Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water

PDF Version Also Available for Download.

Description

The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative ... continued below

Physical Description

54 p.

Creation Information

Brown, G.N.; Bontha, J.R.; Carson, K.J.; Elovich, R.J. & DesChane, J.R. October 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 33 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Pacific Northwest Laboratory
    Publisher Info: Pacific Northwest Lab., Richland, WA (United States)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative selectivities of the ion exchange materials under similar operating conditions. Additional flow studies are needed to predict material capacities and to develop complete ion exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV{reg_sign} IE-911 (manufactured by UOP), clinoptilolite (a naturally occurring zeolite), and materials produced on an experimental basis by AlliedSignal (biotites and nonatitanates), 3M (hexacyanoferrates), Selion Technologies, Inc. (hexacyanoferrates and titanates), and Texas A&M University (pharmacosiderites, biotites, and nonatitanates). In all, the performance of 14 ion exchange materials was evaluated at two solution-to-exchanger mass ratios (i.e., 10{sup 4} and 10{sup 5}) using actual 105-KE Basin water. Evaluation consisted of determining cesium and strontium batch distribution coefficients, loading, and decontamination factors. Actual 105-KE Basin water was obtained from a sample collected during the sludge dissolution work conducted by PNNL in FY 1996. This sample was taken from the bottom of the basin and contained significantly higher concentrations of the radioactive constituents than do samples taken from the top of the basin.

Physical Description

54 p.

Notes

INIS; OSTI as DE98050506

Source

  • Other Information: DN: TTP No. RL3-6-C3-42

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98050506
  • Report No.: PNNL--11746
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/552793 | External Link
  • Office of Scientific & Technical Information Report Number: 552793
  • Archival Resource Key: ark:/67531/metadc691632

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • June 13, 2016, 6:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 33

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brown, G.N.; Bontha, J.R.; Carson, K.J.; Elovich, R.J. & DesChane, J.R. Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water, report, October 1, 1997; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc691632/: accessed July 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.