3. EXTERNAL ION BEAM ANALYSIS

Laser to simulate radiation-induced thermal effects were observed to closely parallel those observed on other broad area sources as well as Co2. These effects were observed on an ion microscope only the response induced in PdMo4 reported. These effects observed on a broad area sources as well as on an ion microscope.

An ion microscope is used to form an ion beam particle size of the output beam. The report of the experiment is repeated. These effects include transient changes to attenuation, bandwidht, and intensity of the beam. The radiation induced effects in a reacto-optic (AO) device operating under Bragg conditions have been reported in the application of photonic technologies in radiation environments. Under increased attention.

2. INTRODUCTION

Beam was directed at the acousto-optic transducer. When the beam changed the sonic velocity and refractive index, similar effects were observed when the beam was directed at the acousto-optic transducer. The effects were attributed to the induced change in the temperature distribution of the crystal. However, when the beam was directed at the acousto-optic transducer, the effects were observed to change a function of ion beam, but not a reaction of beam, and not a reaction of beam. The effects were observed to change a function of ion beam, and not a reaction of beam. However, the effects were observed to change a function of ion beam, and not a reaction of beam. However, the effects were observed to change a function of ion beam, and not a reaction of beam.

1. ABSTRACT

Albuquerque, NM 87185-1056
Sandia National Laboratories, MS 1056
B. L. Doyle

US Air Force Phillips Laboratories, VTMC, Kirtland AFB, NM 87178-7769
Alan H. Paxton, Harrelson, Edward W. Taylor, Stanley McKinnon

Performance of an Acousto-Optic Bragg Cell Under Ion

1. Received 9-11-20-
CONF-97-17047
SAND-97-17047
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
any, existing microbeam vacuum chamber. Sandia has developed an external microbeam analysis setup, that can be used to test samples as large as 30 cm x 30 cm. The ion beam is energy analyzed and collimated before entering a magnetic quadrupole lens with a 3.5 mm bore. The beam is focused onto the sample through a thin (15 μm) mylar or Al air-to-vacuum window at the end of the chamber. The ion beam current was measured by replacing the sample with a Faraday cup. Additionally, the number of ion-induced secondary electrons emitted from the vacuum side of the window were recorded, and the beam current on the target was monitored by the electron count rate. The AO modulator exposures were performed using 4.0 MeV protons focused to approximately 1 mm and with intensities of about 90 nA. To minimize the X-rays produced by the ion beam traversing the air gap, a distance of less than 2 mm between the sample and the vacuum window was chosen. The X-ray radiation background during a typical proton irradiation was below 0.3 mrad/hr. A 2D map of the device response to the beam radiation as function of beam position on the modulator surface was produced by translating the AO device, together with the entire test setup, in front of the ion beam.

4. EXPERIMENT

The AO device that we exposed was a PbMoO_4 Isomet 1206C-1 modulator, used with a 1233A1 RF oscillator. It was operated at 110 MHz, at RF power level of 0.925 W. The power levels of the deflected and undeflected output light beams were monitored during the H^+ exposure. The experimental setup is shown in Fig. 1. The crystal of the AO device was exposed in a grid of spots with 2.0 mm spacing in both the horizontal (z) and vertical (y) dimensions. The microbeam was stopped within 100 μm of the crystal surface, so the temporary degradation of the AO performance was due to thermal effects, since charge creation and crystal defect generation did not take place in the region traversed by the laser beam. The exposure time was typically 40 s, and the performance was monitored for 15 s after the microbeam was cut off by the Faraday cup. Performance returned to the pre-exposure conditions within the 15 seconds.

Contour plots of the device diffraction efficiency are shown in Figs. 2 through 4. The y, z coordinate gives the location on the crystal face of the H^+ beam during exposure. Our definition of diffraction efficiency is

\[\eta = \frac{p_1}{p_1 + p'_0}, \]

where \(p_1 \) is the power of the deflected optical beam, and \(p'_0 \) is the optical output power in the direction of the incident beam. The H^+ beam was unblocked at time \(t = 0 \), so Fig. 2 gives the unperturbed diffraction efficiency, and the contours are an indication of the experimental error. Figures 3 and 4 show the diffraction efficiency as a function of the microbeam location at \(t = 10 \) s and \(t = 40 \) s. There was no significant change from the distribution from \(t = 30 \) s (not shown) to \(t = 40 \) s, so the crystal temperature distribution had reached steady state by this time. The laser beam was located 3.2 ± 0.4 mm from the transducer, and 1.0 ± 0.2 mm from the irradiated crystal face.

Very little degradation of the diffraction efficiency occurred for H^+ locations that were not between the laser beam and the transducer, as is seen in Figs 3 and 4. Another notable feature
is the occurrence of the highest diffraction efficiency for beam locations that are centered in the
z-dimension. This effect is explained by the theoretical discussion in the next section.

5. DISCUSSION OF RESULTS

To understand the thermal effects caused by the microbeam, we numerically calculated C_d, the
coefficient for diffraction of power from the incident light wave into the diffracted wave\(^3\) for a
number of values of z with $y=2.5$ mm. To do this, first we obtained the equilibrium temperature
increase in the crystal due to the microbeam by solving Laplace’s equation. Boundary conditions
corresponded to constant temperature at the heatsink and a derivative proportional to the beam
energy flux at the crystal surface. Heat loss due to radiation and convection was estimated to be
less than 1% of the incident power, and these loss mechanisms were ignored. The aberration
of the acoustic wave at its intersection with the optical beam was obtained from the temperature
distribution, and it was expanded as a spectrum of plane waves. The optical beam only satisfied
the condition for Bragg diffraction for the portion of the spectrum very near zero spatial frequency.
Therefore C_d was proportional to the square of the zero-frequency component of the acoustic wave.\(^4\)

When the energy deposition on the crystal was centered at $z = 0$, there was no tilt component
to the acoustic wave, and the main lobe of the spatial frequency spectrum was centered at zero.
For decentered deposition, the acoustic wave had a tilt component which served to detune it from
Bragg resonance with the optical wave. This caused a greater decrease in C_d than did the higher
order aberrations.\(^3\) To obtain the overall diffraction efficiency from C_d, a coupled wave equation
would have to be applied, but a consideration of the magnitude of C_d is sufficient to understand the
"W" shape of the diffraction efficiency curve.

6. ACKNOWLEDGEMENT

This work was sponsored by the Defense Nuclear Agency under DNA MIPR# 96-2006 and Work
Unit 52223.

7. REFERENCES

1. E. W. Taylor, S. P. Chapman, M. A. Kelly, A. D. Sanchez, J. Stohs, E. Kinsley, and D. M. Craig,
2. E. W. Taylor and M. A. Kelly, Conf. on Photonics for Space Environments III, San Diego, CA,
3. A. H. Paxton and E. W. Taylor, Conf. on Photonics for Space Environments IV, Denver, CO,
FIGURE CAPTIONS

Figure 1. Experimental setup for measuring the performance of an AO cell under H+ irradiation. The setup, including all the elements shown here except the beam tube, was mounted on an aluminum plate which was bolted to a translation stage that allowed it to be moved relative to the H+ beam.

Figure 2. Contour plot showing the diffraction efficiency as a function of ion beam location on the crystal. The transducer is at location y=0, and the light beam enters the crystal at the face at z=6.5. The plot is for time t=0 s, just before the ion beam was unblocked.

Figure 3. Contour plot showing the diffraction efficiency as a function of ion beam location on the crystal. The transducer is at location y=0. The plot is for time t=10 s, and the ion beam was unblocked at t=0.

Figure 4. Contour plot showing the diffraction efficiency as a function of ion beam location on the crystal. The transducer is at location y=0. The plot is for time t=40 s, and the ion beam was unblocked at t=0.

Figure 5. Comparison of experimental values of diffraction efficiency with a theoretical curve of the efficiency for scattering from the input beam to the diffracted beam. The curves are plotted as a function of the location of the center of the ion beam at the surface of the crystal. The qualitative structure of the two curves is similar. In order to simulate the overall diffraction efficiency, a coupled wave equation would have to be applied to the interaction of the laser beam with the aberrated sound wave.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.