Hot-isostatic pressing of U-10Zr by grain boundary diffusion and creep cavitation. Part 2: Theory and data analysis

PDF Version Also Available for Download.

Description

Uranium-10 wt % zirconium (U-10Zr) is a fuel alloy that has been used in the Experimental Breeder Reactor-II (EBR-II). The high burnup that was desired in this fuel system made high demands on the mechanical compatibility between fuel and cladding both during normal operation and during safety-related transients when rapid differential expansion may cause high stresses. In general, this mechanical stress can be reduced by cladding deformation if the cladding is sufficiently ductile at high burnup, and/or by fuel hot-pressing. Fortunately, the fuel is very porous when it contacts the cladding, but this porosity gradually fills with solid fission products ... continued below

Physical Description

35 p.

Creation Information

McDeavitt, S.M. & Solomon, A.A. August 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 51 times , with 4 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Uranium-10 wt % zirconium (U-10Zr) is a fuel alloy that has been used in the Experimental Breeder Reactor-II (EBR-II). The high burnup that was desired in this fuel system made high demands on the mechanical compatibility between fuel and cladding both during normal operation and during safety-related transients when rapid differential expansion may cause high stresses. In general, this mechanical stress can be reduced by cladding deformation if the cladding is sufficiently ductile at high burnup, and/or by fuel hot-pressing. Fortunately, the fuel is very porous when it contacts the cladding, but this porosity gradually fills with solid fission products (primarily lanthanides) that may limit the fuel`s compressibility. If the porosity remains open, gaseous fission products are released and the porous fuel creeps rather than hot-presses under contact stresses. If the pores are closed by sintering or by solid fission products, the porous fuel will hot-isostatic press (HIP), as represented by the models to be discussed. HIP experiments performed at 700 C on U-10Zr samples with different impurity phase contents (Part 1) are analyzed in terms of several creep cavitation models. The coupled diffusion/creep cavitation model of Chen and Argon shows good quantitative agreement with measured HIP rates for hydride- and metal-derived U-10Zr materials, assuming that pores are uniformly distributed on grain boundaries and are of modal size, and that far-field strain rates are negligible. The analysis predicts, for the first time, an asymmetry between HIP and swelling at identical pressure-induced driving forces due to differences in grain boundary stresses. The differences in compressibility of hydride- and metal-derived U-10Zr can be partially explained by differences in pore size and spacing. The relevance of the experiments to description of in-reactor densification under external pressure or contact stress due to fuel/cladding mechanical interaction is discussed.

Physical Description

35 p.

Notes

INIS; OSTI as DE97008054

Source

  • Other Information: PBD: [1997]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97008054
  • Report No.: ANL/CTD/PP--86029
  • Grant Number: W-31109-ENG-38
  • DOI: 10.2172/510397 | External Link
  • Office of Scientific & Technical Information Report Number: 510397
  • Archival Resource Key: ark:/67531/metadc691405

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 16, 2016, 3:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 51

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

McDeavitt, S.M. & Solomon, A.A. Hot-isostatic pressing of U-10Zr by grain boundary diffusion and creep cavitation. Part 2: Theory and data analysis, report, August 1, 1997; Illinois. (digital.library.unt.edu/ark:/67531/metadc691405/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.