			0.14175	0.0000			_	8	0.01743
0.14587 0.14588 0.14588 0.00000 0.14676 7.00000 0.00088 0.03164 0.03165 0.67345 0.71167 6.0000 0.00058 0.03461 0.03461 0.67307 0.70795 5.00000 0.00058 0.03041 0.03042 0.03047 0.68348 0.71288 4,00000 0.00029 0.02807 0.02907 0.6704 0.68926 3.0000 0.00016 0.02875 0.02874 0.68126 0.7002 2.0000 0.0000 0.03047 0.03047 0.03047 0.03047 1.0000 0.0000 0.03048 0.03047 0.03047 0.0517 1.0000 0.0001 0.03048 0.03047 0.03047 0.0514 0.0514 0.0511	8,00000	0.14041			0.14041	0.0000			_	35	0.02794
0.03164 0.03165 0.03165 0.67367 0.71167 6.00000 0.0058 0.03461 0.03461 0.67307 0.70795 5.00000 0.00027 0.03041 0.03042 0.68188 0.71288 4,00000 0.00029 0.02806 0.02807 0.02807 0.68764 0.68926 3.00000 0.00016 0.02873 0.02874 0.68126 0.7002 2.00000 0.00000 0.03047 0.03047 0.03047 0.03047 0.0000 0.00000 0.03048 0.03047 0.03047 0.0517 0.0510 Neights 0.03047 0.03047 0.0510	2,00000	0.14587			0.14588	0.0000			_	88	0.01541
0.03461 0.03481 0.03461 0.03461 0.070795 5.0000 0.00027 0.03041 0.03042 0.03042 0.08198 0.71288 4.0000 0.00029 0.02807 0.02807 0.65704 0.68926 3.0000 0.00016 0.02873 0.02875 0.02874 0.88126 0.70022 2.0000 0.0000 0.03046 0.03047 0.03047 0.88015 0.70577 1.0000 0.0000	6.00000	0.03164			0.03165	0.67945			Ī	88	0.01016
0.03041 0.03042 0.03042 0.68198 0.71288 4.00000 0.00029 0.02908 0.02907 0.67004 0.6926 3.0000 0.00016 0.02873 0.02274 0.68126 0.70022 2.0000 0.0000 0.03046 0.03047 0.03047 0.89015 0.70577 1.0000 0.0000 7.95729 8.00919 Cyclone 0.05191	5,0000	0.03461			0.03461	0.67307			Ī	23	0.00473
0.02906 0.02907 0.02907 0.69026 3.00000 0.00016 0.02873 0.02875 0.02874 0.69126 0.70022 2.00000 0.00000 0.03046 0.03047 0.03047 0.89015 0.70577 1.00000 0.00000 7.95729 8.00919 Cyclone 0.05191	4 00000	0.03041			0.03042	0.68198			_	620	0.00508
0.02873 0.02875 0.02874 0.88126 0.70022 2.00000 0.00000 0.03046 0.03047 0.03047 0.88015 0.70577 1.00000 0.00000 0.00000 7.85729 8.00919 Cyclone 0.05191 Meiotris 1.00000 0.00010 0.05191	3 00000	0.02908			0.02907	0.67004			_	916	0.0027
0.03046 0.03047 0.03047 0.88015 0.70577 1.00000 0.00000 7.95729 8.00919 Cyclone 0.05191 Meiotris TOTAL MASS 0.05710	2 00000	0.02873		•	0.02874	0.69126			_	8	0.0000
7.95729 8.00919 Cyclone 0.05191 Weights 0.05710	1,0000	0.03046	٥		0,03047	0.69015			_	8	0.0000
TOTAL MASS 0.05710			•			7.95729			90.0	191	0.90910
	Emoty via	Weahts								57.0	1.0000

Average						0.67945	0.67307	0.68198	0.67004	0.68126	0.68015	7,95729
3rd										0.68125	0.67514	7.95670
2nd 3						0.67945	0.67307	0.68197	0.67006	0.67126		7.95727
						0.67944	0.67306	0.68198	0.67002		0.66516	7.95789
Empty vial Weights STAGE 1st	11,00000	10.0000	9.0000	8.00000	7,00000	6.00000	5.00000	4.0000	3.00000	2.00000	1.00000	Cyclone

	Average	0:03030	0.14138	0.14274	0.14201	0.14676	0.71167	0.70795	0.71268	0.68626	0.70022	0.70577	8.00919	
	34												8.00857	
	2nd 3	0.03000	0.14136	0.14274	0,14201	0.14676	0.71167	0.70785	0.71267	0.89926	0.70022	0.70577	8.00900	
18	`` ¥	0.03029	0.14137	0.14274	0.14200	0.14675	0.71167	0.70794	0.71269	0.69926	0.70022	0.70576	8,00931	8.00989
Filter+Ash+Via	STAGE	11,00000	10.00000	9.0000	8.00000	7,0000	8.00000	5.00000	4.0000	3.00000	2.00000	1.0000	Cyclone	

Particle Size Distribution Calculations Test: 97IL4 NOCYCLONE

	NOCYCLONE	NOCYCLONE) ±			Net Mass Collected						
					<u> </u>					MASS	MASS			Normalized
								•	MASS (NO	FRACTION	FRACTION	Normalized		Distribution
		38	Ę	ક્ર	Аметаре	Vial Average	Fifter+A	STAGE	Cyclone)	(No Cyclone)	(Cyclone)	M266	31ABE	7 04750
	11.00000	0.00000	0.000		0.00565	0.68058	0.71207		0,00165	0.62667	0.04860			59.45276
	00006	0.03016	0 03015		0.03016	0.67536		3,00000	0.00021	0.08000	0.01314			7.58971
	8.00000		0.03008	0.03009	0.03009	0.68778	0.71795		0.0000	0.03238	0.01695		8.00000	3.07203
	7,00000	0,03152	0.03151		0.03152	0.67397			0.00036	0.13524	0.00212			12.83023
	6.00000	0.03042	0.03042		0.03042	0.67600			0.00014	0.05143	0.02246			4.87910
	5,00000		0.14097	0.14097	0.14097	0.00000			0.00004		0.01962			1,99209
	4.00000		0,14158	0.14157	0.14158	0.0000			0.00000		0.00932			0.93247
	3,00000		0.14266	0.14264	0.14265	0.00000			0.0000		0.00848			0.84770
	2.00000		0.14103		0.14101	00000	_	•	0.00000		0.00932			0.93247
	1.0000	0.13921	0.13924		0.13923	0.0000	0.13922		0,0000		0.00424	0.00424	1.00000	0.42385
								Cyclone			C618.0		TOTAL	
	Emmer vâul tâtoisean	Minister						TOTAL MASS	0.00263	1,0000	1,00000	1,00000 MASS	MASS	100,0000
	DIAM'S WAR		į	Į	4			1		50 247	0.94871			
A	SI AGE	787	2UZ	90,88108	Average 0 68108					0.337	0.05129			
\ -	90000		0,000,00		0.00190									
17	10,000		0.0000	_	000000									
7	9.0000				0.6/336									
	8,0000				0.68778									
	7.00000	_	0.67398		0.67397									
	6.0000	0.67599	0.67600	_	0.67600									
	2,0000													
	4.00000													
	3,00000													
	2.0000													
	300													
	Fitter+Auth+Vial	+Vipi												
	STAGE	Ħ	2nd	P.	Average									
	11,0000	0.58877	0.68878		0.68878									
	10.00000		0.71207		0.71207									
	00000		0.70573	~	0,70572									
	8.00000	0.71794	0.71796	"	0.71795									
	7,0000	0.70583	0.70584		0.70584									
	6.0000	0.70655	0.70655	10	0.70655						•			
	5.00000	0.14101	0.14102	~	0.14102									
	4,00000	0,14156	0.14155	ıc	0.14156									
	3,00000		0.14254		0.14254									
	2.00000		0.14094	-	0.14093									
	1,0000		0.13922	~	0.13922									

Particle Size Detribution Calculations Test: 97IL4 WITH CYCLONE

WITH CTCLONE	CLONE						Net Mass		
Gressed F	Gressed Filter Weights		_ _	Filter			Collected		
STAGE	¥	2nd	3rd	Average	Vial Average Fi	Fitter+Ash+Vial STAGE	STAGE		Mass Fraction
11,00000	0.02988	88		0.02988	0.00000	0.03024	11.0000	0.00035	0.03009
10.00000		0.14237	0.14236	0.14237	0.0000	0,14294	-	0.00057	0.04860
9.0000		0.14173		0.14173	0.0000	0.14189		0.00015	0.01314
8,00000		0.14446	0.14445	0.14448	0.0000	0.14466		0.00020	0.01695
7,00000	0.14494	0.14494		0.14494	0.0000	0.14497	7.0000	0.00002	0.00212
8.00000		0.02933		0.02834	0.67722	0.70682	8,0000	0.00026	0.02246
5,0000		0.03030		0.03031	0.67617	0.70671	5.00000	0.00024	0.01992
4.00000		00000		0.03101	0.68389	0.71500		0.00011	0.00932
3.00000	_	0.03222		0.03223	0.67447	0.70680	3.00000	0.00010	0.00848
2,00000	_	0.03133		0.03134	0.68753	0.71897	2,0000	0.00011	0.00932
1,0000		0.03449	0.03449	0.03449	0.87952	0.71406	1,00000		0.00424
					7.94389	7.95350	.95350 Cyclone	0.00962	0.81534
Empty vial Weights	(Weights						TOTAL MASS	0.01180	1.0000
STAGE	, M	2nd	3rd	Average					
11,00000									
10.0000	6								
9.0000	6								
8.00000	0								
7,00000	0								
6.0000	0	0.67722	0.67722	0.67722					
5.0000	0 0,67617	0.67616		0.67617					
4.0000		0.88391	0.68386	0.68389					
3,0000	0 0.67447	0.67446		0.67447					
2,00000	0 0.68754	0.68751		0.68753					
1,0000				0.67962					
Cyclone			7.94343	7.94389					
•									

	Average	0.03024	0.14294	0.14189	0.14466	0.14497	0.70682	0.70871	0.71500	0.70680	0.71897	0.71406	7.95350
	3rd												7.9536
	2nd	0.03024	0.14294	0.14189	0.14466	0.14496	0.70683	0.70672	0,71501	0.70680	0.71898	0,71405	7.95336
<u> </u>	18	0.03023	0.14294	0.14188	0.14465	0.14497	0.70681	0.70669	0.71499	0.70679	0.71896	0.71406	7.95355
Filter+Ash+Va	STAGE 1	11.0000	10.0000	000006	8,00000	7,0000	6.00000	5.00000	4.0000	3.00000	2.00000	1,0000	Cyclone

Particle Size Distribution Galculations Test: 97IL5 NOCYCLONE

State Control Contro	Greased Filter	Greened Filter Weights	,*		H.			2 3	Net Mass Collected		MASS	MASS			Normalized	8
100064 000654 000654 000654 000654 000654 000654 000655 0100000 000654 000654 000655 0100000 000654 000655 0100000 000554 000655 0100000 000554 000555 0100000 000554 000555 0100000 000554 000555 0100000 000554 000555 000			Į	Į	Acceptant	Vési Avenage	FilhorsAci			MASS (NO	FRACTION (No Cyclone)	FRACTION	Normalized Mass	STAGE	Distributi	, G
0.002561 0.002563 0.002564 0.002564 0.002564 0.002564 0.002564 0.000264 0.0	18	86654	0.00654		0.00654			100	1.00000	0.00084	0.23722	0.00515			1_	88
Discrete	8	0.02951	0.02950		0.02951			70407	10.00000	0.00184	0.52415	0.00250		-		8219
0.02221 0.02224 0.02223 0.057724 0.02235 0.07724 0.02235 0.07524 0.02235 0.05724 0.02235 0.02236 0.02336 0.023	8	0.02906	0.02902	٠.	0.02904			79797.	9.0000	0.00031	0.08807	0.01364	_			0063
0.02569 0.02554 0.02554 0.01557 7.0000 0.00000 0.02554 0.01557 7.0000 0.00000 0.02554 0.01557 7.0000 0.00000 0.00000 0.02554 0.01557 7.0000 0.000000	8	0.03021	0.03024	_	0.03023			70107	8.00000	0.00025	0.07244	0.02045			_	2880
0.00256 0.00257 0.00254 0.00224 0.00000 0.00250 0.00224 0.0022	8		0.02921	_	0.02921	0.672		7,70157	7.00000	0.00020	0.05540	0.01587				23
14028 0.14028 0.14028 0.00000 0.141028 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.0000	8		0.02857	_	0.02958			3,70746	6.0000	0.00008	0.02273	0.00554				88
0.14128 0.14242 0.14252 0.14427 0.00000 0.00000 0.00000 0.000000 0.000000	8		0.14031			_		1,14026	5.0000	0.0000		0.00338				3759
0.14026 0.14024 0.14028 0.14028 0.00000 0.14029 0.00000 0.14029 0.00000 0.14029 0.14029 0.14029 0.14029 0.14029 0.00000 0.14029 0.14029 0.00000 0.14029 0.1402	8	0.14128	0.14126					0.14120	4.00000	0.00000		0.00647	-			4705
0.13876 0.13876 0.13877 0.13877 0.13877 0.13877 0.13877 0.13877 0.13877 0.13877 0.13877 0.14028 0.100000 0.14028 0.100000 0.14028 0.100009 0.10009 0.1	8	0.14025		_	0.14025			J.14021	3.00000	0.0000		0.00000	_			8
0.14026 0.14026 0.14026 0.00000 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00009 0.00008 0.00009 0.00	8	0.13976			0.13976			0,13973	2,00000	0.0000		0.00155	•		_	5473
Weights TOTAL MASS Cyclone 0.80347 TOTAL MASS 145 2nd 3nd Average 1.00000 1.00000 1.00000 4.00000 1.00000 4.00000 1.00000 MASS 1.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000 4.00000 1.00000 4.00000 1.00000 4.00000 1.00000 4.00000	8	0.14026	0.14026	-	0.14026	_			•	0.0000		0.00068				6752
Weights TOTAL MASS 0.00362 1,000000 1,00000 1,00000 1,00000								δ	cione			0.92477		TOTA		
See	, Paris I	16 (nintale						2	TAL MASS	0.00352	1 00000	1,00000		MASS	100.00	0000
0.58849 0.58848 0.68849 0.68849 0.68849 0.68849 0.68849 0.67272 0.67272 0.67272 0.67272 0.67272 0.67272 0.67273 0.67273 0.67780 0.70407 0.70	<u>.</u>		į	ļ	Aimmen						747	0.98793				
0.67271 0.67272 0.67272 0.67272 0.67272 0.67272 0.67272 0.67272 0.67272 0.67272 0.67272 0.67272 0.67273 0.67277 0.67277 0.67730 0.67730 0.67730 0.67730 0.67730 0.67730 0.67730 0.67730 0.67730 0.67730 0.67730 0.70407 0.7040		58840	0.69849		O FRAME	1					0337	0.01207				
0 0.67221 0.67822 0 0.67246 0.67724 0 0.67780 0.67779 0 0.67780 0.67779 0 0.67780 0.67779 0 0.67780 0.67779 0 0.67780 0.67779 0 0.70401 0.70406 0 0.70745 0.70406 0 0.70745 0.70406 0 0.70745 0.70406 0 0.70745 0.70407 0 0.70147 0.70407 0 0.70147 0.70407	38	0.67771	0.67277	. ~	0.67272											
0 0.67059 0.67059 0 0.67780 0.67779 0 0.67780 0.67779 0 0.67780 0.67779 0 0.65686 0.69586 0 0.70497 0.70406 0 0.70497 0.70406 0 0.70497 0.70406 0 0.70497 0.70406 0 0.70497 0.70407 0 0.70497 0.70407 0 0.70491 0.70407	8	0 67824	0.67823	. ^	0.67822											
0 0.67780 0.67779 0 0.67780 0.67779 0 0.67780 0.67779 0 0.67780 0.67779 0 0.68686 0.69586 0 0.7047 0.70406 0 0.70757 0.70406 0 0.70757 0.70407 0 0.70157 0.70407 0 0.70157 0.70407 0 0.70157 0.70407 0 0.70147 0.70407 0 0.70147 0.70407	8		0.67050	. ~	0.67059	. ~										
00 0.67780 0.67779 00 0.67780 0.67779 00 0.69686 0.69686 00 0.70497 0.70406 00 0.70757 0.70197 00 0.70197 0.70197 00 0.70147 0.70197 00 0.14027 00 0.14021	88		0.67217	s ~	0.67217											
00 00 00 00 00 00 00 00 00 00 00 00 00	8		0.67776		0.67780	_										
00 00 00 1st 2nd 3rd Av 1st 2nd 3rd Av 00 0.70457 0.70406 00 0.70757 0.70407 00 0.70157 0.70407 00 0.70157 0.70407 00 0.70157 0.70407 00 0.14027 00 0.14021 0.14027 00 0.14021 0.14027	88															
20 20 20 1st 2nd 3rd Av 1st 2nd 3rd Av 20 0.69696 0.69596 20 0.70757 0.70406 20 0.70197 0.70407 20 0.70157 0.70407 20 0.70157 0.70407 20 0.14027 20 0.14021 20 0.14021	8															
20 20 1st 2nd 3nd Av. 1st 2nd 3nd Av. 20 0.69696 0.69596 20 0.70457 0.70406 20 0.70157 0.70407 20 0.70157 0.70407 20 0.70157 0.70407 20 0.14027 20 0.14021 20 0.14021	8															
h+Vial 1st 2nd 3rd Av 1st 2nd 3rd Av 0 0.68686 0.68586 0 0.70407 0.70406 0 0.70157 0.70157 0 0.70157 0.70157 0 0.70157 0.70157 0 0.40124 0.14027 0 0.14021 0.14027	g															
1st 2nd 3rd Av. 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	8															
184 2nd 3nd Av 20 0.69686 0.69586 20 0.70407 0.70406 20 0.70157 0.70107 20 0.70157 0.70107 20 0.70157 0.70157 20 0.70157 0.70157	+Ash	•Vial														
00 0.69586 0.69586 00 0.70407 0.70406 00 0.70757 0.70406 00 0.70107 0.70107 00 0.70157 0.70157 00 0.70157 0.70157 00 0.4024 0.14027 00 0.14021 0.14027	щ		2nd	S	Average											
0.70407 0.70406 0.70757 0.70756 0.70167 0.70107 0.70157 0.70157 0.70745 0.70746 0.14024 0.14027 0.14119 0.14121	I2	98989	1		0.69586	le:										
0.70757 0.70756 0.70107 0.70107 0.70157 0.70157 0.70745 0.70746 0.14024 0.14027 0.14119 0.14121	000			ŧ0	0.7040											
0.70107 0.70107 0.70157 0.70157 0.70745 0.70746 0.14024 0.14027 0.14119 0.14121 0.14021	800	_		ı to	0.7075											
0.70157 0.70157 0.70745 0.70746 0.14024 0.14027 0.14119 0.14121 0.14021 0.14021	000	_	_		0.7010											
0.70746 0.70746 0.14024 0.14027 0.14119 0.14121 0.14021	8				0.7015											
0.14024 0.14027 0.14119 0.14121 0.14021 0.14021	8		_	. en	0.7074											
0.14021 0.14021 0.14021 0.14021	ξ		_		0.1402	er										
0.14021 0.14021	3 8				0.4442											
0.14021 0.14021	3 8				0.1412) -										
	3 8				0.1402											

Particle Size Distribution Calculations Test: 97IL5 WITH CYCLONE

Net Mass

STAGE	<u>**</u>	230	P.	Average	Vial Average	Filter+Ash+Vial STAGE	STAGE	MASS	Mass Fraction	notice
ĺΩ	02830	0.02887		ழ	000000		11.00000	1600091		0.00515
10,00000	0.14316			0.14315	00000	0.14359	10,0000	0.00044		0.00250
9,00000	0.14150			0.14150	0.0000	0.14393	000001			0.01364
8,00000	0.14478	0.14477		0.14478	0.0000	0.14841		_		0.02045
7,00000	0.13956	0.13956		0.13956	00000			_	_	0.01587
6.00000	0.02931	0.02931		0,02931	0.67353				_	0.00554
5.0000	0.03003	0.02999		0.03004	0.68569					0.00338
4.00000	0.02868	0.02867		0.02868	0.67257	0.70239	4.0000	0.00115	_	0.00647
3.00000	0.02823	0.02822		0.02823	0,67598	3 0.70362		0.00000	_	0.00000
2.00000	0.03001	0.03001		0.03001	0.68354	0.71383	5.0000	0.00027	Ī	0.00155
1.0000	0.02986	_		0.02985	0.67427	7 0.70424	1,0000	_	_	0.00068
					7.98588	_	8.16024 Cyclone	0.16436	_	0.92477
Empty vial Weights	Weights						TOTAL MASS	0.17773		00000
STAGE	<u>8</u>	2nd	3d	Average						
18										
10,00000										
9,0000										
8.00000										
7,00000										
6.00000	0.67352	0.67364		0.67353						
5.0000	0.68568	0.68570		0.68569						
4,00000	0.67255			0.67257						
3,00000	0.67396	0.67600		0.67598						
2,00000	0,68353	0.68355		0.68354						
1.0000	0.67425	0.67428		0.67427						
Cyclone		7.99590	7.99586	7.99588						
Filter+Ash+Vial	FEA.									
STAGE	16	24	3	Average						
11.00000	0.02980	0.02980		0.02980	۔ا					
10.00000	0.14359	0.14359		0.14359	_					
9,0000	0.14393	0.14392		0.14393						
8.00000	0.14841	0.14841		0.14841						
2,00000	0.14238	0.14238		0.14238						
6.00000	0.70382	0.70363		0.70383						
5.00000	0.71629	0.71631		0.71630	_					
4.00000	0.70238	3 0.70240		0.70239	_					
3.00000	0.70484	0,70240		0.70362	•					
2.00000	0.71383	_		0.71383	-					
1,0000	0.70424	_		0.70424	_					
200	a 18003	2 48735		C C C C C C C C C C C C C C C C C C C						

Particle Size Distribution Calculations Test: 97IL6 NOCYCLONE

		ļ						Net Mass						
	Gressed Filter Weights	er Weights						Collected						
		•								MASS	MASS		Z	Normalized
									MASS (NO	FRACTION	FRACTION	Normalized		Distribution
	STAGE	*	Ę	Ę	Average	Vial Average	Filter+Ash+Vial STAGE	STAGE	Cyclone)	(No Cyclone)	(Cyclone)	Mass		(M %)
	11,00000	0.00678	0.00677		0,00678	0.67196	6 0.67960	00000011 0	96000'0	0.33391	0,00940	0.32782	11,00000	32.78176
	10,00000	0.02834	0.02832	_	0.02833	0.68478	8 0.71421	10,00000	0.00110	0.38261	0.01229	0.37562	10.00000	37.56244
	8,00000	0.02856	0.02855		0.02856	0.67516			0.00036	0.12522	0,00940	0.12293	9.00000	12.28316
	8.00000	0.02888	_		0.02888	0.67481				0.04522	0.00813		8.00000	4.43920
	7,00000	0.02918		_	0.02919			3 7.00000	0.00023	0.08174	0.00288		7,00000	8.02470
	6.00000	0.02925			0.02926				_	0.03130	0.00904	0.03073	9.00000	3.07329
	5,0000	0.14136			0.14136	0,0000			000000		0.00524	0.00524	5.00000	0.52414
	4.00000	0.13968			0.13967	00000	0 0.13957	7 4.00000			0.00289		4.00000	0.28918
	3 00000	0.13934			0.13934	00000					0.00380	0.00380	3,00000	0.37955
	2.00000	0.13974			0.13974	0.0000			0.0000		0.00271	0.00271	2.00000	0.27111
	1,0000	0.14039		_	0.14039	00000					0.00361	0.00361	1.00000	0.36148
								Cyclone			0,93060			
								•					TOTAL	
	Emoty vial Weights	Veichts						TOTAL MASS	0.00288	1.00000	1.0000	1,00000 MASS	MASS	100.0000
	STAGE	¥	Zud	æ	Average					×0.337	0.98175			
۸	11,00000	0.67185	0.67187		0.67186					<0.337	0.01825			
7 1	10.00000	0.68479	0.68477		0.68478									
	9.00000	0.67515	0.67516	_	0.67516									
	8.00000	0.67479		_	0.67481									
	7,00000	0.67700			0.67701									
	6.00000	0.67707	0.67710	_	0.67709									
	2,00000													
	4,00000													
	3,0000													
	1000													

	Average	0.67960	0.71421	0.70407	0.70382	0.70843	0.70843	0.14129	0.13957	0.13927	0.13962	0.14037
	8											
	2nd	0.67961	0.71421	0,70408	0.70382	0.70645	0.70645	0.14127	0.13955	0.13927	0.13961	0.14036
<u>.</u>	*	0.67958	0.71421	0.70406	0,70382	0.70641	0.70641	0.14131	0.13958	0.13927	0.13963	0.14038
Filter+Ash+Vial	STAGE	11.00000	10.00000	8.00000	8.00000	2,00000	6.00000	2:00000	4.00000	3.00000	2.00000	1.0000

Particle Size Distribution Calculations Test: 971L6 WITH CYCLONE

\$1.00000 1.02941 0.02942 Vial Avverage Filter+Absh+Vial \$1.AGE MASS MASS Fraction 11.00000 0.02912 0.02912 0.00000 0.02938 11.00000 0.00024 0.00034 0.01034 11.00000 0.14313 0.00000 0.00000 0.00000 0.00000 0.00024 0.01239 10.00000 0.14314 0.14312 0.14313 0.00000 0.00034 0.01239 10.00000 0.14316 0.14384 0.00000 0.14347 10.00000 0.00034 0.01239 10.00000 0.14316 0.14385 0.00000 0.14411 9.00000 0.00034 0.0034 1.00000 0.14219 0.14218 0.00000 0.14411 9.00000 0.00028 0.0038 1.00000 0.14504 0.14505 0.00000 0.14513 7.00000 0.00028 0.0038 1.00000 0.02328 0.02368 0.02368 0.02368 0.02368 0.02368 0.02368 0.02368 0.0236	Graesed Filt	Sneesed Filter Weights			Tilber Paris			Collected		
(1) 0.02912 0.00000 0.02938 11.00000 0.00026 (13) 0.14312 0.14313 0.00000 0.14347 10.0000 0.00024 (20) 0.14314 0.14365 0.00000 0.14411 9.0000 0.00026 (3) 0.14319 0.14319 0.00000 0.14242 8.00000 0.00028 (4) 0.14219 0.00000 0.14242 8.00000 0.00028 (5) 0.14504 0.00000 0.14513 7.00000 0.00028 (5) 0.00027 0.00000 0.14513 7.00000 0.00028 (6) 0.00027 0.00000 0.14513 7.00000 0.00028 (7) 0.02969 0.67568 0.70648 6.00000 0.00014 (7) 0.02979 0.67589 0.70649 3.00000 0.00010 (4) 0.02942 0.02942 0.67542 1.00000 0.00010 (4) 0.02942 0.02942 0.02942 0.02942 0.00010 <th>STAGE</th> <th>#</th> <th>2nd</th> <th>કુ</th> <th></th> <th>Vial Average</th> <th>Filter+Ash+Vial</th> <th>STAGE</th> <th>MASS</th> <th>Mass Fraction</th>	STAGE	#	2nd	કુ		Vial Average	Filter+Ash+Vial	STAGE	MASS	Mass Fraction
1.3 0.14312 0.14313 0.00000 0.14347 10.0000 0.00034 8.5 0.14384 0.14385 0.00000 0.14411 9.0000 0.00026 1.9 0.14219 0.14219 0.00000 0.14242 8.00000 0.00028 0.6 0.14504 0.00000 0.14513 7.00000 0.00028 2.4 0.03027 0.03026 0.67768 0.70618 6.00000 0.00008 6.0 0.02369 0.67768 0.70642 5.00000 0.00014 0.00014 7.7 0.02369 0.67793 0.70648 6.00000 0.00014 7.7 0.02471 0.68902 0.70381 4.00000 0.00014 8.9 0.02059 0.67743 0.70381 4.00000 0.00010 8.4 0.02042 0.02042 0.00010 0.00010 8.4 0.02042 0.03042 0.00010 0.00010 8.4 0.02042 0.03042 0.00010 0.00010	11,00000	0.02911	0.02912			0.00000		_		0.00940
85 0.14384 0.14385 0.00000 0.14411 9.00000 0.00028 119 0.14219 0.14219 0.00000 0.14242 8.00000 0.00023 05 0.14504 0.03027 0.03028 0.070618 6.00000 0.00028 124 0.03027 0.03028 0.67568 0.70618 6.00000 0.00028 125 0.0367 0.03471 0.68902 0.70381 4.00000 0.00014 127 0.0347 0.0347 0.68902 0.70381 4.00000 0.00016 128942 2.00000 0.00016 128062 0.03029 0.67543 0.70384 0.00016 128062 0.70384 0.00016 128062 0.00016 0.00016 128062 0.00019 0.00016	10.00000	0.14313	0.14312		0.14313			•	_	
19 0.14219 0.14219 0.00000 0.14242 8,00000 0,00023 06 0.14504 0.14505 0.00000 0.14513 7,00000 0,00008 24 0.03027 0.03026 0.67568 0,70618 6,00000 0,00025 69 0.02569 0.67979 0.70381 4,00000 0,00014 77 0.03471 0.68502 0.70381 4,00000 0,00014 69 0.03059 0.67348 0.70381 4,00000 0,00016 44 0.02942 0.67348 0.70382 2,00000 0,00016 44 0.02942 0.03942 2,00000 0,00016 44 0.02942 0.03047 0.67438 0.70526 1,00000 44 0.02942 0.03067 0.03067 0.00016 0.00016 47 0.03067 0.03067 0.03067 0.00016 0.00016 48 0.03067 0.03068 0.02562 0.00010 0.00016	9.00000	0.14385	•	_	0.14385					
05 0.14504 0.14505 0.00000 0.14513 7.00000 0.00008 24 0.03027 0.03026 0.67568 0.70618 6.0000 0.00025 89 0.02368 0.67979 0.70361 4.00000 0.00014 771 0.03471 0.68302 0.70381 4.00000 0.00014 89 0.03059 0.67439 0.70381 4.00000 0.00010 441 0.02342 0.67439 0.70591 2.00000 0.00010 441 0.02342 0.67343 0.77559 2.00000 0.00010 441 0.02342 0.03567 0.67428 0.70526 1.00000 0.00010 467 0.03067 0.03067 0.67786 7.55676 7.55676 0.02784	8.00000	0.14219		_	0.14219				_	
24 0.03027 0.03026 0.67568 0.70618 6.0000 0.0025 689 0.02569 0.67979 0.70662 5.0000 0.00014 771 0.03471 0.05602 0.70381 4.00000 0.00014 59 0.03059 0.03069 0.67439 0.70591 4.00000 0.00010 441 0.02942 0.03069 0.67428 0.70529 2.00000 0.00010 441 0.02942 0.03967 0.6893 0.68942 2.00000 0.00010 667 0.03067 0.03067 0.67728 1.00000 0.00010 7.55078 7.55078 7.55078 7.55062 0.02784	7,00000	0.14505			0.14505				_	
689 0.02968 0.02989 0.779 0.70962 5.0000 0.00014 771 0.02471 0.05471 0.66902 0.70381 4.0000 0.0006 699 0.03069 0.03069 0.67439 0.70509 3.00000 0.00010 441 0.02942 0.02942 0.63942 2.00000 0.00010 67 0.03067 0.67428 0.70525 1.0000 0.00010 7.53078 7.55652 Cyclone 0.02746	6.00000	0.03024		_	0.03026				_	
77 0.03471 0.03471 0.66902 0.70381 4.00000 0.00006 69 0.03069 0.03069 0.67439 0.70509 3.00000 0.00010 441 0.02942 0.02942 0.68843 0.68942 2.00000 0.00010 67 0.03067 0.67428 0.70525 1.00000 0.00010 7.53078 7.55652 Cyclone 0.02574	5.00000	0.02969		,-	0.02969				_	
69 0.03069 0.03069 0.67439 0.70509 3.00000 0.00010 441 0.02942 0.02942 0.88893 0.88942 2.00000 0.00008 447 0.03067 0.63087 0.67428 0.70525 1.00000 0.00010 7.53078 7.55852 Cyclone 0.02574 TOTAL MASS 0.02786	4.00000	0.03471		_	0.03471					
44 0.02942 0.02942 0.88893 0.88942 2.00000 0.00008 67 0.09087 0.67428 0.70525 1.0000 0.00010 7.53078 7.55852 Cyclone 0.02574	3,0000	0.03059		. ~	0.03059					
67 0.09087 0.03087 0.67428 0.70525 1.00000 0.00010 7.53078 7.55852 Cyclone 0.02574 TOTAL MASS 0.02786	2,00000	0.02941		۲.	0.02942					
7.53078 7.55852 Cyclone 0.02574 TOTAL MASS 0.02786	1,0000	0.03067			0.03087					
TOTAL MASS 0.02796							7	_	0.02574	
	Emoty vial \	Weights							0.02766	

Average						0.67568	0.67979	0.68902	0.67438	0.66693	0.67428	7.53078	
2nd 3rd						0.67566	0.67978	0.66902	0.67440	0.66993	0.67428	7.53079	
2						0.87567	0.67979	0.66902	0.67438	0.66992	0.67428	7.53077	
STAGE	11.0000	10.00000	9.0000	9.0000	7,00000	6.00000	5.00000	4.00000	3.00000	2.00000	1,00000	Cyclone	

iller+Ash+	itter+Ash+Vial			
	1st	2nd	3nd	Average
1,0000	0.02938	0.02937		0.02938
0,0000		0.14347	0.14346	0.14347
9,0000	0.14409	0.14412		0.14411
8.0000	0.14241	0.14242		0.14242
7.00000	0.14512	0.14513		0.14513
_	0.70618	0.70618		0.70618
5.00000	0.70963	0.70961		0.70962
4.00000	0.70382	0.70380		0.70381
3.00000	0.70509	0.70508		0.70509
2,0000	0.68942	0.89941		0.68942
0000	0.70525	0.70525		0.70525
	7.55381	7,55476	7.56135	7,55652
	7.55900	7.56370		

Particle Size Distribution Calculations
Test: 971L7 Using Run 6 cyclone data & run 7 no cyclone data
NOCYCLONE

NOCYCLONE	LONE						Net Mass							
Greated	Greated Filter Weights	-		E E			Collected							
									MASS	MASS			Normalized	
10		7	7		4	Citeres Ash at Soil	E CATO	MASS (NO	FRACTION (Mo.C. Moloce)	FRACTION (Arthur)	Normalized	STAGE	Distribution (wt %)	c
SIAGE	0.0050	200 0.00651	ş	AVERAGE O (COSE)	VIGHT AVERAGE OF SECTION 1	0.97106	11 00000	00000	0.12382	0.00940				8
10,00000				0.02888	0.96058	0.99365		0.00309	0.64853	0.01229				5
9,0000				0.03053	0.96700		2 9.0000	0,00034	0.07240	0.00940	0.07108			33
8,0000				0.03019	0.96863	0.99923	3 8.00000	0.00021	0.04407	0.00813			_	8
7.00000	_	0.02999		0.02998	0.96065	96066'0		0.00033	0.08821	0.00289			_	8
90000				0.02880	0.95998			0.00020	0.04197	0.00904	0.04121		_	8
5,00000	0.13597	0.13565		0.13596	0.0000			0.00006		0.00524				4
4.0000	0013684	0.13681		0.13683	0.00000			0.00003		0.00288	_		_	æ
3.00000				0.13741	0.0000			0.00002		0.00380				8
2.0000	000 0.13804	0,13801		0.13803	0.00000	0.13799		0.0000		0.00271			_	Ξ
1.00000	000 0.13579	0.13576		0.13578	0.00000	0.13578		0.00000		0.00361	0.00361	1.0000	0.36148	₹
							Cyclone			0.85080	_	TOTAL		
4	in létaintes						TOTAL MASS	0.00477	1,0000	1,0000		1 DOOD MASS	400,00000	8
E POST		į	7	A. common					23.7	A 08175		!		
SIAGE		ZUCO C	300	Average					337	0.000				
30.11									3	3				
10,0000	_			0.96058										
000006				0.96700										
8.00000				0.98883										
7.0000	_			0.96065										
00000	000 0.95998	0.95997		0.95998										
5.0000	00													
4.0000	Ø													
3,0000	8													
2,0000	88													
3	}													
FIRET+	Filter+Ash+Vial													
STAGE		2nd	3rd	Average										
11.00000	8	0.97107	0.97106											
10.0000	000 0.99364	996360		0.99365										
9.00000	300 0.99788	8 0.99786		0.99787										
8.00000	000 0.99925	0.99921		0.89923										
2,0000	76066.0 000	0.99094		0.99096										
6.0000	300 0.98898	3 0.98896		0.98897										
5,0000	200 0.13602	0.13602		0.13602										
4,0000	000 0.13686	3 0.13584	_	0.13685										
3,0000	000 0.13743	3 0.13742		0,13743										
2,0000	000 0.13798	9 0.13799	_	0.13799										
1.00000	000 0.13576	3 0.13579	_	0.13578										

APPENDIX B

Data from PISCES Study Used to Determine Trace Element Capture Efficiencies

EPF¶idar D: Cl ∠ D		k avg of valu	es < DiL	and Bi < 0): dajsets r	nnt reed															
Anold B B B B B B B B B B	Control Device ESP	Unit ID U0E 9 D0E 4 19 18 118 16 L 110 L D0E 6 D0E 4 SNR9116	Modfiled Ei (lb/TBta) 1 8 0 4 0.35 0 76 0.1 2 2 0.6 2.1 0.4 0.76	Actual E1 (ID/TBtu) 1 6 C.4 C.55 C.76 C.1 2 C.1 C.4 C.76	Modified Ci (coal) (ppm) 0.67 0.68 0.654 1.5 0.795 22 0.61 0.664	C (coel) (ppm) 0.57 0.61 0.63 0.85 < : 1.5 < 4	0.14 0.036 0.14 0.046 0.12 0.041	lesh 0.12 0.991 0.19 0.19 0.065 0.063 0.114 0.138 0.12	HHV 2/MBlu) 12/900 14/300 19/400 13/900 13/900 12/100 14/300 12/900	9.30 9.65 6.74 9.70 9.30 6.88 6.86 3.25 9.65	Control Dewice ESP ESP ESP ESP ESP ESP FSP ESP FGDW FGDU	n 98.818 99.468 99.557 99.506 98.257 99.479 99.855 99.688	EI (lb/TBtu) 1.8 0.4 0.45 0.76 0.1 2.2 3.8 2.1 0.4 0.78	0.5225 0.6188 0.2402 0.9154 0.2507 1,8947 0.3927	CIPM / la 1(1-n) 44,186 42,667 48,667 63,433 50,698 65,702 1594,209 42,657 50,898	nl 95.926 99.082 99.809 97.976 94.621 99.868 99.069 98.501	rVn 0.971 1.005 0.998 1.002 1.903 0.997 0.951 1.004 0.992 0.988				
s s	FGDW FGDN	101 DOE 7	2.8 0.04	2.0 0.64	0.6 1.5	0.6 1.5		0.25 0.229	10,000 10,600		FGDW FGLid	89.972 89.9 4 5	2.B 0.04	0.0168 0.0786	60.000 142.857	95.333 99.972	0.954 1.000				
t.	FGDw	DDE 6	0.18	0.18	37	< 37	€.0164	0.17	9,970	17 05	FGDW	99,939	0.18	2,2605	8711.100	99.995	1.991		Мах	Bfin	
														Averages overall		ul 98.313	n/m 0.990	¥ panèd5 13	nián 1.005	0.951	
														tituminaus sub-titum ilgalte	;	98.277 97.853 99.995	0.991 0.977 1.001	10 2 1	1,905 1,600	0.951 0.954	
														ESP - GOW - FE		98.151 98.570	0.931 0.987	8 5 0	1.006 1.001	0.961 0.954	
														FODS				ŏ			
														ESP+FOD FF+FGDH	TH .	98.318	0.000	13 .0			
													bituminou	ESP FGDw FF		98.161 98.782	0.991 0.990	8 2 C	1.005 0.992	0.951 0.988	
														-CUd ESP+FGD		98.277	D.991	10 10			
													su bbil umli	FF+FGOd	•	90.277	0.331	č			
													SIJOIMIUIIII	ESP FGDW		97.653	D.977	¢ 2	1.000	0.954	
														FF FGDa		-	-	Č			
														ESP+FG0 FF+FGOt		97.650	0.977	2			
													-gnite coa	ı							
														ESP FGDW		99.995	1.001	0	-		
														FF FGDd			:	0	:	:	
														ESP+FGDI FF+FGDII	ivis	99,995	1,001	1 0			
													ESP	o tum outs 188		98,151	0,991	8			
													FGDw	sub bil 49		-	:	ő			
														b lum suu-bii		98,782 97, 653	0.990 0.977	2			
													FF	lig		99,995	1 001	1			
														bilum Kob-bil		:	:	D D			
														lig		-		0			

Ansonic \$/18/96 EPRI data F: CL < CPL set equal to rank average of rists < DL And F: < DL data not used

F: CI E	AC 201 addrs	II IU IZIII APO	nago or dad		and in ci	AL -1.5 H 11121	12.1													
A A M M M M M M M M M M M M M M M M M M	Control Contro	Upil ID 110B 110L 10E 4 DOE 3 10E 19 12 114B 00E 5 16 161 DOE 2 DOE 1 125 10E 7 10E 7 SNRB116	Modified El (b/TRin) 1.30 9.50 13.00 13.00 29.00 20.00 13.00 13.00 13.00 13.00 13.00 48.00 12.00 48.00 12.00 94.0) 12.00 94.00 12.00 8.20 9.25 48.00 1.20 8.20 9.25 48.00 1.20 9.25	Adual El (INTRIJI) 1.39 9.59 18.00 18.00 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2	Modified Cl (coul) (pmi) 1.90 1.30 2.30 3.10 5.50 6.20 8.10 10.00 12.00 12.00 13.00 12.00 13.00 20.00 20.00 4.90 6.10 20.00 20.00 4.90 6.10 20.00 6.10 20.00 6.10 20.00 6.10 6.10 6.10 6.10 6.10 6.10 6.10	Cl (co ul) (ppm) 1.90	PMout (#M/HBis) U.022 0.041 0.140 0.038 0.006 0.016 0.028 0.016 0.026 0.016 0.044 0.026 0.016 0.041 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.002 0.017 0.028 0.017 0.028 0.017 0.028 0.017 0.028 0.017 0.028	fash 0.091 0.083 0.138 0.138 0.130 0.094 0.099 0.159 0.154 0.157 0.154 0.157 0.158 0.159 0	14,300 14,300 19,700 10,340 19,400	PMusin Co-fluid (MAIBIN) Disolate 7,60 ESP 8,66 ESP 9,65 ESP 9,65 ESP 1,74 ESP 1,76 ESP 1,77 ESP 1,76	99.77 99.40 99.55 98.55 99.51 99.54 99.71 99.41 97.12 99.71 91.80 99.71 91.80 99.81 99.81 99.81 99.80 99.81 99.80 99.80 99.80	E) (In/TBM) 1.38 9.55 18.00 2.59 6.00 230.00 13.00 110.00 110.00 110.00 46.00 10.12 6.22 6.44 48.0 0 16 8.8 8.8 8.8 8.9 6.22 6.44 48.0 0 16 8.8 8.9 6.22 6.44 6.24 6.24 6.24 6.24 6.24 6.24	9 0 4.934 0 0.9383 0 2.3333 0 2.8417 0 1.9167 0 1.9167 0 1.7602 0 1.7602 0 1.7602 0 1.7602 0 1.7060 0 1.7060 0 1.7060 1 1.7	C1PM / fa '(1-h) 1:59 694 157.025 240.310 347.587 472.222 452.595 600.023 746.288 822.73 660.023 746.288 822.73 660.023 746.288 822.73 660.023 746.288 822.73 660.023 746.288 822.73 660.023 746.286 822.746.288 822.746.288 822.746.288 823.84 823.85	ni 98.19 93.95 90.65 94.69 98.25 98.13 98.53 96.79 97.19 72.94 99.25 93.40 98.12 99.25 97.98 99.43 100.00 99.85 99.95 99.95 99.95 99.95	0.8947 0.9451 0.9182 0.9572 0.9574 1.0105 0.9892 0.9857 0.7331 0.9864 0.9515 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532 0.9532	- er PJ			
3000000000000000000000000000000000000	ESP ESP ESP HGDW FGDW FF FF FF FF	22 i02 11 11 161 115 115U 161 DOE 7	0.0870 2.9000 5.2000 0.8000 0.3400 0.75 0.16 0.58 0.15	0,0870 2,9000 1,2000 0,8000 0,3400 0,75 0,15 0,58 0,16	5,85 0,88 1,60 1,80 2,60 0,49 0,84 2,60 2,90	0.95 <1.3 1.60 1.60 9.60 0.48 0.84 2.60 2.90	6.002 6.058 6.023 6.057 6.007 6.002 6.001 6.021	0.068 0.088 0.062 0.062 0.250 0.112 0.105 0.250	11,930 12,200 11,930 11,930 10,930 12,565 12,638 10,930 10,500	5.88 ESI* 7.21 ESP 5.21 ESP 5.21 ESP 5.21 FGCw 25.00 FGDw 5.91 FF 25.00 FF 21.81 FGCd	99.97 99.56 99.02 99.97 99.99 99.99 99.94	0.03 2.91 1.21 0.61 0.34 0.71 0.51 0.51	0 0.4090 0 0.5935 0 1.3161 0 0.0728 0 0.0091 6 0.0070 0 0.2184	70.952 53.825 134.454 134.454 260.000 36.201 50.641 280.000 276.190	99.88 94.81 99.11 99.55 99.87 98.04 99.70 99.77	0.9990 0.9507 0.9955 1,0054 0.9996 0.9972 0.9986 1,0000				
L L	ESP ESP FGDW FGDW	20 DOS 8 20 DOS 5	3.40 1.80 3.63 1.20	3.40 1.60 0.63 1.20	2.00 9.40 2.80 9.40	2.60 9.40 2.60 9.40	C.051 C.020 C.019 C.010	0.210 0.170 0.210 0.170	10,000 9,970 10,400 8,970	21 00 ESP 17 05 ESP 21.00 FGDw 17 05 FGDw	99.76 99.88 99.81 99.94	3.40 1.00 0.80 1.20	0.2593	280.000 942.028 280.000 942.028	98.79 99.83 99.78 99.87	0.9909 0.9995 0.9987 0.9993				
-		500.5							-,				Averages overall		al 93.39		# points 36	Max nVn 1.6314	Min nim 0.6840	
													bitomineus sub-bitom lignita	i	94.64 99.94 99.57	D.9576 D.9921 D.9969	29 9 4	1.0344 1.0054 0.4995	0.6840 0.9538 0.9903	
													ESP FODW FF FSDs		94.42 99.81 99.43 99.82	0.9539 0.9917 0.9949 1.0900	21 8 6 2	1.0314 1.0054 1.0002 1.0000	0.6840 0.9645 0.9808 1.0000	٠
													gSP¥FGD FF4FGDd	hw	95.00 99.54	0.9643 0.9963	29 7			
												hlumino	is coal ESP FODW FF FGDd		93.16 97.86 99.83 90.69	0,9433 0,9329 0,9390 1,0000	16 4 2 1	1.0814 1.0009 1.0002	0.6940 0.9545 0.9978	
													ESP+FGDd	tw	94 15 99 78	0.9513 0.9993	20 3			
												sebbilum ,	Indus coul TSP FODW FF FGD1		97.07 99.71 99.17 99.96	0.9828 1.9922 0.9921 1.9930	3 1	0.9990 1.0054 0.9988	0.9536 0.9990 0.9608	
													ESP+FGD FF+FGDd		99.60 99.90	0.9905 0.9941	ភ 4			
												ognite de	ESP FOOW FC FC FGDd		99.81 99.82	0,9949 0,9390	2	0,9986 0,3358	0.9903 0.9987	
													ESP+F3D FF4FG0d		99.57	0.9969	4			
												ESP	bijum sub-bli		93.16 97.87	0.9433 0.9828	16 3			
												FGDW	ilg bilum sub-bil		99.31 97.86 99.71	0.9949 0.9829 1.0022	2 4 2			
												न्ह	llg		99.82	0.9990	2			

Berylllom (Be) 6/6/86 C: El < DL ignored

			Modified	Actual	Modified	Actual							Mos fled								
	Control		Ei	EI	Cl (cost)	CI (LONE)	PMoul		нни	PMgen	Control		Ei		CIPM /						
Renk	Davice	Unit?D	(ExTBiu)	(Ib/TBIu)	(ppm)	(ppm)	(Mr/MBhr)	โยธา	(Ib/MB:u)	(:E/MBlu)	Device	п	(lb/T9bu)	CIPMNu	ta *(1-m)	rı	nVn				
в	ESP	DOE 4	1.7	1.7	1.1	1.1		0.138		9.65		95.5493	1.7	1.1159	76.923	97,7900	0.9923				
8	ESP	122	4	4	1.1	1.1		0.093		B.96		98.2748	4	1.4194	82.274	95.1382	0.9881				
В	ESP	15	9.4	0.4	1.1	1.0		0.127	13,000	9.77		99.7194	0,4	0.2425	84.615	99.5273	0.9981			•	
₿	ESP	DOE 3	1.6	1.6	1.2	1.2		0.12		9,30		58.8175	1.6	1.1000	93.023	98,2800	0.9946				
B	ESP	DOER	0.062	0.062	1.3	E.1		C. 114		8.26		99.4795	0.062	0.4904	94,203	99.9342	1.0046				
В	ESP	16	3.7	3.7	14	1.4		ſ£1	13,700	7.30		97.1230	3.7	2.9400	102.190	98.3793	0.9923				
Б	ESP	DOE 2	3.25	5.25	1.9	1.9		0.12		9.30		99,7958	0.25	G.9008	147.287	99.8303	1.0003				
В	ESP	16 L	3.1	3.1	2.2	2.2		0.095		0.88		99.2560	3.1	2.7709	159.420	90.0555	0.9980				
В	ESP	114 A	9.6	0.6	3.3	3.3		Ç.089		8.49		59.7809	8.0	0.5933	248.120	99.8778	0.8892				
В	ESP	114 B	2.4	2.4	3.6	3.5		0.08		5.03		99.5781	2.4	1.1250	268. 66 7	99,1002	0.0952				
0	FGD _M	21	0.19	0.19	0.79	0,79		0.067	14,000		FGDW	99 7701	0.13	0.1297	68.429	99.7698	1.0000				
8	FODW	DOE 4	0.1	C.I	1.1	1.1		0.138			FCOW	99.8549	0.1	0 7116	76.923	99 8700	1.0002				
8	FGDM	125	2.1	2.1	2.2	2.2	€.09	0.08	13,943	U.19	FGEw	90.5927	2.1	2.4750	168.673	99.7550	1.0023				
S	FGDw	101	9.036	0.036	1.4	1.4	0.007	0.25	10,930	25.00	FGDw	99,9720	0.036	0.0392	140,000	99.9743	1.0000				
š	FF	101	9.11	6.11	7.4	1.4		0.25		25.00		93.9160	0.11	0.1176	140.000	99.9214	1.000				
÷		101	2.14				121		161,17.151		• •		2	4.11.2	140.000		1.0012				
ı	ESP	20	2.2	2.2	ŝ 5	6.5	6.051	0.21	10,900	21.00	ESP	99.7571	2.2	1.5786	650.000	99.6615	0.9990				
ũ	FCDw	20	0.35	0.85	6.5	6.5		0.21	10,900	21.00	FGDw	99.FD95	0.35	0.5881	850.000	88.9462	1.0004				
																			Max	Min	
														Averages		ni	nkn	d paints	пИn	nl/n	
														overall		98.9182	0.9967	17	1.0046	0.9681	
														5 fuminous		98.6235	0.9958	15	1.0046	0.9661	
														sub-bllum		99.9479	1.0000	3	1.0001	1.0000	
														etingt		8608.98	0.9997	2	1.0004	0.9990	
														ESP		98,4885	0.9947	11	1.0046	0.9681	
														FGDw		99 6630	1 0006	5	1 0020	1.0000	
														FF		99.9214	1.0001	1	1.0001	1.0061	
														FGDd				0		-	

 Cardinium (Cd)
 6/18/96

 EPPRI data
 F: Ct < DL and equal to rank and of values < DL</th>
 and Et < DL data NOT USED</th>

Average Al Average Aver	F: C(< D)	Lawiequal	to rank avg	of values c)L		and H < I	JU dala NOT	USED												
\$ \$\frac{8}{9}\$ \$\frac{1}{1}\$ \$ \$\frac{1}{1}\$ \$\frac	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Device ESP	18 DOE 6 DOE 4 19 18 DOE 9 122 110 B 110 L 12 15 114 B 106F 10 L 15 10 C 15 10 C 2 2 3 3 3 3 3 4 5 5 3 5 5 5 5 5 5 5 5 5 5 5	Ei (th' Thu)	E: (MVT6:u)	CI (cual) (ppm) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	C (cost) (ppm) 40.11 40.13 0.33 40.53 47.7 0.43 47.8 47.1 0.3 47.1	(ID/MBIIu)	0.1 0.114 0.138 0.091 0.12 0.093 0.093 0.095 0.095 0.097 0.097 0.097 0.13 0.098 0.13 0.098 0.13 0.098	sxM8hu) 13,700 10,800 14,300 13,500 10,400 12,900 13,970 11,900 12,100 13,000 13,000 13,000 14,000 14,000 14,000 14,000 14,000 12,000	(IbMaBPIL) Device (IbMaBPIL) Device (1989 - 1989 -	97 1250 99.4795 99.4795 90.4659 98.5175 99.2748 99.7123 99.4023 98.2568 98.5496 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134 99.7134	(Ib/TBlu) 0.5 0.8 0.3 0.13 3.1 4 0.86 1.7 3.6 1.8 3.1 1.0 0.4 0.23 0.57 0.5 0.5	0.2100 0.0377 0.3043 0.1187 0.4613 0.5775 1.1613 0.4110 1.0373 1.1775 0.2085 1.2009 8.4494 0.0063 0.0184 0.0304 0.0304	la "(1-n) 7.248 7.248 29,979 22,222 32,090 48,897 67,015 42,807 773,554 67,552 68,045 71,709 2889,089 3533,885 32,090 7,143 29,979 22,671 68,045 72,265	93.1500 80.9803 93.8033 95.4150 93.3395 94.0578 94.0578 94.0578 94.0578 94.0578 95.0708 95.0709 95.0200 97.1400 93.0709 99.1697 99.1697	0.3594 0.3945 0.3905 0.3905 0.9186 0.9353 0.9371 0.9663 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.0923 0.9490 0.9420 0.9420 0.9420 0.9420	>			
Pick 20	8 8 8 8	ESP FF FGDW FGDW	11 115 101 101 11	1.5 0. 12 0.53 0.4 1.3	1.5 0.12 0.53 0.4 1.3	80.0 80.0 80.0 80.0 80.0	< 2 < 0.05 <0.1 <0.1 < 2	0.023 0.0019 0,021 0.007 0.0051	0.052 0.112 0.25 0.25 0.062	11,900 12,565 15,000 10,000 11,900	5.21 ESP 8.51 FF 25.00 FF 25.00 FGDW 6.21 FGDW	09.5565 99.9767 99.9160 99.9720 99.8021	1.5 0.12 0.53 0.4 1.3	0.0297 0.0014 0.0067 0.0022 0.0025	6 723 6 367 8 000 8 000 8 723	77.6875 98.1153 93.3756 95.0000 90.6625	9,7603 9,9814 9,9345 9,9503 9,8074				
Average All Average Al	Ĺ																				
Separation Sep																			ni/n	M/a 670 0,7803	
FOOTW 74 118 91896 7 ERR 10														sub-biltem	;	91.7290	0.9102	7	0.9971	0.8943 0.7803 0.9509	
Bell														FO(N)		93 (dise 93 5245	9.9826 9.9896	7	ER3 0.9830	0.7903 0.8074 0.9345 0.9864	
SSP 95,585 3,966 14 1,033 0															w						
F#-FGDd 99.945 2.9914 3													bilumlosu	ESP FODW FF		95.1168 99.2833	0.9549 0.9980	1	0.9826	0.8943 0.9223 0.9864	
ESP S7 (43-66 9.8768 2 9.9763 6 FGDo 87 6813 9.3768 2 0.9803 6 FF 95 7451 0.9879 2 0.9814 0 FF 95 7451 0.9879 2 0.9814 0 FF FGDd 97 6838 0.9074 1															'AU						
Bignits cual Bign													subbilturni	ESP FGD# FF		87 8313 95 7451	3.8788 3.9579	2	0.9503	0,7803 0.8074 0.9345	
EEP 95.8857 0.9852 1 - -															ж.	97 /355 97.0497					
SP Situm 95,6855 0,9559 14													lignite eue	ESP FOOW FF					:	-	
Situm 95,6955 0,9553 14															*	95.6429	D.9580	2			
Testing Test													ESP	situm			0,9659	14			
sub-bit 87.831.0 0.0798 2 lig 95.0000 0.9509 1 FF 5.1mm 98.2833 0.993.2 1 sub-bit 98.7451 0.993.2 1 lig FGDd bitum 98.8501 0.9905 2 gub-bit 99.6588 0.997 1													FGDw					1			
FF 5.5um 98.2853 0.9930 1 sub-bit 98.2853 0.9930 2 ling 19.5um 98.8561 0.9970 2 ling 19.5um 98.8561 0.9975 2 sub-bit 99.6588 0.997 1														suh-bil		87.8313	0.8788	2			
FGDd bilum 98.8501 0.9905 2 gub-bil 99.6588 0.997 1													FF	bdum sob-bit		99,2833 95,7461					
•													FGDd	bilum sub-bll							

Chromère (Cr)

6/53/96

				Actual	Modif ed		Part t			Dite 01		c :		ONDIA:					
68 68 68 68 68 68 68 68 68 68 68 68 68 6	Control Daylos ESP ESP ESP ESP ESP ESP ESP ES	Unit ID 110 B 110 B 1114 B 114 B 112 B 16 B 106 2 16 B 106 B 126 B 126 B 126 B 126 B 126 B 127 B 127 B 128 B 128 B 128 B 128 B 128 B 138 B 148 B 158 B 168 B 168 B 178 B 188 B	El (Ib/TBlu) 12 30 46 64 14 1900 25 6 24 12 11 12 12 12 12 12 12 12 12 12 12 12	E: (Ib/T8tu)	CI (coal) (µµm) 5.5 5.5 5.5 9.4 11 11 16 17 15 15 17 18 22 20 26 11 11 17 25 16 15 15 16 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	(pipin) 5.5.5. 9.4 111 116 186 17 15 17 18 22 25 28 111 117 26 18 18 18 18 18 18 18 18 18 18 18 18 18	PMout (IbMBlo) 9.022 0.022 0.041 0.052 0.14 0.018 0.19 0.14 0.046 0.001 0.11 0.046 0.001 0.011 0.003 0.011 0.003 0.011 0.003 0.001 0.003 0	6ush 6.081 6.083 6.089 6.093 6.093 6.12 6.091 6.124 6.134 6.138 6.127 6.090 6.134 6.138 6.138 6.138 6.138 6.138 6.138	HHV ((LVMB1u) 11,900 12,100 13,370 13,900 13,700 13,700 13,700 14,300 13,700 14,300 14,300 13,700 14,300 13,700 13,400 12,700 13,400 12,700 13,400 12,700 13,400 12,700 13,400 12,700 13,400 12,700 13,700 13,400 12,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700	PMGen Cortrol (MWIREW) Devoice (MWIREW) Devoice (MWIREW) Devoice (MWIREW) Devoice (MWIREW) Control (MWIREW)	99.7123 99.4023 99.4023 99.8121 98.8758 98.5589 93.7558 94.859 94.455 97.423 97.423 97.632 99.8549 99.8549 99.8549 99.8549 99.8549 99.8549 99.8549 99.8549	Ei (RV Blat) 100 100 100 100 100 100 100 100 100 10	1,3297 4,4468 1,6499 3,1609 3,1609 17,2306 17,2306 2,5333 5,7400 5,9341 18,0951 18,7955 4,62000 25,3823 5,7309 1,1000 1,1000 1,1000 1,1000 1,2361 1,3750 0,2336	822,797 1194,030 1240,310 1231,884 1162,791 111,111 1240,976 1304,348 1605,839 1748,252 2000,000 843,364 765,714	oil 97,1872 55,9867 24,9349 150,1872 55,9867 24,986 27,47 99,5246 98,624 99,5246 99,624	0.9747 0.968 0.9989 0.9989 0.9984 0.9984 0.9989 1.0004 1.0045 1.0053 1.0014 1.0028 0.9987 0.9987 0.9987			
00000000000	ESP ESP FGDW FGDW FF FF FF FF FF	11 102 101 11 DOE 8 10 104 115 115 U	8 9.5 22 4 1.6 2.5 0.86 0.3 0.1	8.5 22 4 2 1.6 2.5 6.66 6.3	7.7 1.1	7 7 4.2 7.1 7.7 1.1 1.4	0.023 0.658 0.007 0.0051 0.009 0.008 0.021 0.0019 0.0019 0.0012	0.062 0.088 0.25 0.062 0.112 0.21 0.25 0.112 0.105 0.229	11,900 12,200 10,000 11,900 11,700 11,000 12,565 12,668 10,500	6.21 ESP 7.21 ESP 25.00 FGDW 6.21 HGDW 9.57 FF 19.09 FF 25.00 FF 6.91 FF 4.91 FF 21.81 FGOd	99 5535 99 1959 99 9720 99 9030 99 9581 90 9760 98 9787 99 9858	8 6.5 22 4 2 1.6 2.5 0.66 0.3	3.9645 0.2156 0.9290 0.3375 0.2705 0.6468 0.0187	491.803 770.000 336 184 353.974 645 455 770.000 57.545 110.777	97.6780 96.2717 97.1429 90.8100 99.4429 99.7521 99.6753 99.2461 98.7292 99.8882	0.961f 0.8907 0.9717 0.9891 0.9954 0.9979 0.8676 0.9927 0.8974			
t L L	ESP ESP FGDW FGDW	DOE 6 20 DOE 6 20	8.4 5.8 10 2.8	8.4 5.0 10 2.0	8.2	15 9.2	0,02 0,081 0,010 4 0,019	0.57 0.21 0.57 0.21	9,970 10,000 9,970 10,000	17.05 ESP 21.00 ESP 17.05 FGOV 21.00 FGOW	99,8827 90,7571 99,9390 90,9015	6.4 6.8 10 2.0	3.8957 0.5016	1800.000	98.9787 98.6375 98.7641 98.8250	0,9909 0,9888 0,9864 0,8982			
													Averages overall		oH 98.6760	ni/n 0,9918	# points 37	Max ⊓/n 1.9074	Aff <i>n</i> nl/n 0.8939
													blivenkou: salt-blivan lignijo		98.4370 98.9736 99.3663	0.9915 0.8914 0.9943	23 10 4	1.0074 1.0004 0.9992	0.8939 0.9717 0.9684
													ESP FGOW FF FGOM		99 0466 98.9323 98.6378 99.7346	0.9887 0.9919 0.9869 0.9989	- 9 B 7 3	1.0074 0.9992 1.0002 1.0004	0.6939 0.9717 0.9927 0.9978
													CSP+FGC FF+FGCd		90.3 690 99.6669	0.9898 0.9975	27 19		
												Mureingu	ESP FGOW FF FGOd		97.8878 00 2241 99.0098 09 6077	0.8 66 2 0.9966 0.9988 0.9982	'5 4 2 2	1.0074 0.9989 1.0002 0.9906	0.8939 0.9905 0.9974 0.9976
													ESP+FGD		98.1682 99.7088	0.9900 0.9985	9		
												subblum	ineus conf ESP FGOv FF FGOd		97 9749 97 9764 98.5891 99 9882	0.9859 0.9804 0.9962 1.0004	2 2 5	0.9907 0.9991 0.9979	0.9611 0.9717 0.9927
													ESP+FG0 FT+FG00		97 9756 99 63 90	0.9831 0.9969	4 В		
												lignale co	ESP FGDW FF FF		23 3081 59.304€	0.9949 0.9938	2	0.9988 0.9992	0.9908 0.9884
													ESP#FOO		99,3068	C 9943	+		
												F8P	bilum		97.8879	0.9882	15		
												FGDw	sub-bil lig Muur		97.9749 99.3081 99.2241	0.9959 0.9949 0.9966	2 2 4		
												FF	aub-bii Iip		97,9764 99,3046	0.9804 0.9930	2 2		
													hlium sub-bit lly		99,8691 99,9691	0.9962 0.9962	2 5		
												FGDJ	bllam		98. 83 77	0.9982	2		

| Cobalt (Co) | 8/18/96 |
| EPRI Sata | F: CI < DL set equal to DL (two points only - 21 & 110c) | and EI < DL data NOT USED

r. OK D	r eer equal	ן טייון טיט ש	JUILLE CHEY	- 21 6 1100	-/	BING ELI < L	AL GAIR 101	Daca												
Hank B B B B B B B B B B B B B B B B B B B	Control Device ESP ESP ESP ESP ESP ESP ESP ESP ESP FSP ESP FSP ESP FGDW FGDW FF	Unit ID 110 L DOE 4 DOE 5 15 16 L 19 16 110 B DOE 4 21 DOE 2FF	Modified Et 5/TB(u) 3 5 8.4 27 0.55 2 6.5 3.7 11 5.7 0.15	E([IK/TD(u) 3 5 8.4 27 0.55 2	3.5 3.7 4.5 5 6.1 8.4 8.3	CI (coal) (ppm) < 0.5 3.5 3.7 4.5 6 1 8 4 4.3 3.9	PMoul (lbMSlu) 9,941 9,44 0,14 9,12 9,043 9,028 0,12 9,036 0,21 0,022 0,014 0,011	199h 0.583 0.138 0.12 0.093 0.114 0.095 0.081 0.1 0.015 0.087 0.138	HHV (\$2,400 12,400 13,370 13,300 13,400 13,600 13,700 13,700 14,000 14,000 13,000	PAJgen Control (ItaMClu) Device 6.88 ESP 9.50 ESP 9.70 ESP 6.98 ESP 8.20 ESP 6.98 ESP 7.90 ESP 7.90 ESP 7.95 ESP 9.55 FGUW 4.79 FGDW 9.23 FF	98,4023 98,5433 98,8175 98,2743 99,4735 99,7134 98,2568 97,1230 99,7123 99,7123 99,8549 99,7704	5 8.4 27 0.65 2 6.8 3.7	3.5507 8.3017 5.1613 1.6974 1.1024 7.7053 2.6319 17.4900 3.0881 0.3551 0.002	CITPM / fa '(1-n) 41,322 244,756 286,822 299,177 (364,615 442,029 474,074 605,639 1344,536 244,755 35,77,4 115,385	nl 92,7400 97,9671 97,0714 99,3753 99,4600 98,5286 99,2195 99,1643 99,6281 99,6281 99,7440 88,5200 98,5200 98,5200	991 0.9330 0.9940 0.9823 0.9257 1.0035 0.9975 1.0109 0.9992 0.9992 0.9872 1.0008				
9 9 9 9 8	ESP FGD# FGD# FF	102 11 101 101 206 8	2.4 1 0.13 0.32 0.7		4 1.5 3.1 3.1 1.4	4 1.5 3.1 3.1 1.4	0.058 0.0061 0.007 0.021 0.009	0.068 0.062 0.25 0.29 0.112	12,200 11,900 10,000 10,000 11,700	7.21 ESP 5.21 HGDW 25.00 FGDW 25.00 FF 0.57 FF	99,1959 99,9021 99,9720 99,9160 99,9060	0.32	0.1234 0.0868 0.2604	327,869 126,050 310,000 210,000 119,658	99,2680 99,2087 99,9581 99,8968 99,4160	1,0007 0,9930 0,9999 0,8988 0 (835)				
-	ESP FGC+	20 20	2.7 0.69	2.7 0.69	8.3 6.3	6.3 6.3	0.051 0.01 9	0.21 0.21	10,000 10,000	21.30 ESP 21.30 FGDw	99,7671 99,9095	2 / 0.69		€30,000 €30,000	99.8905	0.9991 0.9998				
													Averages overall		n: 97.9510	c in 0.9860	a points 20	Max nkn 1.0109	Aller nife E.B87	
													biluminous sub-bitum lignite		97.0627 99.5489 99.7319	0.9795 0.9977 0.9990	13 5 2	1.0108 1.0007 0 .0998	0.887 0.993 0.998	
													ESP FGDw FF FGDd		97.7047 97.4578 99.7588	0.9871 0.9757 0.9986	12 5 3 0	1.0109 0.9999 1.0008	0.9257	
													ESP+FGD FF+FGDd	4	97.6321 99.7586	0.9835 0.9985	17 3			
												b tumknou	s coat COP HGDW FF FGDd		97.0617 94.1170 99.9639	0.9847 0.9429 1.0008	10 2 1 0	1.0109 0.9988	0.926 0.887	
													ES₱+₹GD FF+FGDd	¥4	95. 820 9 99.9609	0.9777 1 0008	12 1			
												subbltumi	FGDM		88.2680 99.5824 99.6559	1.0007 0.9964 0.9974	1 2 2 0	0.9300 0.9390	0.993 0.995	
													EŞP+FGD FF+FGDd	W	99.4776 99.6559	0.9979 0.9974	3 2			
												ignite coa	I ESP =00m FF =00d		99.5714 99.8905	0.9981 0.9995	1	:		
													ESP+FOU FF+FQ0d	*	99.7310	0.9990	. 2			
												ESP	ortum aub-bX Ng		97 9617 99.2680 99.5714	u 9847 1.0337 0.9991	10 1			
												FGDw	satum sob-Mi		94.1170 99.5824 99.8905	0.9429 0.9994 0.9990	2 2 1			
													o fum Bub-bil Ris		89.9639 89.6559	1.0008 0.9974	1 2 0			
												FGDd	b4um			-	0			

Learl (Pb) ≓BBI date

n: Cl « D		eavg of data	≺DL		und El≺D	. oata NC	CESUT													
Rauk ១០១៩៩១០១៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩	Control Device ESP	Unit ID 11 12 16 110 B 16 DOF 4 DOE 2 111 B 112 111 B 122 111 B 122 114 B 125 125 125 125 125 125 125 125 125 125	Modfiled 6: (8)*TB(0)* 5.8 9.7 4.3 5.8 16 33 3.8 111 199 88 3.1 177 177 190 86 5.7 5.7 5.7 5.3 0.6 15 5.3 0.5 0.5	Actual & (40/TB(u) 5.8 9.7 4.5 5.8 9.7 4.5 5.8 9.7 4.5 9.7 4.5 9.5 9.7 4.7 9.5 9.6 9.6 9.7 6.5 9.7 6.5 9.6 9.6 9.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	Modified Cr (ceal) (ppm) 1.4 2.4 4.2.516667 5.1 6.8 7.3 11 115 16 6.1 7.2 2.4 2.5 6.1 7.2 6.1 7.2 7.2 7.3	© (coal) (ppm) 1.4 2.4 4	P\$Anal (IDCMBIU) 6.023	fash 0.062 0.094 0.097 0.091 0.114 0.096 0.128 0.12 0.091 0.11 0.094 0.094 0.094 0.095 0.096 0.096	HHV (b/MBb) 11,900 13,700 13,700 11,900 19,700 13,800 12,900 13,900 12,900 13,700 14,900 14,900 14,900 14,900 14,900 14,900 14,900 12,900	PWgen Control (IDMHSIU) Daylors 5 27 85P 6 55 85P 7 75 85P 7 55 85P 7 75 85P 7 85 85P 85 85 85P 85 85P 85 85 85P 85 85P 85 85 85P 85 85 85P 85 85 85 85P 85 85 85 85 85 85 85 85 85 85 85 85 85	99,5585 88,6426 99,7143 99,4795 88,2568 90,5493 98,8175 99,3918 98,3680 99,3680 99,8742 99,8742 99,8742 99,8693	5.6 6.7 4.3 3.6 3.0 11 19 38 3.1 15,7 7,7 190 86 5.7 6.3 0.0	0.5194 2.5532 0.9919 0.6084 10.7100 2.5849 9.2211 8.1159 10.0835 2.0583 2.1933 7.0593 30.0000	CIPM/ ia (1-n) -17.847 -75.182 307.692 2:1.485 372.905 492.754 492.754 492.754 492.754 492.754 559.441 8524.815 3 99.244 -75.182 207.143 559.441 628.859 942.029 410.883	al 95,0700 94,4829 93,6026 92,4344 91,1238 97,9206 98,6028 95,5436 93,6900 95,4944 92,6500 83,5800 83,	5.95 5.95 5.95 5.95 5.93 5.94 1.00 5.95 5.99 5.91 5.99 5.91 1.00 6.97 6.97 6.97 6.97 6.97				
ប្រធាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធា	ESP ESP EGDW FF FF FF FF FF FGDs1	11 22 102 101 115 116 U 10 DDE 0 101 DOE 7	5.8 9 11 2.7 0.72 0 44 0.4 9 6 2.4 2.2	5.8 () 11 2.7 0.72 0.44 0.4 0.6 2.4 2.2 0.7	14 29 49 3.1 2.2 6.1 6.2 49 8.2	1.4 2 3 13 2.1 2.2 6.1 5.2 13 8.2	0.023 0.0015 0.059 0.067 0.0016 0.0012 0.008 0.009 0.021 0.012	0,062 0.068 0,090 0.21 0.105 0.21 0.112 0.21 0.21	11,800 11,980 12,900 10,000 12,565 12,638 11,000 11,700 10,000	5.21 ESP 5.68 ESP 7.21 ESP 21.66 FGDW 8.91 FF 8.31 FF 8.31 FF 9.57 FF 21.00 FF 21.61 FGDd	99.5585 99.9736 99.1959 99.9867 99.9787 99.958 99.958 99.958 99.958 99.9450	0.6 2.4 2.2	0.0358 0.0251 0.2324 0.4179	117 647 166 945 245,992 1300 050 167,431 174 078 554,545 444,444 1300,005 783,952	95 6706 99 9344 98,9020 93 9446 99,7357 99 7708 99,8918 99,4600 99,8306 99,9104	C 95 1 00 1 D0 1 00 1 00 1 00 1 00 1 00 1 00				
L L L	ESP ESP FODW FGOW	DOE 6 20 DOE 8 20	1 9 7 7 0.69 3.8	1 9 7 7 C 69 3.8	73 12 73 12	7.3 12 7.3 12	0.02 0.051 6.0104 0.019	0.17 0.91 0.17 0.21	9,9 7 0 10,000 9,970 10,000	17 08 ESP 21 00 ESP 17 08 EGDW 21 00 EGDW	99 .8827 99.7571 99.9390 99.9095	1.9 7.7 0 69 3.8	0.4466	732,197 1203,000 732,197 1203,000	99,7405 99,3563 99,0056 99,6638	1.00 1.00 1.00 1.00		Mex	Min	
													Averages ovurali		ol 97.75 7 6	ni /1 0.9826	F paints 34	t√n 1.0019	nVn 0.911	
													hluminous sub-blum lignile		98.8310 99.2451 99.6720	0.9738 0.9941 0.9980	20 10 4	1.0019 0.9998 0.9997	0.931 0.955 0.995	
													ESP FGDW FF F3DVL		99,5565 99,6779 99,752 99,0943	0.9731 0.9895 0.995	19 7 H 2	0.99 96 1.0004 1.0012 1.0019	0.9109 0.9593 0.996 1.000	
													SSP+FGD:	*	97.1276 99.8050	0.9775 0.9990	26 8			
														N.	95.8283 97.8029 99.9618 99.8783 99.2656 99.9200	0.9879 0.9824 :.0012 :.0019 0.9707 1.0018	14 4 1 1 18 2	0.9990 1.0004 - -	0,911 0,989 -	
												si, bibliomin			97.9607 99.9446 99.7379 99.8104	0.9809 0.9998 0.9979 0.9997	3 1 5	D.9996 D.9993	,0.955 0.896	
													ESPACON FEARGON	*	99.4027 99.7886	0.9878	4			
												guite cao	ESP FGDW FF FGDd		99,5494 99,7945	0,9973 0.9957	2	:		
													ESP : FGD FF+FGOd	•	99.6723	0.9980	. 1			
												ESP FGD W	bilom £b-bil lig		95.0263 97.9687 99.5494	0.9673 0.9839 0.9973	14 3 2			
													hll-im sec-bit lig		97.8029 99.9445 99.7945	0.9824 0.9998 0.9987	4 1 2			
												FF	tiltum Sub orf Ilg		99.0518 99.7379	1.0012 0.9979 -	1 6 0			

Manganese (Mn)

0/24/96

EPRI data

C: CI < C	ia DL (one poé	ni) set = ran	k avg of othe	r vulues	and Ei < C	L NOTUS	ED											
Pank 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Confed Confed 83P 83P 83P 83P 83P 83P 83P 83P 83P 83P 83P 83P 83P	Unit ID 19 18 L 110 L 18 110 B 12 116 18 DOE 4 114 B 15 100E 3 DOE 5 2 21 DOE 4 125 DOF 6 FF SMIRB118	4b/TE(u) 1 24 21 16 26 37 60 10 10 10 10 10 10 10 10 10 10 10 10 10	FI (Ib/1 Btu) 5,4 21 16 25 37 80 0 10 10 20 15 8.6 210 27 16 3.9	Modified CI (noal) (pmi) 7,3 14 14 17 17 18 19 22 27 27 26 47 10 22 25 26 21 27 19 17 17 17 17 17 17 17 17 17 17 17 17 17	Ci (coal)	PMout ((bMRIn)) 0.038 0.12 0.021 0.022 0.044 0.025 0.046 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.0019 0.0014 0.005 0.0019 0.0017 0.0017	fesh 0.09: 0.195 0.083 0.12 0.094 0.12 0.136 0.087 0.089 0.126 0.1	HIV (INMER), 12,500 13,700 13,700 13,700 12,900 12,900 13,400 13,500 13,500 13,500 13,500 13,600 13,600 14,000 14,300 14,300 14,300 14,300 14,300 14,300 14,300 13,000 13,000 13,000 13,000	FMgen Control (INVRIII) Driving (INVRIIII) D	n 99 4635 98. 2566 99. 2566 99. 2566 99. 2566 99. 2566 99. 2566 99. 2566 99. 2746 99. 2746 99. 2866 99. 8860 99. 8866 99. 8866 99. 8866 99. 8866 99. 8866 99. 8866 99. 8860 99. 8866 99. 8866 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99. 8860 99	5.4 21 10 25 37 600 10 13 18 20 21 21 27 16 8.8 15 7.0 7.0 7.0 9.0 10 10 10 10 10 10 10 10 10 10 10 10 10	17.6842 1014 4PS / 9006 1229 314 455 7000 1229 314 41:099 423 571 19.1489 1313 889 22.6164 1587 154 26.8393 158 382 7.75643 2235 100 000 4.86893 234 100 000 6.1702 231 1946 4516 26923 3823 3813 411 21.5000 4130 435 45.2484 13823 3813 415 21.5000 4130 435 435 435 435 435 435 435 435 435 435	ni 99.0014 97.3300 97.3300 97.3803 97.4103 96.3211 98.6614 99.000 99.611 99.250 99.258 99.519 99.519 99.519 99.5593 99.957 99.967	1.2n 1.00 1.00 1.00 1.01 0.93 0.97 1.00 0.99 0.90 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00			
	ESP ESP ESP FGOW FGOW FF FF FF FF FF FF	22 11 109 11 101 115 115 10 101 DOE 8 DOE 7	1.1 10 17 2.6 10 1 0.89 31 8.6 19	1.1 10 17 2.6 10 1 5.89 31 6.5 19	8.3 17 27 17 66 4.2 0.2 30 66 0.56 83	8.3 17 27 17 88 4.2 5.2 39 88 136 83	0.0015 0.023 0.058 0.007 0.007 0.009 0.005 0.006 0.006 0.009	0.069 0.089 0.089 0.062 0.25 0.112 0.105 0.21 0.25 0.112	11,920 11,960 12,260 11,960 10,000 12,565 12,538 11,000 10,000 11,700 10,500	5.63 ESP 5.21 ESP 5.21 FGOW 25.00 FGOW 8.91 FF 8.31 FP 19.03 FF 9.57 FF 21.81 FGDd	99.9736 99.5695 99.1959 99.9021 99.9720 99.7866 99.9856 99.9560 99.9450	10 17 2.6 10 1 0.89 31 0.5	1,3984 1428.571 1,8480 9800.000 0,7125 334.262 0,0684 411.458 1,1429 2727.273 5,5440 6880.000	99.84*2 99.3000 99.21*9 99.8*80 99.8485 99.7008 99.7837 98.8633 99.87*12 99.8461 99.8808	1.00 • 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			
L L L	ESP ESP FGDW FGDW	20 DOE 6 20 DOE 6	27 29 33 30	27 29 33 30	73 97 72 97	72 97 72 97	0.051 0.08 5.019 5.0104	0.21 0 · 7 0.21 0.· 7	9,970 10,000 9,970 9,970	21.00 ESP 17.05 ESP 21.00 FGDW 17.05 FGDW	99,7571 99,8827 99,9390 99,9390	29 00	11,4118 9729 188 6,5143 7230 300 5,9341 9729 188	89.6250 99.7019 99.54+7 69.6916	00.1 00.1 00.1		Mar	Min
													Averages overal	ni 59,0506	0.9957	elniog *	nl/1 1.00 09	ni/n 0.9382
													blturrinous sub-bltum l:gnite	98,6698 99,633 99,640	0.9943 0.998 0.9977	23 11 4	1.0089 1.0004 0.9987	0.99 82 0.9890 0.9963
													ESP HGDW FF FGDd	58.5330 99.0156 99.7044 59.8307	0.9934 0.9963 0.9979 0.9993	2) 7 7 8	1.0089 1.0080 1.0002 1.0026	0.9382 0.9947 0.9890 0.9979
													ĘSP⊣FGDw FF+FGDu	99.7423	0.9947 0.9985	26 10		
												bitumin ou	s chal ESP FGDw FF FGDd	98.2183 59.4698 69.9332 59.8167	0.9917 1.0000 1.0000 1.0003	16 5 2 2	1.0089 1.0083 1,0002 1.0026	0.9882 0.9947 0.9999 0.9979
													ESPIEGOW FF4HGD6	98.4159 99.8744	0.9930 1.0001	19 4		
												subblium	reus com ESP FGDw FF FGDd	99,4577 99,8332 99,6126 99,8608	0.9988 0.9995 0.9970 0.9992	\$ 2 5 1	1.0004 0.9982 0.9998	0.9974 0.9988 0.9890
													ESP+FGDW FC+FGDd	99.6079 99.65 42	0.9989 0.9974	5 6		
												lignile cui	al ESP FGDW FF FGDN	99 6635 99.61 6 7	0.9984 0.8989	2	C.9987 0 9975	0.9982 0,9963
													ESP-FGDW FF+FGDd	99 6401	0.9977	4		
												ESP	tilium sub-bit	95.2163 99.4577	0.9988	'В 3		
												FGDw	Eg Erlum sub-bil	99,6635 90,4698 99,8032	0.9984 1.0000 0.9990	2 3 2		
												FF	lig Lilloni	99,6167 99,9332	0.9969 1.0000	2		
													eub-bit lig	99.5128	C 9970	5		

Mercury (Hg) 6/18/ EPFII data F: CI < DL set - avg of DL 6/18/96

and El < DL sel NOT USED

Modified Cl (coul) (ppm) 0.08 Actual Ci (cost) (sppm) PM(ser) Caclful (2MBs) Device 0.28 FG 50 ESP 0.74 ESP 0.74 ESP 0.74 ESP 0.76 ESP 0.7 HHV (IIb)/ Bi, (Ibo)/ Bi, (Ibo) Bi, UM) ID DOE 5 10 8 DOE 3 DOE 4 F22 110 L 19 114 H 10 DOE 2 DOE 4 125 21 18 FF SNR0116 (In/TBN) 0.33 6.1 4.6 6.8 6.8 6.2 8.8 7.1 4.0 9.2 4.6 6.4 14 (u 1(1 n) 5.797 5.426 5.386 5.386 5.386 5.386 6.512 7.407 7.407 7.156 10.078 10.149 10.279 5.385 6.594 10.718 8.955 20.000 10.078 ni 90.8575 -13.4219 15.2286 4,0000 -15.0836 24.3.450 16.3090 38.2048 20.7167 37.1355 82.648 41.5487 14.0000 44.2857 51.4679 92.1600 83.0091 29.6500 5.0090 -38.9231 ni/u 0.913 -0.135 0.154 0.041 -0.154 0.154 0.383 0.210 0.373 0.988 0.428 0.140 0.140 n 99.4795 99.7120 99.6175 96.6493 92.2746 99.4023 99.4609 98.6569 98.121 90.5669 97.1200 98.7669 99.6649 98.6649 98.6649 98.6649 98.6649 98.6604 99.6604 99.6604 99.6604 99.6604 0.394
0.077
0.077
0.079
0.08
0.10
0.079222
0.096000
0.13
0.14
0.15
0.21
0.077
0.086
0.15
0.11
0.12
0.28 0.521 0.524 0.524 0.840 0.297 0.050 -0.390 3.2 5.04 1.3 6.8 19 7.21 ESP 5.24 ESP 5.66 ESP 25.60 FGDW 5.21 HGDW 8.54 FF 25.00 FF 9.67 FF 21.81 FGDd 68.8286 -0.1010 87.4829 69.8413 10.2004 72.7205 19.0476 68.2429 23.9656 102 11 22 101 11 115 U 101 99.1959 99.5585 99.9736 99.9720 99.9856 99.9160 98.9060 90.9450 5.798 9,244 11,688 6.300 9.244 1.503 6.300 5.983 5.524 ESP ESP FOOM FGOW FF FF FF FGOD 1.8 10 3.8 1.9 8.3 9.41 5.1 1.9 4.2 0.07 0.11 0.14 0.069 0.11 0.019 0.069 0.07 0.058 0.07 0.41 0.089 0.11 0.019 0.063 0.07 0.058 0.058 6.023 0.0045 0.005 0.0051 0.0012 0.002 0.009 0.012 0.008 0.062 0.068 0.25 0.106 0.25 0.112 0.229 12,200 11,300 11,980 10,000 11,900 12,838 10,000 11,700 10,500 1.8 10 3.8 1.9 9.3 6.41 5.1 1.9 4.2 0.0461 0.0408 0.0031 0.0018 0.0008 0.0059 0.0056 0.0030 11 692 1.8 10 3.6 1.9 8.8 0.41 5.1 1.9 4.2 000000000000 0.002 0.675 0.699 0.109 0.727 0.191 0.683 0.240 DOE 8 20 DOE 6 20 DOE 9 20 0,0**6** 0.26 0.08 0.26 0.17 0.21 0.17 0.21 9,970 10,000 9,970 10,000 17.05 ESP 21.00 ESP 17.05 FGDw 21.00 FGDw 99.0**027** 99.7571 99.9**390** 99.**9095** 5.8 15 9.5 12 0.0094 0.0691 0.0049 0.0235 0.024 26.000 8.024 27.7175 42.0077 -18.3937 53.8462 0.278 0.424 5.8 16 9.5 12 -D.184 D.539 26.000 **Max** n/n 0.9237 nnts ()4 Min nVn -0.3904 Averages cversa ni 32.0631 n**/n** 0.322 cituminous sub trium lignita 28,2239 43,6516 26,3694 0,294 0,436 0,264 21 8 4 0.9237 0.7274 0.5389 -0.3904 -0.0822 ESP FGDW FF 27.5372 48.4032 38.9338 7.479 0.277 0.495 0.3995 -0.075 0.9199 0.9237 0.7274 0.2396 -0.1535 -0.1840 -0.0501 -0.3904 19 8 5 2 FGDa ESP+FQDw FF+FGOd 27 7 IS COSI FSP FGDW FF 23.2020 87.9307 17.3250 -38.9231 0.235 0.552 0.173 -0.390 0.9133 0.9237 0.2968 -0.1535 0.4435 0.0501 14 4 2 FGDa ESP+FGDw FF+FGDd 33.1653 -1.4244 0.334 -0.315 18 2 ncus ons. ESP FGDW FF FGDd 0.6918 0.6986 0.7274 42,6432 40,0252 53,0397 23,966 0.429 0.433 0.5337 0.243 ESP+FGDw FF+FGDd 0.417 0.463 lignite coa ESP FGDW FF FGDd 0.4241 0.5389 35.0126 17.7262 0.351 0.177 ESP+FGDw FF+FGDd 26,9694 ð.2G4 23,2323 42,6432 36,0126 0.235 0,429 0.351 14 3 2 bitum sub-bit lig FCDW 67,9307 40,0252 17,7262 0.**682** 0.4**00** 0.177 bltum sub-bit I q Mtum sub-bii fig 0.173 0.534 bhum sub-bit lig FGDd

Moreovy (Hg) 6/18/95 EPRI nate F-1: CI < DL set = avg of DI and F < DL set NOT USED REPEAT with detects howing of < 0 reset to oil \neq 0

F-1; Cl < DL set = avg of D1		and the DL set NOT USED. REPEAT with deleases having of a 0 reset to of ± 0.																		
A.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	Cuntral Dewice ESP	UNLID DOE 5 10 B 5 CO 2 3 DOE 4 199 110 L 16 L 16 L 16 L 12 DOE 4 12 12 12 10 F TOE 5 NHB116	Modified EI (In/TBh) 0.53 6.1.6 5.6 6.8 6.7 1 4.5 5.9 9.2 4.9 8.4 14 3.2 0.84 1.3 6.9 1.9 1.4 1.4 1.4 1.5 1.5 1.8 1.9 1.4 1.4 1.5 1.5 1.5 1.9 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	EI (Ib/TBI: y 0.53 6.1 1.6 5.6 6.3 5 0.2 3.8 7.1	(ppm) 0.08 0.064 0.07 0.077 0.079 0.08 0.1 0.079222 0.12	CI (coat) +ppm)	PMout (Ib/Melo) U.543 0.022 0.111 0.144 0.022 0.011 0.046 0.016 0.016 0.016 0.016 0.016 0.019 0.011 0.018 0.001 0.019 0.0011 0.018 0.0019 0.0011 0.018 0.0019 0.0011	feah 0.114 0.091 0.138 0.093 0.093 0.093 0.093 0.095 0.12 0.095 0.1 0.095 0.1 0.095 0.1 0.095 0.1 0.095 0.1 0.095 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	HHV ((b/MBIu) 13,800 11,900 14,300 13,370 12,900 13,500 13,500 13,700 13,500 13,700 13	PMgeri Control (IAMBiri.) Device 820 ESP - 9.30 ESP - 9.31 ESP - 9.32 ESP - 9.33 ESP - 9.34 ESP - 9.34 ESP - 9.34 ESP - 9.35 ESP - 9.36 ESP - 9.37 ESP - 9.38 ESP - 9.39 ESP - 9	n .94.4785 95.7123 98.6175 98.5493 98.4793 99.4659 99.6559 97.6129 99.7658 97.768 99.8559 97.768 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859 99.859	6.1 4.6 5.6 6.8 5.2 3.8 7.1 4.5 9.2 4.8 4.6 4.1 3.3 2.2 0.94 1.0 6.3	C.1952 G.0152 G.0642 G.0781 G.10781 G.10795 G.0396 G.0396 G.0342 G.0278 G.0782 G.1782 G.1783 G.0396 G.1783 G.1783 G.1783 G.0395 G.1784 G.1783	CrPM / 's '(1-a) 5.797 5.378 5.426 5.385 5.385 5.957 7.407 7.997 6.985 10.145 6.386 8.594 10.714 8.029 8.995 20.000 10.078	0.8575 0.0000 15.2288 0.0000 24.3759 16.3009 36.2048 20.7167 37.1355 8.7077 52.6857 11.5467 14.0009 44.2887 51.4679 99.1600 83.8091 29.6500 5.0000 0.0000	0.913 6.000 0.000 0.000 0.104 0.300 0.373 0.184 0.536 0.428 0.536 0.428 0.521 0.444 0.521 0.924 0.925			٠	
ထမားမလာလလာသလ	ESP ESP ESP FGDW FGDW FF FF FF FF	102 11 99 101 11 115 U 101 DOE 6 DOE 7	1.8 10 3.8 1.9 8.9 0.41 8.1 1.0 4.2	1.8 10 3.8 1.9 8.0 0.41 5.1 1.9 4.2	0.07 0.11 0.068 0.11 0.019 0.063 0.07 0.063	0.07 0.11 0.14 0.068 0.11 0.019 0.083 0.07 0.058	6,058 6,023 0,0015 6,007 0,0051 6,0012 6,001 6,008 0,012	0,000 0.082 0.069 0.25 0.062 0.705 0.25 0.112 0.229	12,200 11,980 11,980 10,900 11,900 12,800 10,900 11,700 10,500	7.21 ESP 5.21 ESP 5.66 ESP 25.00 FGDW 5.21 FGCW 9.01 FF 25.00 FF 9.07 FF 21.81 FGCM	99 1959 99 5585 99 9738 98,9720 90 9021 99,5058 93 2160 93 9060 93 9450	10 3.8 1.9 8.3 0.41 5.1	0.0408 0.0031 0.0018 0.0090 0.0002 0.0053 0.0058	5.708 9.244 11.666 6.300 9.244 1.509 6.300 5.983 5.624	BB.6286 0.0000 67.4629 59.6413 10.2041 72.7285 19.0476 68.2429 23.9656	0.892 0.000 0.875 0.699 0.102 0.727 0.191 0.893 0.240				
 - -	ESP ESP FGDw FGDw	DOE 6 20 DOE 6 20	5.8 16 9.5 12	5.8 16 9.5 12	9,08 92,0 80,0 92,0	0.00 0.28 0.08 0.28	6.02 6.051 0.0104 6.019	0.17 0.21 0.17 0.21	9,970 10,300 9,970 10,000	17.05 ESP 21.00 ESP 17.06 ESDW 21.00 ESDW	99,6827 99,7 57 1 99,5 296 99,9 6 95	5.6 15 9.5	0.0631	8.024 28.000 8.024 26.000	27.7175 42,3077 0.0000 53.8462	0.278 0.424 0.000 0.539				
													Averages overall		n 34.9455	nVn 0.351	ë points 34	<i>Max</i> n2n 0.9297	Mf# nVn U.000U	
													bituminous sub-bitum lignite		31.5259 44.4807 39.9870	0.319 0.446 0.310	21 0 4	0.9237 0.7274 0.6389	0.000.0 0.000.0 0.000.0	
													ESP FGDW FF FGDd		29,6767 50,7024 38,9338 11,988	0.299 0.508 0.3895 0.120	19 8 5 2	0.9193 0.9237 0.7274 0.2308	0.0000 0.0000 0.0501 0.0000	
													ESP4FGDd PP+FGOd	N.	35.9079 31.2335	0.351 0.3125	27 7			
												airumlnou	s coal ESP FGDW FF FODd		25,5541 67,9307 17,3250 0,0000	0.258 0.692 0.173 0.000	14 4 2 1	0.9193 0,9297 0.2966	0.0000 0.4435 0.0501	
													ESP+FOIM FF+FOIM	4	34.9719 11.5500	0.352 0.116	10 9			
												su bh uml	rious soal ESP FGDw FF FGDd		45,3705 40,0252 53,0087 23,966	0,456 0,400 0,5337 0,240	3 2 3 1	0.6918 0.6986 0.7274	0.6750 6.1022 6.1966	
													ESP+FGD(i)	43,2324 45,9961	0.434 0.460	5 4			
												lignita cof	ESP FGDw FF FGDd		35.6126 26.9231	0.351 0.269	2	0.4241 0.5388	0.2775 6.0000	
													ESP+FGDd FF+FGDd	×	30.9678	0.310	4			
												ESI*	blt.im svs-blt lly		25,5541 45,9705 35,0128	0.258 0,456 0.351	14 3 2			
												FF.	blrom sub-sit lig		67,9307 40,0252 26,9231	0.682 0.400 0.269	4 2 2			
												· ·	bitum aub-bh lig		17,3260 53.3397	0.173 0.534	2 3			
												FGDd	blum		0.0000	0.000	1			

lokal (Nii) 6/24/

EPPI 0888 D⊵Cl > DL set _ rank swampe of deta > DL and Et > DL set = 0

K 888888888888888888888888888888888888	Control Davice ESP	Unit ID 110 B 110 B 110 I 118 F 19 122 DOE 5 16 L DOE 2 15 16 T 16 T 12 1 12 1 12 1 12 1 12 1 12 I 10 F 5 NHG6116 4		El (lb/T6ku) 7.7 < 5.0 < 16 7.9 18 74 4.7 1.2 27 5.9 24 78 24 24 24	Modified Cri (coar) (spm) 6.7 6.8 8 12 12 12 12 12 12 12 12 12 12 12 12 12	U: (coal) (ppm) 6. 6. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(III/MIIII) 7 0.022 8 0.046 8 0.048 8 0.048 8 0.048 8 0.048 8 0.048 8 0.048 8 0.049 8 0.049 8 0.049 8 0.049 7 0.21 8 0.025 0 0.044 0 0.049 7 0.21 8 0.025 0 0.041 7 0.019 7 0.011 7 0.011 7 0.011 7 0.011	fash 0.091 0.063 0.12 0.093 0.113 0.094 0.09	FHV (ISM Dis) 11,800 42,100 42,100 43,500 13,500 13,600 13,600 13,700 14,300 14,300 14,300 14,300 13,700 13	**Mgen Cuntrol (Ib/M Gu) Davice 7.45 ESP 6.86 ESP 9.40 ESP 9.70 ESP 6.99 ESP 8.26 ESP 9.40 ESP 9.77 ESP 7.79 ESP 4.47 ESP 9.66 ESP 9.66 ESP 9.66 ESP 9.66 ESP 9.66 ESP 9.67 ESP 5.66 ESP 5.66 ESP 5.67 ES	n 99.712 99.402 99.402 99.402 99.402 99.413 99.612 98.818 99.612 98.549 98.549 98.549 98.549 98.549 98.855 99.855	(IIII IIII III III	CIPMN 18. 16.188 9. 3.3990 5. 3.3667 6. 1.1473	31,884 35,349 36,349 36,349 36,349 36,349 37,902 36,597 32,057 32,057 32,057 37,902 36,590 36,590 36,590 36,590	ni 99,632 100,230 90,111 90,213 90,339 90,620 90,620 90,620 90,239 96,23	0.989 1.006 0.096 0.096 0.096 0.980 1.001 1.004 1.001 1.001 0.986 1.003 0.983 0.998 1.004 0.988 0.988 1.004 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988			
попропропропропропропропропропропропропр	ESP ESP FGDW FGOW FF FF FF FF FGDU FGDU FGDU	22 11 102 101 11 115 101 115 U 00E 8 10 00E 7	Ď	9 64 2 6 3 40 2 9 3 1 5 2 0 45 2 < 2.0 < 0.30 < 5.3	8.0 2.075 01 0.8 2.075 0.8 0.6 1 9.9 2.075 5 7 383333	3 < 1 < 10 0 < 1 < 10	0.023 0.058 0.007 0.0051 6 0.0019 0.021 1 0.0012	0.068 0.062 0.088 0.26 0.062 0.112 0.26 0.105 0.112 0.21 0.229	11,980 11,990 12,290 10,090 11,909 12,565 10,000 12,638 11,700 11,600 10,500 10,020	5.68 ESP 5.21 ESP 7.21 ESP 25 00 FGDW 5.21 FGDW 5.21 FGDW 5.21 FGDW 8.31 FF 8.35 FF 10.00 FF 21.81 FGDd 13.97 FGDd	99.974 99.659 99.196 89.972 99.979 99.916 69.956 99.958 99.945 99.707	0.64 2.6 346 2.9 3 1.5 2 0.45 0 0	0.7898 17 20.4318 254 0.0168 0 0.1707 17 0.0102 4 0.0504 0 0.2250 23 0.0790 18 0.2620 43	50.000 74.370 47.752 50.000 79.126 39.316 38.536 76.190	99,303 98,509 86,610 95,167 08,230 96,657 99,451 99,164 100,000 100,000 100,000	C 998 0.889 0.873 0.952 0.984 0.989 0.967 0.994 0.993 1.000 1.001			
L L L	ESP ESP FODw	DOE 6 DOE 6	4.9 5.5 5.1	43 55 51	2.6 14 2.6	2.	4 0.051 6 0.0104	0.17 0.21 0.17	8,970 10,000 9,970	17.65 ESP 21.60 ESP 17.65 EGDw	99,683 99,757 99,939	4,3 5.5 5.1	3.4000 140 0.159° 26	80.792 90.500 80.782	95.351 99.607 95.044	C 985 C 998 C 981			
L	FGOW	20	4.3	43	14	`	4 D.019	D.21	10,030	21.00 FGDW	99 .910	4,9	1 2667 140 Averages overall	MI.OEME	99.698 ni 98.142	0 998 nVn 0 986	# points 40	<i>Max</i> 170 1.0171	##n n#n 0.8732
													Mjorr.neus		98.312	0.990	24	1.0171	0.8239
													aub-biltum Ilonde		97.542 98.924	0.977	12	1.0025	D.8732 D.9610
													ligrafe ESP PGDW FF		98,924 97,807 98,509 98,840	0 991 0 986 0 888 0 989	21 8 7	0,9985 1,0171 1,0063 1,0010	0.981 5 0.8732 0.9519 0.9676
													llarde ESP PGDw		98.924 97.807 98.509	0 991 0 986 0 888	4 21 8	0,9985 1,0171 1,0063	0.981 9 0.8732 0.9519
											ı	b it um inou:	llarde ESP PGDW FF FGDd ESP+FGDW FF+FGOd		98,924 97,807 98,509 98,840 97,947 96,000	0 991 0 986 0 988 0 989 0 981	4 21 8 7 4	0,9985 1,0171 1,0063 1,0010	0.981 5 0.8732 0.9519 0.9676
											ı	b it um inou:	IIprile ESP PGDW FF FGGd ESP4FGDW FF4FGOd S cool ESP FGITW FF		96,924 97,307 98,509 98,840 97,947 96,000 98,515 98,191 99,191 99,879	0 991 0 986 0 989 0 981 0 987 0 986 0 997 0 999	4 21 8 7 4 29 11	0,9985 1,0171 1,0063 1,0010 1,0029 3,0171 1,0063 1,0010	0.9619 0.9519 0.9576 0.9239 0.9401 0.9401 0.9401
												b it um inou:	II;rde ESP PGDW FF FF FGDd ESP+FGDW FF+FGOd S cool ESP FGIN FF FGDd ESP FGDd		98,924 97,807 98,509 98,840 97,947 98,615 98,615 98,191 99,878 95,890 98,397	0 991 0 986 0 989 0 981 0 987 0 996 0 997 0 999 0 901	21 8 7 4 29 11 16 4 2 2	0,9985 1,0171 1,0063 1,0010 1,0029 3,0171 1,0063 1,0010	0.9619 0.9519 0.9576 0.9239 0.9401 0.9401 0.9401
											:	bituminou: subblium:	Ilgrife ESP FGDW FF FGDW FF FGDW FF FF FGDW		98,924 97,307 98,509 98,540 99,947 98,615 98,191 99,279 99,397 97,386 94,977 98,723 98,723 98,723 98,424	C 991 C 986 C 888 C 987 C 987 C 986 C 998	21 8 7 4 29 11 16 4 4 2 2 20 4	0.9985 1.0171 1.0063 1.0010 1.0029 1.0171 1.0063 1.0010 0.9979	0.9610 0.8732 0.8619 0.9676 0.9239 0.9401 0.9401 0.9401 0.9401 0.9499
											:	E itaminov:	Ilgrife ESP FGDW FF FGDW FF FGDW FF FF FGDW		98,924 97,307 98,509 98,840 98,615 98,615 98,191 99,379 96,390 98,397 97,336 94,977 98,723 98,424 100,000 95,876	C 991 C 986 C 989 C 981 C 987 C 996 C 997 C 999 O 961 C 983 O 961 C 983 O 961 C 983 O 961 C 983 O 961 C 983 O 961 O 963 O 963	21 8 7 4 29 11 16 4 4 2 2 20 4 4 3 2 2 5 2 5 5	0.9985 1.0171 1.0063 1.0010 1.0029 1.0171 1.0063 1.0010 0.9979	0.9610 0.8732 0.8619 0.9676 0.9239 0.9401 0.9401 0.9401 0.9401 0.9499
											;	aubbilurer	Ilgrife ESP FGDW FF FGDW FF FGDW S dobl ESP FGDW FF FGDW ESP FGDW FF FGDW		98,924 97,807 98,509 98,447 98,600 98,515 98,191 99,279 95,893 98,397 98,397 98,497 98,79 98,79 98,79 98,878 90,979	C 991 C 986 C 988 C 987 C 986 C 987 C 996 C 982 C 987 C 996 C 982 C 983	21 87 4 29 11 16 4 2 2 20 4 4 3 2 2 5 7 7 2	0,9985 1,0171 1,0063 1,0171 1,0063 1,0171 1,0063 1,0010 0,9979 0,9983 0,9698 1,0029 0,9985	D.9610 D.9732 D.9619 D.9876 D.98239 D.9401 D.9624 D.9401 D.9229 D.9752 D.9752 D.9757 D.9757 D.9757 D.9757
											;	bituminou: subblium:	Ilprife ESP FGDW FF FGDD ESP4FGDW FF FF FGDD ESP1FGDW ESP1FGDW ESP1FGDW FF FF FGDD ESP FGCW FF FF FGDW ESP1FGDW FF FF FGDW FF FG		98,924 97,807 98,509 98,340 97,947 96,005 98,191 99,479 96,399 96,397 97,346 94,977 98,723 98,424 100,000 95,878 90,974 98,979 98,859	C 991 C 986 C 988 C 989 C 981 C 986 C 987 C 986 C 987 C 986 C 987 C 988 C 987 C 988 C 987 C 988	4 21 8 8 7 4 29 11 16 4 2 2 2 5 2 2 5 7 2 2	0,9985 1,0171 1,0063 1,0171 1,0063 1,0171 1,0063 1,0010 0,9979 0,9983 0,9698 1,0029 0,9985	D.9610 D.9732 D.9619 D.9876 D.98239 D.9401 D.9624 D.9401 D.9229 D.9752 D.9752 D.9757 D.9757 D.9757 D.9757
												aubbilurer	Ilpride BSP FGDW FF FGDd ESPAFGDW FF FGDd ESPAFGDW FF FGDd ESPAFGDW FF FGDW FF FG		90.924 97.807 98.509 98.404 97.947 98.191 98.191 98.397 97.336 98.397 98.397 98.397 98.397 98.397 98.397 98.397	C 991 C 996 C 996 C 997	4 21 8 8 7 4 29 11 16 4 2 2 20 4 4 2 2 5 2 2 5 7 2 2 2 4 18 18 18 18 18 18 18 18 18 18 18 18 18	0,9985 1,0171 1,0063 1,0171 1,0063 1,0171 1,0063 1,0010 0,9979 0,9983 0,9698 1,0029 0,9985	D.9610 D.9732 D.9619 D.9876 D.98239 D.9401 D.9624 D.9401 D.9229 D.9752 D.9752 D.9757 D.9757 D.9757 D.9757

Scionium (Su) 6/18/96 EPPII debts FC CLON, self = angl of values < Indicated D (reak-specific) and EL < DI debtes a NOT USED

F: Cl <dt (rank-specific)<="" <="" d.="" indicated="" of="" set="avg" th="" values=""><th>RIMI EI < D</th><th>l ereenisin K</th><th>NOT USED</th><th>)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></dt>					RIMI EI < D	l ereenisin K	NOT USED)													
And Barana B	Control Device ESP	Unit 10 B B DOE 2 114 B 114 B 114 B 112 122 110 L 15 DOE 2 116 B DOE 5 12 DOE 5 12 DOE 5 PDOE 5 PDOE 7 PDOE 14 H 14	Modifiled Ei (ID/TBIW) 46 822 150 240 0 130 777 60 31 176 130 130 250 0 66 113 9.0 27 320 55 57 2 0.55	Actual Ei (tb/TBtu) 46 62 2150 240 48 70 1800 277 80 190 190 190 260 86 13 8 9 27 320 55 572 C.55	(ppm) 0.57	Ci (coal) (ppm) 0.57 < 0.6 < 1.1	PMov4 (Ib/MBnu)	Issh 9,091 N 10,095 N	FB-V (teAMBt.) 11,900 12,300 13,300 13,500 12,900 12,900 12,900 12,900 12,900 13,600 13,600 13,600 14,000 14,000 14,000 13,700 13,700 13,700	PMoon Control (III/MINI) Oevida 7.55 ESP 6.59 ESP 8.59 ESP 8.59 ESP 8.50 ES	0.7123 00.7958 99.6121 98.5426 99.4121 98.5426 99.5469 99.5666 98.5666 98.5666 98.4653 99.4659 99.4659 99.4659 99.7701 99.6549 99.8649 99.8659 99.8692	77 80 31 170 140 130 280 85 -3 9,9 27 320	0.1378 0.0321 0.2112 1.2788 2.0645 1.0373 0.4650 2.2935 1.0350 3.3857 7.8602 8.6754 0.1972 0.233 3.6735 0.0025	CI*PM/ la *(1-ii) 47.894 44.196 55.283 54,444 67.591 119.674 69.231 172.654 169.231 209.302 231.345 268.116 248.822 277.372 268.859 666.67 87.591 88.714 69.839 306.678 58.560 231.343 87.591	18 3.96 49 32 -171.40 -349.84 52 45.20 41.51 52 52 45.52 47.76 54.68 53.48 63.	0.04 -0.40 -1.72 -3.42 -0.48 -0.27 -0.55 -0.55 -0.55 -0.55 -0.60 -					
ರವ ಾದ್ ಯರಾ	ESP ESP FGDw FGOw FF FF	11 22 11 101 115 DOE 8 101	3.8 9.058 9.85 1.4 9.36 3.2 9.9	3.8 0.052 0.65 1.4 0.55 3.2 2.9	0 67 0 78 0 67 2 7 0.82 0 88 2 7	0.87 0.78 0.67 2.7 0.82 0.88 2.7	0.023 0.0015 0.0051 0.007 0.0019 0.009	0.062 0.068 0.069 0.25 0.112 0.112 0.25	11,900 11,960 11,900 10,000 12,565 11,700 15,000	5.21 ES.P 5.68 ES.P 5.21 PGDW 25.00 FGDW 8.91 FF 9.57 FF 25.00 FF	99,5585 99,9736 69,8021 99,9720 99,9767 99,9060	3.8 0.053 0.65 1.4 0.35 3.2 2.9	0.2465 0.0172 0.0551 0.0756 0.0139 0.0707 0.2268	56 303 65 109 66 303 270 000 65 261 75 214 270 000	93 25 99 92 98.86 99 48 99 45 95 75 98 93	0.94 1.00 0.99 1.00 0.99 0.96 0.99					
L L L	ESP ESP FGDw FCOw	DOE 6 20 DOE 6 20	3 7 780 8.3 160	8.7 780 8.3 160	4.5	< 1.3 +.5 < 1.3 4.5	0.02 0.051 0.0104 0.010	0.17 0.21 0.17 0.21	9,970 10,000 9,970 10,000	17.05 ESP 21.00 ESP 17.05 FGDW 21.00 FGDW	99.8827 99.7571 99.9390 99.9095	8.7 700 8.3 160	0 1529 1 0929 0.0795 0.4071	130 391 450 055 130 391 450,000	03 33 -70 33 93 53 64 44	0.08 -0.74 0.94 0.65					
													Awwagas overell		n i 38 9656	ne/n 9.3917	# points	3	Max ntr 0.9995	<i>Min</i> nVn -3.4214	
													bitumencus sub-bitum ligade		29 9791 97 9452 44 5184	9,2092 9,9805 9,4453		7	0 9948 0.9995 0 9369	-3,4214 0.9366 -0.7351	
													ESP FGD# FG FGOd		12.5533 75.1104 72.7974 99.3721	9.1294 9.7620 9.7284 9.9948		в	0.9995 0.9951 0.9947	-3.4214 -0.0440 0.0099	
													ESP+FGD F1+FGDd	w	30.7911 77 2255	0.3104 9.7726		2 B G			
												l)l whiteSct	ESP FGDw FF FGDd		2 5084 50 1193 34 9337 89 5721	3.0282 3.6323 0.3494 3.9948		4 2 1	0.8534 0.8565 0.680A	-3.4214 -0.0440 -0.0039	
												subbliumli	ESF+FGD FC+FGDA	w.	14 6290 56 41 31	0.1490 0.5645		30 3			
												SVOIME	ESP FGD# FF F30d		99,1635 99,0399	9,9680 9,9923 9,9610		2	0.9995 0.9951 0.9947	0,9366 0,8894 0,9584	
													ESP+FGDU FF+FGDU	W	97.8741 99.0399	0.9802 0.9810		4 8			
												lignita sos	 GSP F90w FF F001		9.9972 79.0396	D.0996 D.7910			0.93 64 0.9369	-0.7351 0.6450	
													ESP+FGD FF+FGOd	a)	44.5184	0.4453		4			
												ESP	e:tum aub-bit		2.5084 96.5847	0.0282 0.9880		16 2			
												FGDw	Hg bilum cob bill		9.9972 63.1193 99.1635	0.0998 0.6323 0.9923		2 4 2			
												FF	sub-Ull li g bilum		99.1635 78.0395 34.9007	0.9923		2			
													sub-bli lig		98 (2)99	0.900.0		3			
												FGOM	lalut		99 3721	0.994B		1			

Selenkam (Se) 6/18/96
EPRI data
F-1: C1 < DL set - avg of values < Indicated (venk-specific) and E4 < DI datasets NOT USEL REPEAT with all int < 0 reset to int = 0.

			Medilled	Actual	Modfled	Actual												
	Control		El .	CI.		Ci (coal)	PMont	41.	HHY		Control		Ei	OIDLER.	OPPM /			
Rank	Device	Unit IS	(ID/THM)	(Ib/fetu)	(ppm)	(ppm)	(Ib/Militin)	tash		(IMMfh.)		n 00 7400	(gr/LLDpv)	CIPMNa	'8 '(1•0) 47,899	71. 3.98	nlin	
В	ESP	110 B 20E 2	48	48 82	0.57	0.57	0.022	0.091 0.12	11,900 12,900		ESP	99.7123 99.7956	46 62	C.1978 C.0903	44. 86	0.00	0.04	
8	ESP ESP	114 R	62 160	150	0.735		0.019	0.12	13,300		E3P	99,7908	150	0.1321	55,263	0.00	0.00	
9	ESP	114 B	240	249	0.735		0.025	0.087	13,500		ESP	99,6121	240	0.1321	54,444	0.00	0.00	
	ESP	12	240 48	48	1.9	1.2		6.094	13,503		ESP	95.5426	48	1.2766	87,591	45.29	0.46	
9	ESP	(22	70	40 70	1.6	1.6	0.12	0.093	13,379		ESP	98,2748	70	2.0645	119,671	41.51	0.42	
8	ESP	110 L	130	130	2.1	2.1	0.041	0.083	12,100		ESP	99.4023	130	1.0373	173,554	25.10	0.25	
В	ESP	15	77	77	2.2	2.1	0.026	0.127	13,000		ESP	99.7134	77	0.4860	169.231	E1.50	0.55	
8	ESP	00E4	60	66	2.1	2.3	0.026	C. 138	14,333		ESP	99.5493	60	2.3333	160.839	50.26	D.51	
8	ESP	118	31	31	2.7	2.7	0.046	0.72	12,930		ESP	99 5055	31	1.0050	209.302	85.19	0.96	
B	ESP	18	170	170	9.1	3,1	Đ.14	0.73	13,433		ESP	20.5569	170	3.3385	231,343	26.52	0.27	
ē	ESP	16 L	140	1/0	3.1	3.7	0.12	0.095	13,890		ESP	98.2568	140	4.6737	269,116	47.78	0.49	
a	ESP	DOE 3	130	130	3.7	3.7	0.11	0.12	12,933		ESP	98.B175	130	3.3917	288.822	54.68	0.55	
9	ESP	16	100	130	3.2	3.8	0.11	0.1	3,700		ESP	07.1230	130	7.9800	277.372	53.13	0.55	
8	ESP	19	260	260	0,9	3.9	0.036	0.09	13,530		ESP	93.4659	260	1.5428	288.889	10.00	0.10	
ā	ESP	DOE 5	80	86	23	23	0.043	0.114	13,800		ESP	99.4795	86	8 6/54	1666,67	94.64	0.95	
9	FGDw	12	13	13	1.2	1,2	0.013	0.09	13,790		FGDw	99,0043	13	0.1714	87.591	85.16	0.05	
ě	FCDW	21	9.0	9.9	1.2	1,2		0.087	14,000		FGD*	99,7701	9.9	0.1970	85.714	88.45	0.89	
ä	FGOW	DOF 4	27	27	2.3	2.3		0.138	4,330		FGDw	99,8549	27	0,2333	160,839	83,21	0.93	
อ	FGDW	125	350	320	-4	4	6.09	0.090	13,043		FGDW	95.BD22	320	3.6735	305.678	0.00	0.33	
a	FF	DOE 2 FF		Sa	0.9	0.9	0.011	0.12	13,000	9.23		99 8590	58	0.0825	58,580	0.99	0.01	
š	FF	18 FF	72	72	3.1	3,1	0.0019	0.13	13,433	9.70		59,9804	72	0.0453	231,343	68.88	0.59	
B	FGDd	14	0.55	0.55	1,2	1.2		C.093	13,700	6.79	FGDd	99.6925	0.55	0.0942	87.591	99.37	0.99	
	ESP	11	3.8	3.8	0.67	0.67	0.023	0.062	11,300	E 01	ESP	99.6586	3.8	0.2486	66,303	93.25	D.94	
G S	ESP	22	0.053	0.053	9.70	0.78	0.0015	0.069	11,380		ESP	99,8736	0.053	0.0172	65,109	99.92	1.00	
8	FGDw	11	0.000 0.85	0.65	0.67	0.87	0.0051	0.062	11,300		FGDw	99.9021	0.05	0.0551	56,000	99.05	0.99	
ŝ	FGDW	101	1.4	1.4	2.7	2.7	0.007	0.26	10,000		FGDw	98.9720	1.4	D.D768	270,000	99.46	1.00	
5	fF.	115	0.36	5.36	0.82	0.82	D.GG 19	0.12	12,565	6.B1		99.9787	0.36	0.0139	65,261	99.45	0.99	
s	FF	DOES	3.2	3.2	88.C	6.88	C.009	0.112	11,700	957		99 9060	3.2	0.0707	75.214	95.76	D.98	
8	FF	101	2.9	2.0	2.7	2.7	0.021	0.25	10,000	25.0D		99.9160	2.9	0.2288	270,000	99.93	D.99	
۰	FF		2.0	2.0					,	20.00							2.22	
l.	ESP	DOER	8.7	8.7	1.8	< 1.3	6.02	0.17	9.970	7.05		99.8827	8.7	D.152B	130.381	93.33	D.93	
Ë	ESP	20	780	790	4.6	4.5	€.051	0.21	10,000	21.00		99 7571	780	1,0929	450,000	3.00	0.00	
L	FGDw	DOD 6	B.3	8.3		< 1.3	0,0104	0.17	9,970		FGDW	99 9390	8.3	0.0795	130.391	93.63	D.94	
L	FGDw	20	160	160	4.5	4.5	0.019	0.21	10,990	21.00	FOCW	.)9 8 096	160	0.4071	450.000	64.44	0.65	
														Averages eversit		ni 57.5220	nVn 0.5777	*

15	160	0.4071	450.000	64.44	0.65				
							Max	Mir	
		Averages		nl	n/m	≢ points	në/n	nýn	
		overall		57.5220	0.5777	34	0.9985	0.0000	
		cluminnus		44.2924	0.4462	23	0.9948	0.0000	
		aub-trium		97,9452	0.9805	- /	0.9995	0.9966	
		llanite		62 0517	0.5291	4	0.9369	0.0000	
		1311112							
		ESP		43.9580	0.4433	20	0.9995	0.0000	
		FGDW		76.6631	0.7674	а	D.9951	0.0000	
		-F		72.7074	0.7284	5	0.9947	0.0099	
		FEDat		99.3721	0.9948	1		-	
		ESP+FGD#	,	53.2998	D.5359	28			
		FF+FGDd		77.2265	0.7728	6			
	hiruminous								
	niriaminniis	±SP		37,0415	0.3747	16	0.9534	0.0000	
					D.6433	4	D.8885	0.0000	
		FGDW FF		84.2053 34.9337	0.3494	2	0.6889	0.0009	
						1	0.0009	0.0098	
		FGOU		99.3721	0,9948	1			
		=SP+FGDW		42.4742	0.4284	20			
		₹F+FGDu		58,4131	D.5645	3			
		, 000		Q	0.00+0	-			
	aubb eumi n	igus coel							
		ESP		96.5047	0.9600	2	D.9995	0.9355	
		F30w		99,1835	D.9929	2	0.9951	0.9894	
		SE.		98.0399	0.9810	3	D.9947	0.9584	
		FGD1				ā			
		ESP+FGDw	,	97.8741	D.9802	4			
		°F+FGDd		98.0399	0.9810	8			
	r								
	lignit s coal	ESP		46,6639	0.4672	2	0.9344	0.0000	
		EGD _M		79.0095	0.467£	2	D.9369	0.6450	
		- H		79.0095	0.7910	2	0.8369	0.6450	
		FGD:I							
		. 60%							
		ESP+FGDw		62.6517	D.B291	4			
		FF+FG 2d							
	ESP								
		b furn		37.0415	0.3747	16			
		sub-bll		98.5847	0.9880	2			
		ilgii		46.6630	0.4672	2			
	FGDW								
		bium		64 2063	0 6433	4			
		sub-Bll		99.1635	0.9923	2			
	-	ılg		/9 0395	0.7910	2			
	FF	Laborat		04.0407	0.0104				
		bilum:		34 9337	0.3494	2			
		sub-bil		98.0393	0.9B · D	3			
		ilg							
	FGDd	blium.		99,3721	0.9948	1			
	. 200	sub-bit		SOLDIE!	V.001D	5			
		lla							