Random and Uniform Reactive Ion Etching Texturing of Si

PDF Version Also Available for Download.

Description

The performance of a solar cell is critically dependent on absorption of incident photons and their conversion into electrical current. This report describes research efforts that have been directed toward the use of nanoscale surface texturing techniques to enhance light absorption in Si. This effort has been divided into two approaches. The first is to use plasma-etching to produce random texturization on multicrystalline Si cells for terrestrial use, since multicrystalline Si cannot be economically textured in any other way. The second approach is to use interference lithography and plasma-etching to produce gettering structures on Si cells for use in space, ... continued below

Physical Description

22 p.

Creation Information

Zaidi, S.H. April 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The performance of a solar cell is critically dependent on absorption of incident photons and their conversion into electrical current. This report describes research efforts that have been directed toward the use of nanoscale surface texturing techniques to enhance light absorption in Si. This effort has been divided into two approaches. The first is to use plasma-etching to produce random texturization on multicrystalline Si cells for terrestrial use, since multicrystalline Si cannot be economically textured in any other way. The second approach is to use interference lithography and plasma-etching to produce gettering structures on Si cells for use in space, so that long-wavelength light can be absorbed close to the junction and make the cells more resistant to cosmic radiation damage.

Physical Description

22 p.

Notes

OSTI as DE00005938

Medium: P; Size: 22 pages

Source

  • Other Information: PBD: 1 Apr 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND99-0748
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/5938 | External Link
  • Office of Scientific & Technical Information Report Number: 5938
  • Archival Resource Key: ark:/67531/metadc691457

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1999

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 10, 2017, 3:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zaidi, S.H. Random and Uniform Reactive Ion Etching Texturing of Si, report, April 1, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc691457/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.