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ABSTRACT 

The problem of the flow of a single-phase fluid through a rough-walled rock frac- 
ture is discussed within the context of rigorous fluid mechanics. The derivation of the 
“cubic law” is given as the solution to the Navier-Stokes equations for flow between 
smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. 
The various geometric and kinematic conditions that are necessary in order for the 
Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw 
equations are studied and quantified. In general, this requires a sufficiently low flow 
rate, and some restrictions on the spatial rate of change of the aperture profile. Vari- 
ous analytical and numerical results are reviewed pertaining to the problem of relating 
the effective hydraulic aperture to the statistics of the aperture distribution. These stu- 
dies all lead to the conclusion that the effective hydraulic aperture is always less than 
the mean aperture, by a factor that depends on the ratio of the mean value of the aper- 
ture to its standard deviation. The tortuosity effect caused by regions where the rock 
walls are in contact with each other is studied using the Hele-Shaw equations, leading 
to a simple correction factor that depends on the area fraction occupied by the contact 
regions. Finally, the predicted hydraulic apertures are compared to measured values 
for eight data sets from the literature for which aperture and conductivity data were 
available on the same fracture. It is found that reasonably accurate predictions of 
hydraulic conductivity can be made based solely on the h t  two moments of the aper- 
ture distribution function, and the proportion of contact area. 
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Introduction 

In many geological formations with low matrix permeability, fluid flow takes 

place predominantly through fractures. In some cases the bulk of the flow takes place 

through a single hcture or fault, while in other cases the flow occurs through a net- 

work of fractures. In either case, an understanding is needed of how fluid flows 

through a single rough-walled rock fracture. Fracw-dominated flow is important in 

many situations of technical or scientific interest, such as in certain naturally-fractured 

petroleum reservoirs, for many geothermal reservoirs, and in many underground waste 

isolation problems. Yucca Mountain, Nevada, for example, which is a potential site of 

a U. S. Department of Energy underground radioactive waste repository, contains 

numerous geological units that are highly fractured. A clear understanding of the 

hydraulic conductivity of fractures has therefore been identified as an important 

scientific problem that must be addressed during the site characterization process at 

Yucca Mountain (Gomberg, 1991). 

In this report, we address the question of how to relate the hydraulic conductivity 

of a h t u r e  to the geometry and topography of the fracture walls and asperities. We 

do this by starting with the Navier-Stokes equations, which govern the flow of a 

single-phase fluid, systematically simplify the equations to reduce them to manageable 

form, while carefully considering the conditions required for the various approxima- 

tions to be valid. We then discuss and review various analytical and numerical studies 

that have been done for different types of fracture geometry models. The aim of this 

discussion is to arrive at an equation that will relate the fracture conductivity to a 

small number of basic geometrical parameters, such as the mean aperture, fractional 

contact area, etc. Finally, we compare the various theoretical models to a few sets of 

data that have been found in the literature in which conductivities and aperture statis- 

tics have been measured on the same rock fractures. 



- 4 -  

There are other fracture properties that are not directly addressed in this report, 

such as those that control two-phase flow and solute transport. However, a clear 

understanding of single-phase flow in a rough-walled rock fracture is a prerequisite to 

the development of both two-phase flow models and solute transport models. Most 

models of two-phase fiow in fractures (i.e.? Pruess and Tsang, 1990; Murphy and 

Thornon, ‘1993) assume that each phase follows a local version of the cubic law, 

which rigorously applies only to single-phase flow in a smooth-walled fracture. 

Hence, an understanding of the limitations? if any, of the cubic law for single-phase 

flow is certainly needed for the further refinement of two-phase flow models. Solute 

transport models also often utilize the velocity profile that occurs during flow through 

a smooth-walled fracture (Le., Home and Rodriguez, 1983). Any deviation from this 

profile caused by wall roughness or asperity contact will have an effect on solute tran- 

sport. In fact, the tortuous streamlines that the fluid follows as it flows around the 

asperities constitute a primary mechanism for lateral dispersion. 

Basic Equations Governing Fluid Flow 

The flow of an incompressible Newtonian viscous fluid is governed by the fol- 

lowing form of the Navier-Stokes equations (Batchelor, 1967, pp. 147-150): 

all 1 - + (u*V)U = F--Vp +&V%I, 
at P P 

where p is the fluid density, F is the body force vector (per unit mass), p is pressure, 

p. is the fluid viscosity, and u is the velocity vector. The first term on the left 

represents the acceleration of a fluid particle due to the fact that, at a fixed point in 

space, the velocity may vary with time, The second term is the advective acceleration 

term, which accounts for the fact that, even in steady-state flow, a given fluid particle 
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may change its velocity (i.e., be accelerated) by virtue of moving to a position at 

which there is a different velocity. The sum of these two terms represents the 

acceleration of a fluid particle computed by “following the particle” along its trajec- 

tory. The term (u-V)u can be interpreted as the scalar operator u-V operating on the 

vector u. The forcing terms on the right-hand side represent the applied body force, 

the applied pressure gradient, and the viscous forces. 

3. (1) represents one vector equation, or three scalar equations, containing four 

functions: three velocity components and the pressure field. In order to have a closed 

system of equations, they must be supplemented by the so-called continuity equation, 

which represents conservation of mass. For an incompressible fluid, conservation of 

mass is equivalent to conservation of volume, and the equation takes the form 

div u z v-u = 0. (2) 

The assumption of incompressibility is acceptable for liquids under typical subsurface 

conditions. For example, as the compressibility of water is only 4.9~10-~’/Pa 

(Batchelor, 1967, p. 593,  a pressure change of 1 Mpa (10 bars) changes the density by 

only 0.05%. This compressibility effect is important for transient problems, since it 

contributes to the storativity of the rocWfluid system. However, since the relationship 

between permeability and fracture geometry is most readily studied using steady-state 

processes, transient effects can be ignored for the present purposes, and the fluid den- 

sity can be assumed to be constant. The relevant boundary conditions for the Navier- 

Stokes equations include the so-called “no-slip” conditions, which specify that at any 

boundary between the fluid and a solid, the velocity vector of the fluid must equal that 

of the solid (Batchelor, 1967, p. 149). This implies that at the fracture walls, not only 

is the n o d  component of the velocity equal to zero, but the tangential component 

vanishes as well. 



- 6 -  

The most common situation in subsurface flow is for the only appreciable body 

force to be that due to gravity, in which case F=g. Taking the z direction to be verti- 

cally upwards, we have g=-g+, where g = 9.81 m/s2 = 9.81 Nkg, and e, is a unit 

vector in the vertical direction. The gravitational term can be removed from the 

governing equations by defining a reduced pressure (Batchelor, 1967 p. 176; Phillips, 

1991, p. 26) as 

f i  =p+pgz , 

in which case the two terms F-(l/p)Vp can be written as 

(3) 

1 1 - 1  - 1  - 1  
F - -Vp = -ge, --Vp = -(Vp +pge,) = -V(p +pgz) = -Vp. 

P P P P P 
(4) 

Hence, the governing equations can be written without the gravitational term, as long 

as it is understood that the pressure represents the reduced pressure, as defined in eq. 

(3), and the density is assumed constant. For simplicity of notation, we will use p ,  

with the understanding that it actually represents the reduced pressure @. 

Fracture permeability is generally defined under the assumption of steady-state 

flow under a uniform macroscopic pressure gradient. In the steady-state, the term 

au/& drops out, and the equations reduce to 

pv2u - p(u-V)u = vp . ( 5 )  

The presence of the advective component of the acceleration, (u-V)u, generally causes 

the equations to be nonlinear, and consequently very difficult to solve. In certain cases 
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this term is either very small, in which case it can be neglected, or else vanishes alto- 

gether. The case of steady flow between parallel plates is one in which the advective 

terms vanish identically, thus allowing an exact solution to be obtained, as will be 

shown below. If any other more realistic geometry is to be considered as a model of a 

rock fracture, approximations must be made to linearize the Navier-Stokes equations, 

or otherwise reduce them to tractable form. Some of these resulting approximate 

equations, such as the Reynolds and Hele-Shaw equations, are discussed below. 

Parallel Plate Model and Cubic Law 

The simplest model of flow through a rock fracture is the so-called parallel plate 

model, in which the fracture is assumed to be bounded by two smooth, parallel walls 

separated by an aperture h .  This is actually the only geometrical fracture model for 

which an exact calculation of the hydraulic conductivity is possible; this calculation 

yields the well-known “cubic law” (Witherspoon et al., 1980). Despite its assumption 

of an overly-simplified fracture geometry, this model is still widely-used in subsurface 

flow modeling. Furthermore, most other models can be considered to be refinements 

of the parallel plate model to include the effects of wall roughness, asperity contacts, 

etc. It is therefore worthwhile to study the parallel plate model in detail. 

Assume that the fracture walls can be represented by two smooth, parallel plates 

that are separated by an aperture h , as in Fig. 1. Now imagine that there is a uniform 

pressure gradient within the plane of the fracture. This can be accomplished, for 

example, by holding two opposing edges of the fracture at pressures pi and po , respec- 

tively (see Fig. la), in which case the magnitude of the macroscopic pressure gradient 

is (pi -p , ) /L.  This magnitude will also be denoted by I@ I, where the overbar 

denotes an average over the plane of the fracture. We now set up a Cartesian coordi- 

nate system which has its x1 = x  direction parallel to Vp , its x2=y direction lying per- 

pendicular to x 1 in the plane of the fracture, and its direction x 3  = z  perpendicular to 
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the fracture walls. The top and bottom walls of the fracture correspond to z =+h/2 .  

Note that this z direction is not necessarily vertical. 

The (reduced) pressure gradient lies entirely in the plane of the fracture, and has 

no z component. It seems plausible that the velocity will also have no z component, 

particularly since u, must not only vanish at the two walls of the fracture, z =+h/2,  

but must also have a mean value of zero. Since the geometry of the region between 

the plates does not vary with x or y ,  the pressure gradient should also be uniform 

within the plane of the fracture. Hence we assume that the velocity vector depends 

only on z. Note that as all components of the velocity must vanish at z =+h/2 ,  the 

velocity vector must necessarily vary with z. The components of the vector (u-V)u 

can be written explicitly as 

As the velocity components do not vary with x or y ,  any of the three velocity gra- 

dients that are not identically zero must be present in the z direction, whereas the 

velocity vector resides in the x-y plane. Hence, each of the dot products in eq. (6) is 

zero. This serves to remove the nonlinear term from eq. (5), leaving 

pV%(z) = vp . 

Now recall that V p  lies parallel to the x axis, and can be written as 

(7) 
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Comparison of eqs. (7) and (8) show that the three velocity components must satisfy 

the following three equations: 

- 
V 2 U , ( Z )  = - I V P 1  , V2Y,(z) = 0 ,  V 2 U Z ( Z )  = 0 .  

P 
(9) 

The boundary conditions for each velocity component are that ui =O when z = + h / 2 .  

It is obvious that u =O will satisfy the governing equations for % and uz, and their 

associated boundary conditions. To find u,, we integrate eq. (9a) twice with respect to 

z, and make use of the boundary conditions, yielding 

IvpI 2 
&(Z) = - [z  - (h/2)2] .  

2P 

Finally, we must verify that this velocity satisfies the continuity equation (2): 

since uy = u, =0, and u, depends only on z , but not on x . 
The velocity profile given by eq. (10) is parabolic, and symmetric about the mid- 

plane of the fracture (see Fig. lb). The velocity vanishes at the fracture walls, and is 

largest along the midplane, where its magnitude is 1- lh2/8p. The total volumetric 

flux through the fracture, for a width w in the y direction (perpendicular to the pres- 

sure gradient), is found by integrating the velocity across the fracture from z = - h / 2  to 

z = +h/2: 
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The minus sign indicates that the flux is in the directionaopposite to the pressure gra- 

dient, which is to say the fluid flows from regions of high pressure to regions of low 

pressure. The average velocity can be found by dividing the flux by the cross- 

sectional area, wh : 

Now recall Darcy’s law for flow through porous media, which in one dimension 

can be written as (de Marsily, 1986, p. 56) 

-kA  Ivp I 
P Q =  

Since the cross-sectional area A is equal to wh, comparison of eqs. (12) and (14) 

shows that the permeability of the fracture can be identified as 

The product of the permeability and area, k A ,  which is sometimes known as the 

transmissivity, is equal to 



- 11 - 

which expresses the so-called cubic law. An important consequence of the cubic law 

is that the fracture transmissivity is extremely sensitive to the size of the aperture. 

Although the transmissivity calculated for the parallel plate model, given by eq. 

(16), is often referred to as the cubic law, the dependence of T on h3 is actually a 

consequence of the fact that the equations must be dimensionally consistent. Since Q 

has dimensions of [m3/s], the pressure drop has dimensions of [pa], the length L has 

dimensions of b], and p has dimensions of [Pas], T must have dimensions of [m4]. 

As it is obvious that the total flux must scale linearly with the depth w perpendicular 

to the direction of flow, T must therefore scale with the cube of the aperture. Hence, 

the transmissivity can necessarily be written as T = Cwh3, where C is a dimensionless 

parameter. From this point of view, it may be said that the main prediction of the 

parallel plate model is that C = 1/12. 

Deviations from the Cubic Law 

The cubic law was derived under the assumption that the fracture could be 

modeled as the region bounded by two smooth, parallel plates. For this geometry, it is 

an exact result. Real rock fractures, however, have rough walls, and, hence, have vari- 

able apertures. Furthermore, there are usually regions where the two opposing faces of 

the fracture wall are in contact with each other, effectively reducing the aperture to 

zero. Since transmissivity is proportional to h3, fluid flowing in a variable-aperture 

fracture under saturated conditions will tend to follow paths of least resistance, which 

is to say paths of largest aperture. This will cause the fluid particles to depart from 

the rectilinear streamlines found for the parallel plate model. Contact regions between 

the opposing fracture walls will cause the streamlines to follow tortuous paths, as the 

fluid particles flow around the obstructions. Each of these factors has the effect of 

invalidating the conditions under which the cubic law was derived. 
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In order to apply the cubic law to the prediction of the transmissivity of a real 

rock fracture, one could assume that eq. (16) still holds if the aperture h is replaced by 

the mean aperture <h>. This is sometimes taken to be an alternate definition of the 

cubic law, i.e., (cf., Brown, 1987) 

T &  w<h>3 
12 * 

Although eq. (17) is in some sense a first approximation to the actual transmissivity of 

a rough or obstructed fracture, the effects of roughness and obstructions are not prop- 

erly accounted for by merely replacing h with ch>, as will be shown in detail below. 

This suggests that we define the so-called hydraulic aperture hH to be that value that 

allows the transmissivity to be defined by the “cubic-law”, i.e., 

WhH” T = -. 
12 

Hence, the problem of relating the transmissivity of a fracture to its geometry can be 

thought of in terms of finding an expression for the hydraulic aperture hH. This 

requires solution of the Navier-Stokes equations in fracture geometries that include 

varying aperture and obstructed regions. These solutions have only be obtained by 

approximate means, in which the Navier-Stokes equations are first reduced to simpler 

governing equation(s). 

Another possible cause of deviations from the cubic law is turbulence. Although 

the velocity profile found above for the parallel plate model was derived using various 

plausible assumptions and educated guesses, it can be rigorously verified by substitu- 

tion back into the Navier-Stokes equations, and then also checking that the boundary 
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conditions are satisfied, the continuity equation was verified in eq. (11). This raises, 

however, the question of whether or not this solution is the unique solution to the 

problem of flow between two smooth parallel plates under a uniform pressure gradient. 

In general, there is no uniqueness theorem for the full Navier-Stokes equations, as 

there is, say, in the theory of linear elasticity (Sokolnikoff, 1956, pp. 86-89). In fact, 

at sufficiently high velocities, the laminar velocity profile derived above, although still 

a legitimate solution to the governing equations, will become unstable, giving way to 

turbulent flow (e.g., Sherman, 1990, Chapter 13). This transition will typically occur 

when the Reynolds number, defined here by 

exceeds about 1150 (de Marsily, 1986, p. 66). The Reynolds number is a dimension- 

less measure of the relative strengths'of inertial forces to viscous forces. At low Rey- 

nolds numbers, viscous forces are strong enough to damp out any perturbations fi-om 

the uni-directional, laminar flow field, whereas at sufficiently high velocities small per- 

turbations to the laminar flow field will tend to grow in an unstable manner. Combin- 

ing eqs. (13) and (19) yields the following criterion for the laminar solution derived in 

the previous section to be stuble: 

This expression shows that high viscosity, low density, and small apertures all tend to 

stabilize the flow field. 
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The stability condition given by eq. (20) is satisfied in most subsurface flow situa- 

tions. For example, consider water with a viscosity of 10-3Pas and a density of 

ldkg/m3. Even for fracture apertures as large as laminar flow will be stable 

for pressure gradients as high as about 1 . 4 ~  107Pa/m. This gradient is equivalent to 

about 14Obars/m, which is much larger than the gradients that would typically be 

encountered. If the fluid is air, with a viscosity of about 2x 10-5Pas and a density of 

about 1.2kg/m3 (Batchelor, 1967, p. 175), then flow through a 1 rnm wide fracture 

will be stable for pressure gradients up to about 4 . 6 ~  106Pa/m, or about 46 bars/m. 

Hence, it seems that genuine turbulent instability can often be ignored when studying 

flow through rock fractures. Possible exceptions include situations of forced fluid 

flow, such as hydraulic fracturing (Jung, 1989), where large pressure gradients may be 

developed. For a real rough-walled fracture, however, inertia effects due to tortuous 

flowpaths will lead to deviations from the cubic law long before genuine turbulence 

occurs, Le., at lower flowrates, as will be discussed below. 

Reynolds Lubrication Approximation 

At low flowrates, the two main causes of deviations from the cubic law are 

roughness of the fracture walls, which leads to spatial variations in aperture, and asper- 

ity contact between the opposing fracture faces, which leads to partial obstruction of 

the flow. Although asperity contact can be thought of as an extreme case of aperture 

variation, it is convenient to analyze these two effects separately. First consider the 

case where the aperture varies from point to point, but is always greater than zero, i.e., 

no asperity contact. Under certain geometric and kinematic conditions, the Navier- 

Stokes equations can be reduced to the simpler Reynolds “lubrication” equation. One 

requirement for the Reynolds equation to be valid is that viscous forces dominate the 

inertial forces (Batchelor, 1967, p. 222). To quantify this criterion, we first estimate 

the orders of magnitude of the three terms appearing in eq. (5). The first term, p.V2u, 
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represents the viscous forces; the second term, p(u-V)u, represents inertial forces; and 

the third term, Vp, represents the pressure gradient Let U be a characteristic magni- 

tude of the velocity, which could be thought of as the average velocity, as in eq. (13), 

although a precise definition is not needed for an order-pf-magnitude analysis. Across 

the thickness of the fracture, the velocity varies from 0 at the upper and lower walls to 

some maximum value which is on the order of U, and this variation occurs over a dis- 

tance h. Hence the order of magnitude of the viscous terms can be estimated to be 

where h2 appears due to the fact that there are two derivatives taken with respect to z 

in the expression Vk. The magnitude of the pressure gradient term can be estimated 

to be 

mg[Vp] = Ivp I, 

where 15 I is the magnitude of the overall reduced pressure gradient established at the 

ends ends of the fracture, as in Fig 1. To check that this sort of order-of-magnitude 

analysis is sensible, note that equating the magnitudes of the viscous forces and the 

pressure gradient from eqs. (21) and (22) leads to the following estimate for the 

characteristic velocity U : 

which is consistent with the form that was calculated (exactly) for the parallel plate 
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model, eq. (10). 

We now estimate the magnitude of the inertial forces. First note that the magni- 

tudes calculated above correspond to the forces acting in the direction of the mean 

flow. This is clear for the term V p ,  which acts in this direction. For the viscous term, 

this is seen by noting that U is actually the characteristic velocity in the n direction, 

parallel to the applied macroscopic pressure gradient. To estimate the magnitude of 

the term (u-V)u, we first define a characteristic length A in the x direction, which may 

be the wavelength of the aperture variations, or the distance between asperity obsta- 

cles, etc. (see Fig. 2). The velocity gradient is then on the order of U/A,  and the iner- 

tial terms have magnitude 

pu2* 
mg[(u-V)u] = A 

For the inertia terms to be smaller than the viscous terms, we must have (Schlichting, 

1968, p. 109) 

@<E 
A h2 ’ 

puhz,1, 
lul 

or Re* 

where the reduced Reynolds number Re* is defined to be the product of the traditional 

Reynolds number, pUh/p, and the geometrical parameter h/A. The question of 

whether or not this condition is satisfied in typical subsurface flow situations will be 

discussed below. 

If condition (25) is satisfied, then the advective inertia term (u-V)u is negligible 

compared to the other two terms in eq. (5), and we can replace the Navier-Stokes 

equations (1) with the Stokes “creeping flow” equations: 
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pv2u = v p  , 

which can be written out in component form as 

These three equations must still be accompanied by the continuity equation, (11). The 

Stokes equations are linear, which makes them easier to solve than the Navier-Stokes 

equations. Another slight operational advantage to their use is that there is a unique- 

ness theorem for solutions to the Stokes equations in finite regions such as the space 

between two fiacture walls (see Langlois, 1964, pp. 161-163). This is of come a 

purely mathematical consequence of ignoring the inertia terms, which are the source of 

turbulence. The Stokes equations are nevertheless three-dimensional, in general. For 

the parallel plate model, the equations effectively become one-dimensional, since there 

is only one nonzero velocity component, and it depends on only one position coordi- 

nate. Any deviation fiom the parallel plate geometry causes the velocity vector to 

have at least two nonzero components, which depend on at least two of the position 

coordinates. Although the linearity of the Stokes equations allows methods such as 

Green’s functions (Pozrikidis, 1987,1992) and separation of variables (Lee and Fung, 

1969; Tsay and Weinbaum, 1991) to be used, solutions are still difficult to obtain, and 
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unwieldy to utilize and interpret. Hence, it is desirable to further simplify the equa- 

tions before attempting to solve them for different types of fracture geometries. 

The validity of the Stokes equations requires that the flow rate (as quantified by 

the reduced Reynolds number) be sufficiently small. Further reduction to the simpler 

Reynolds lubrication equation requires the additional Criterion that changes in aperture 

occur gradually. To derive the lubrication equations, we &st assume that the charac- 

teristic wavelength of aperture variations, A, is much larger than the aperture h .  Using 

an order-of-magnitude analysis similar to that which is commonly used to derive the 

boundary-layer equations (Schlichting, 1968, pp. 118-1 19), the magnitudes of the 

second derivatives of u, that appear in eq. (27) can be estimated as 

where we assume that the characteristic lengths in the x and y directions are the same 

for a macroscopically isotropic fracture. Eq. (28) shows that if ( f ~ / A ) ~ d ,  the deriva- 

tives with respect to x or y will be negligible compared to those with respect to z . 

The proper choice of a characteristic magnitude for 5 is not as clear, since, for 

example, the average of 5 taken over the entire fracture plane must be zero. This fol- 

lows from the fact that for a macroscopically isotropic fracture, if the overall pressure 

gradient points in the x direction, the overall flux must also have no y component (see 

Bear, 1972, p. 142; Phillips, 1991, p. 27). Whatever value is used for the characteris- 

tic magnitude of u,, , the conclusion will nevertheless follow that the a2u, /az2 is the 

dominant term on the left side of eq. (27b), as long as h/A< 1. Although the average 

value of ap/ay is also zero, local variations in aperture will cause this term to be 

locally nonzero; as it is the only term on the right-hand side of eq. (27b), d p / @  can- 

not be ignored. 
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Estimates of the magnitudes of the terms appearing in eq. (27c) are more difficult 

to make. The argument that was made above in the solution of the parallel plate prob- 

lem was that since u, must vanish at the top and bottom walls of the fracture, and 

since the average value of uz must vanish over the entire fracture plane, then uz will 

be small everywhere, and can be neglected. This argument does not actually prove, 

however, that u, will be nearly zero ZocuZZy at each point (x,y,z). The assumption 

that uz is negligible seems plausible if the aperture variations are very gradual, Le., 

h / A a  1. But as long as the fluid always fills the entire fracture, this assumption can 

never be exactly true, except in the case of uniform aperture (i.e., parallel plate flow). 

Abrupt changes in aperture in the x or y direction would certainly require that the 

fluid velocity have an appreciable component in the z direction. More precise esti- 

mates of the range of validity of this particular assumption will be discussed in the 

next section. For now, we assume that u, is negligible. 

According to the order-of-magnitude arguments given above, if the aperture varies 

gradually in the plane of the fracture, the Stokes equations (27a-c) can be replaced by 

These equations have the same form as eq. (9a), which occurred in the parallel plate 

model, although now the velocity components vary with x ,  y , and z , and the pressure 

gradient will in general vary with x andy. Since uz was assumed to vanish, ap/az 

must be zero in order to be consistent with eq. (27c). The right-hand sides of eq. (29) 

do not depend on z, so the equations can be integrated with respect to z, bearing in 
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mind the no-slip boundary conditions at the top and bottom walls, z = h and z =- h2 

(see Fig. 2), to yield 

%(x ,y , z )  = a p ( x r y )  (z -h& + h i ) ,  2p ax 

which is essentially the same parabolic profile as was found for the case of constant 

aperture, eq. (lo), except that the velocity is now parallel to the local pressure gra- 

dient, which may not always be aligned with the overall pressure gradient. If we do 

not assume that the two fracture walls are symmetric with respect to the z axis, the 

two half-apertures h l(x ,y ) and h2(x ,y ) will not necessarily be equal. 

As we are ultimately interested in the total flux through the fracture, we now 

integrate the velocity profiles given by eq. (30) across the width of the fracture, from 

-h2 to hl, to find 

. I  

where the overbar indicates an average taken over the z coordinate, and the total aper- 

ture is given by h =hl+h2  Evaluation of the integrals in eq. (31) is facilitated by 



- 21 - 

defining a new variable r = z  +h2 that represents the distance along the z axis from the 

bottom wall. 

Eqs. (31a,b) represent an approximate solution to the equations of conservation of 

momentum, eq. (29), but still contain an unknown pressure field. The pressure is 

found by utilizing the continuity equation, in some form. The continuity equation as 

given by eq. (2), however, applies to the actual local velocities, not to the integrated 

values. But V.u=O, so the integral of V-u with respect to z must also be zero. Inter- 

changing the order of these two operations then shows that the divergence of the aver- 

age velocity, E, is also equal to zero. (In general, the order of these two mathematical 

operations can be interchanged as long as the velocity components vanish at z = h and 

z =-h2, as can be proven by applying Liebnitz’ rule for differentiating and integral 

with respect to a parameter). Hence, we can apply eq. (2) to the profiles given in eq. 

(29), yielding 

a i.e., - 
ax 

r -l 

which is the equation first derived by Reynolds (1886) for lubrication-type flows. Eq. 

(32) has often been derived in the context of studying fracture permeability (see 

Walsh, 1981; Brown, 1989), by merely assuming that the cubic law holds ZocaZZy at 

each point in the Eracture, and then invoking the principle of conservation of mass. 

Although this is a useful interpretation of eq. (32), this type of derivation does not 

clearly display the conditions necessary for the validity of the various approximations 

that are implicitly contained in the final equation. 
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Eq. (32) is a single, linear partial differential equation that describes the pressure 

field in the fracture plane. Its solution requires prescription of either the pressures or 

their normal derivatives (i.e., the fluxes) over the outer boundary of the fracture plane. 

To use this equation to find the permeability of a fracture, one would typically solve it 

in a rectangular region defined by Ocx c L x ,  O < y  <Ly. The two lateral sides y =O 

and y =Ly would be no-flow boundaries, whereas the sides x = O  and x =L, are con- 

stant pressure boundaries. If there is no flow out of the two lateral sides, 5 must 

equal 0 at y =O and y =Ly . Eq. (31) shows that 5 is proportional to ap /ay,  so we 

see that the normal derivative of the pressure must vanish on the lateral boundaries. 

The x = O  boundary would have p =p i ,  and the x =L, boundary would have p =po , 

where (p, -pi)&, = 6. The overall flux would be found by integrating ii; across the 

x =O inlet of the fracture: 

Finally, the fracture transmissivity would be found from T = Qcl/lF 1. A fracture 

permeability could be defined as in eq. (16) by dividing T by the nominal area of the 

fracture, w<h>, although the transmissivity is the more generally useful parameter, as 

its definition does not require knowledge of the mean aperture. 

Range of Validity of the Lubrication Approximation 

Reduction of the Navier-Stokes equations to the Reynolds equation requires that 

the aperture h always be much less, in some sense, than the characteristic spatial 

wavelength A of the aperture variations. It would be useful to have a quantitative 

measure of how small hlA must be in order for the solutions to the Reynolds equation 

to closely approximate the solutions to the Navier-Stokes equations. Strict a priori 
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error estimates are unfortunately difficult to derive. A more practical approach is to 

focus on a specific geometry for which analytical treatment of the Navier-Stokes equa- 

tions is possible, so as to allow comparison with the lubrication theory predictions. 

For instance, consider the problem of flow between a smooth wall and a sinusoidally- 

varying wall, such as the geometry shown in Fig. 3. The aperture can be described by 

h (x ) = 4 >[ 1 + 6 sin(2n;x/h)] , (34) 

where h is the wavelength of the aperture variations, and 6 is the relative amplitude of 

the aperture variations, normalized with respect to <h>. The aperture does not vary 

with y ,  and the flow is in the x direction. 

Hasegawa and Izuchi (1983) performed a perturbation analysis of this problem, 

using as their small parameters the Reynolds number, Re=pUch>/p, where U is the 

, 

mean velocity that would occuf if the walls were smooth, and the geometrical parame- 

ter ~=<h>lh. The velocity components u, and u, are nonzero, and are functions of x 

and z. Following the standard procedure of regular perturbations, Hasegawa and Izuchi 

(1983) essentially assumed that ux and u, could be expanded as power series in Re 

and E, inserted these expansions into the Navier-Stokes equations, and then equated the 

coefficients of each power of Re and E to zero. This approach reduces the nonlinear 

Navier-Stokes equations to a sequence of linear equations. The zeroth-order solution, 

corresponding to Re=O and E=O, is identical to the corresponding solution of the 

lubrication equation for this geometry. Hasegawa and Izuchi (1983) also found the 

first-order correction due to non-zero values of Re and E. These corrections represent 

the errors incurred by replacing the Navier-Stokes equations with the Reynolds lubrica- 

tion equation. 

When translated into the present notation, the solution found by Hasegawa and 

Izuchi, including the first non-mvial corrections in Re and E, can be expressed as (see 
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their eqs. 27-32) 

The harmonic mean ~h-~>-' would result from solving a one-dimensional version of 

the lubrication equation (see eq. (42) below). The second term in brackets therefore 

represents the discrepancy between the Navier-Stokes and Reynolds solutions. To see 

the conditions that must be satisfied by Re and E in order for this term to be negligible, 

first let Re=O. As 6 is restricted by definition to lie between 0 and 1, the term that 

multiplies E' in eq. (35) is always less than 0.662. In order for the error to be less 

than, say, lo%, we would need 0 . 6 6 2 ~ h > ~ / h ~  c 0.1, which implies h > 2.57ch>. 

Since the aperture undergoes its maximum variation within a half-wavelength, this 

condition is roughly equivalent to saying that sizable aperture variations can only occur 

over distances greater than the mean aperture ch>, for the Reynolds solution to be 

valid. As pointed out by Zimmerman et al. (1991), this condition is much less restric- 

tive than the one proposed earlier by Brown (1987), which can, in the present context 

of a sinusoidal aperture variation, be expressed as h > 30<h>. Nevertheless, examina- 

tion of aperture profiles measured on real rock fractures (Gentier et al., 1989) shows 

that even this less restrictive condition is not always satisfied. 

We now consider the criteria that must be met by Re in order for the correction 

term in the solution found by Hasegawa and Izuchi (1983) to be small. The term due 

to nonzero Re in eq. (35) is always multiplied by the term due to nonzero &>/A. As 

we have already seen that the Reynolds approximation will break down if h is not 

sufficiently small, in order to find restrictions on the allowable values of Re we now 

restrict our attention to the worst admissible case, h=2.57<h>, in which case the error 

is already 10% when Re=O. If we now assume that at most another 10% error will be 
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tolerated, eq. (35) yields the condition 13Re2/8085 c 1, which in turn implies Re < 25. 

However, when Re > 1, it is not necessarily permissable to ignore the subsequent 

terms in the perturbation series, which would be proportional to higher powers of Re, 

but which were not calculated by Hasegawa and Izuchi. What can be said with some 

confidence based on eq. (35) is that if Re < 1, for example, the error due to a nonzero 

Reynolds number will be smaller than that due to nonzero &>A. Hence Re < 1 

seems to be a conservative criterion for the lubrication equation to provide a reason- 

able approximation to the Navier-Stokes equations, for this particular problem. 

When expressed in terms of parameters such as the applied pressure gradient, this 

criterion takes a form similar to that given in eq. (20) for the flow to be stable, except 

that the maximum Reynolds number is 1 instead of 1150: 

I q k -  
ph4 * 

The condition for the flow to be governed by the Reynolds lubrication equation is 

therefore stricter, by about a factor of one thousand, than the condition that the flow 

(in a smooth-walled channel) be laminar. Following the analysis given above for the 

onset of turbulence, we see that for a fracture having an aperture of lmm, saturated 

with water of density lo00 kg/m3 and viscosity 0.001 Pas, the pressure gradient must 

be less than 104Pa/m, or about 0.1 bardm. This critical gradient is certainly larger 

than most naturally-occurring groundwater potential gradients, but could be exceeded 

in cases of forced flow (cf., Jung, 1989). 

The criterion given by eq. (36) does not merely refer to the validity of the lubri- 

cation equation as an acceptable mathematical expediency. More fundamentally, this 

condition also determines whether or not the flow process will be linear or nonlinear. 

If this and the previously-defined geometrical criteria are satisfied, the term involving 
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Re will be negligible, so hH d l  be independent of the flowrate, which in turn implies 

(see eqs. 14,18) that the flowrate will be directly proportional to the applied pressure 

gradient. For large values of Re, eq. (35) shows that hH will depend on the pressure 

gradient, in which case eqs. (14,18) show that the flowrate will be a nonlinear function 

of 161. Comparison of eq. (36) and eq. (20) shows that the appearance of a non- 

linear relationship between Q and @ can occur at flowrates that are much less than 

those required to produce genuine turbulence. This point was made by Bear (1972, p. 

178) in the context of flow through three-dimensional porous media. Bear discussed 

experimental results by Wright (1968) and others that showed nonlinear effects arising 

at Reynolds numbers as low as 1-10, whereas true turbulence did not occur until Re 

reached about @loo. Geertsma (1974) pointed out, also in the context of three- 

dimensional porous media, that in cases of practical importance in petroleum engineer- 

ing, including converging flow near wellbores, nonlinear departures from Darcy’s law 

occur during laminar, not turbulent, flow. Coulaud et al. (1991) performed numerical 

solution to the full Navier-Stokes equations for transverse flow past an array of 

W t e l y  long, parallel cylinders, and found slight nonlinearity in the relationship 

between pressure drop and flowrate to begin at about Re=2, although the flow was 

still clearly laminar. Nevertheless, deviations from a Darcy-type linear relationship 

between @ and Q are often attributed, perhaps erroneously, to turbulence (cf., 

Geertsma, 1974). 

Numerical Solutions to the Lubrication Equations 

Under the conditions that the reduced Reynolds number is small, and that the 

aperture variations occur gradually, flow through a fi-acture can be described by the 

lubrication equation, eq. (32). Although it is in one sense simpler than either the 

Navier-Stokes or Stokes equations, because it is a single scalar equation rather than a 

vector equation, the presence of the term h (x ,y ) renders it an equation with variable 
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coefficients. For certain special (anisotropic) geometries the equation becomes one- 

dimensional, in which case it is easy to solve; these cases are discussed in the next 

section. For arbitrary isotropic aperture distributions it cannot be solved analytically, 

but it is amenable to numerical solution procedures. Several studies have been done in 

which the equations were solved numerically for various aperture distributions, with 

the intention of finding some simple relation between the transmissivity and the statis- 

tics of the aperture distribution. 

Patir and Cheng (1978) used finite differences to solve the lubrication equation 

for flow between two surfaces, the half-apertures of which, h and hZ, obeyed a Gaus- 

sian height distribution with linearly-decreasing auto-correlation functions. Although 

their intended application was to lubrication flows in machine components, it is con- 

venient to use the t d n o l o g y  of fracture flow when discussing their results. They 

studied both statistically isotropic fractures, and anisotropic fractures with aperture dis- 

tributions that had different correlation lengths in two orthogonal directions; only the 

results for isotropic fractures will be discussed here. As the transmissivity of a fiac- 

ture is proportional to the cube of the hydraulic aperture, as shown by eq. (18), the 

numerically-calculated transmissivities can be discussed in terms of the hydraulic aper- 

ture, hH- 

Patir and Cheng (1978) displayed their calculated results as a function of the ratio 

of the nominal aperture h, to the standard deviation of the roughness distribution func- 

tion, od; the meanings of these parameters are discussed in more detail below. The 

results are shown in Fig. 4, in which each data point represents the average of about 

ten different realizations based on the same values of h, and 0,. No values were 

given for the correlation lengths of the height distributions, although they were 

presumably much less than the overall length L of the computational region, and 

greater than the length I used in the finite difference calculations. For values of h o b d  

between 0.5 and 6.0, Patir and Cheng found that the hydraulic aperture could be fit 
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with the function (see Fig. 4) 

According to these results, the nominal aperture h, is a zeroth-order approximation to 

the hydraulic aperture hH. The effect of surface roughness is to decrease the hydraulic 

aperture below the value h,. Although eq. (37) provides a reasonable fit to the data 

when ho/cTd lies between 0.5 and 6, the parameters in the equation were not chosen so 

as to provide a best fit in the limit as h , / ~  +-; hence, this equation should not be 

thought of as a rigorous first-order correction to the cubic law in the limit of small 

amounts of roughness. 

An important point to note about the findings of Patir and Cheng concerns the 

issue of contact areas at which the two opposing surfaces touch, and the manner in 

which this affects the definitions of h, and od. Translated into the present notation, 

they defined upper and lower surfaces, the distances of which from the z =O plane are 

given by two half-aperture distributions as follows: 

where the functions d i ( x , y )  have a mean value of zero. If hl+h2>0 ,  then the frac- 

ture is open at that point, and the aperture is given by h =hl  +hz. However, if 

hl+h2<0 ,  i.e., the curves representing the upper and lower surfaces of the fracture 



- 29 - 

overlap each other, then the fracture is assumed to be obstructed at that point, and the 

aperture is taken to be zero. As pointed out by Brown (1989), the mean aperture <h> 

will equal ho if there are no contact regions, but <h> will be greater than h, if there 

are contact regions, since the negative values of the function h = h l + h 2  are not 

allowed to contribute to the calculation of ch>. Hence, the parameters h, and od 

used by Patir and Cheng (1978) do not represent the actual mean and standard devia- 

tion of the aperture, except for small values of a,, when no contact occurs. Accord- 

ing to Patir and Cheng, contact regions occurred when h o b d  <3, but they did not 

quantify the amount of contact area that occurred. Therefore, when h,/od <3,  the 

results shown in eq. (37) and Fig. 4 represent the combined effects of aperture varia- 

tion and asperity contact. 

Brown (1987,1989) performed a similar finite difference analysis of the Reynolds 

equation, for fractures having randomly-generated, fractal roughness profiles. The 

fractal dimension of the k t u r e  walls varied from 2.0, which represents a smooth 

wall, to 2.5, which was found by Brown and Scholz (1985) to correspond to a max- 

imum amount of roughness that occurs for real rock fractures. The flow region 

between fracture walls was formed by generating two surfaces having the same fractal 

dimension, and then choosing a value for the nominal aperture h,, which is the mean 

distance between the two planes. The aperture was then set to zero at any point in the 

fracture plane where the two fracture walls overlapped. Although Brown presented 

most of his results in terms of the actual mean aperture ch>, he followed Patir and 

Cheng (1978) in using 0, to quantify the roughness, which is to say, he used the stan- 

dard deviation of the distance that exists between the two surfaces before all negative 

apertures are set to zero. Hence, it is not possible to replot his data in terms of the 

actual mean and standard deviation of the fracture aperture; this definition of o, must 

be kept in mind when examining Brown’s results, 
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Fig. 4 also shows the transmissivities that were computed by Brown (1987) for a 

surface having a fractal dimension of 2.5, normalized to the cubic law value based on 

the mean aperture. Each one of the data points represents the mean of ten different 

realizations. Brown found that the fractal dimension had little effect on the computed 

transmissivities, and that hH seemed to be mainly a function of <h> and 0,. Brown’s 

mean transmissivities fell very close to the values found by Patir and Cheng (1978), 

regardless of the fractal dimension of the surface. This agreement provides some vali- 

dation of the computational procedures used in the two studies. However, for low 

values of &>lod, the unquantified amount of contact area makes it difficult to 

rigorously compare the two sets of results, since h, and ch> are not equivalent when 

there is contact between the two fracture faces. 

Analytical Treatment of the Lubrication Model 

Once the Navier-Stokes equations have been reduced to the Reynolds lubrication 

equation (32), fluid flow through the fracture is then governed by the very same equa- 

tion that governs, say, heat conduction in an isotropic but inhomogeneous two- 

dimensional medium. The cube of the local aperture, h3(x,y),  plays the same role as 

the thermal conductivity, k, aside from the multiplicative constant 1/12 which can be 

factored out and ignored. A similar equation governs porous medium flow in a 

nearly-horizontal aquifer which has a permeability and/or thickness that varies gradu- 

ally fiom point to point (Bear, 1972, p. 215). The problem of finding the effective 

hydraulic aperture for a fracture that is governed by the Reynolds equation is therefore 

equivalent to finding the effective conductivity of a heterogeneous two-dimensional 

conductivity field, be it electrical, thermal, or hydraulic. A great deal of mathematical 

work has been done on this problem, the results of which can be applied directly to 

fracture flow, with the understanding that if the aperture (i.e., conductivity) varies too 

rapidly, in the sense quantified previously, the Reynolds equation will no longer be 
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valid. 

The effective macroscopic conductivity of a heterogeneous medium depends not 

only on the statistical distribution of the local conductivities, but also on the geometri- 

cal and topological manner in which the local conductivity is distributed. In other 

words, the spatial correlation between the regions of high and low conductivity also 

has an effect on the overall conductance. However, if the statistical distribution of 

conductances is known, but the correlation structure of the conductivity field is either 

unknown or ignored, upper and lower bounds can be computed for the overall 

effective conductivity (Beran, 1968, p. 242; Dagan, 1979). These bounds, which are 

derived using variational principles and certain trial functions for the local pressure 

field, can be expressed as 

where we identify the local conductivity with h3. The lower bound <l/k> is often 

called the harmonic mean, whereas the upper bound <k> is called the arithmetic mean 

(de Marsily, 1986, p. 81). 

The upper bound can be thought of as corresponding to the hypothetical situation 

in which all of the conductive elements are arranged in parallel with each other, 

whereas the lower bound corresponds to a series arrangement of the individual ele- 

ments pagan, 1979). These extreme cases correspond to geometries in which the 

aperture varies in only one of the two directions, x or y ,  while the imposed pressure 

gradient is in the x direction (see Fig. 5). For example, in the case where the aperture 

varies only in the direction of the applied pressure gradient, the Reynolds equation 
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(32) reduces to the one-dimensional form 

L [ h 3 ( x ) g ]  G?x = 0, 

which can be integrated once to yield 

h 3 ( x ) - = C  dP , 
dx 

where C is a constant of integration. Comparison of eqs, (41) and (31a) shows that 

the constant of integration is equal to - 12pis;. A second integration from x = O  to 

x =Lx yields 

= -12pZx - d x  = - 12pi -x~x~-3>  , Po -Pi 
0 h (XI 

which can be rearranged to yield 

The total flux is found by integrating Ex in the y-direction, as in eq. (33), which yields 
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c 

But L,, is equivalent to w , the width of the fracture in the direction normal to the flow, 

so comparison with eqs. (12,18) shows that this model leads to 

which is identical to the lower bound in eq. (39). An analogous treatment of the case 

where the aperture varies only in the direction normal to the flow would lead to (see 

Neuzil and Tracy, 1981) 

h i  = <h%, 

which reproduces the upper bound. These models have been used as heuristic devices 

to estimate the effect of aperture variations on the overall conductivity (see Neuzil and 

Tracy, 1981; Silliman, 1989). However, it must be understood that these types of 

aperture variations do not lead to macroscopically isotropic behavior. Hence, rather 

than interpret the bounds given by eq. (39) as representing any specific simplified fiac- 

ture geometry, we interpret these “series” and “parallel” conductances as upper and 

lower bounds that utilize information about the aperture distribution function of the 

fracture, but do not utilize information concerning the spatial correlation of the aper- 

ture field. 

More restrictive upper and lower bounds on the overall effective conductivity of a 

heterogeneous medium have been found by Hashin and Shtrikman (1962). For the 

commonly-assumed case of a l o g - n o d  distribution of conductivities, however, these 

bounds degenerate pagan, 1979) into the series and parallel bounds given by eq. 

(39a). For this case, the “self-consistent field’’ approximation has been used pagan, 

1979), along with a perturbation approach pagan, 1993), to approximate the effective 
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conductivity in terms of the mean and standard deviation of the conductivity distribu- 

tion function. In the case of a statistically-isotropic m-dimensional media, Dagan 

found 

r 1 

where Y =ln(k), and oY is the standard deviation of ln(k). The term outside of the 

square brackets is equal to the geomenic mean of the conductivity distribution, k G ,  

which is defined (in general) by 

(48) cln(k)> kG = e  

As a fracture is analogous to a two-dimensional conductivity field, the appropriate 

value of m is 2, in which case the 0; and 0; terms inside the brackets drop out, leav- 

ing 

This result can also be expressed as 

I- 
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Although eq. (50) was derived for the specific case of a lognormal conductivity 

distribution, it can nevertheless be used as an approximation regardless of the fonn of 

the conductivity distribution. For this purpose, it would be convenient to express eqs. 

(49,50) in terms of the standard deviation of k ,  rather than in terms of the standard 

deviation of ln(k). To do this, we first recall that if k is lognormally distributed, then 

the first two moments of k are related to the first two moments of y =ln(k) by 

(Aitchison and Brown, 1957, p. 11) 

<Y>+C$L2 < k > =  e Y 

Eliminating 0; from eqs. (49,52) yields 

which, to first-order in $, can be expressed as 

Eq. (54) agrees with the result that can be found from a two-dimensional version of 

the calculation performed by Landau and Lifshitz (1960, pp. 45-46), who assumed that 

the conductivity varied smoothly in space about its mean value, &>, but did not 

assume that k was lognormally distributed. It therefore is a valid approximation, up to 
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order G:, for all smoothly-varying two-dimensional conductivity distributions. Since 

smooth spatial variation is a necessary condition for the use of the lubrication approxi- 

.mation, this result holds in all cases for which the lubrication approximation applies. 

We now make use of the identification of k with h3 to express the above results 

in tenns of the moments of the aperture distribution itself. In general, for arbitrary 

aperture distributions, there is no fix4 relationship between ch3> and <h>, or between 

0: and 02. In the case of a lognomal distribution, however, we can make use of the 

fact that ln(k)=ln(h3)=31n(h) to find that cln(k)>=3<ln(h)>, and G & = ~ G &  

(Aitchison and Brown, 1957, p. 11). Furthermore, if k is lognormally distributed, then 

so is h =k*. If we let z =ln(h), where z has mean value <z> and variance G:, then 

the statistical moments <hn> are given by (Aitchison and Brown, 1957, p. 8; Gutjahr 

et al., 19%) 

Using these relationships, along with eqs. (51,52), we can rewrite eqs. (53,54) as 

Again using eqs. (51,52), with h in place of k and z =In (h) in place of y =In (k), we 

find after some algebra that eq. (56) can also be written as 
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Eq. (57) indicates that when there is roughness, the hydraulic aperture is smaller than 

the mean aperture. This is a non-trivial result since, for example, it can be shovcin (see 

Silliman, 1989) that the lower bound on hH given by eq. (39b) can never exceed <h>, 

whereas the upper bound can never be less than <h>. Hence, the bounds in them- 

selves are not powerful enough to show that hH I &>. Eq. (57) is also in rough 

agreement with the numerical results of Patir and Cheng (1978) and Brown (1987), 

particularly when hlo  >2, which is the range where, due to lack of substantial contact 

area, the various definitions used for h and CJ coincide. 

Eq. (57) has also been derived by other methods, using specific fracture 

geometries that did not require lognormal aperture distributions. Elrod (1979) used 

Fourier transforms to solve the Reynolds equation for a “fracture” the aperture of 

which had “sinusoidal ripples in two mutually perpendicular directions”, and arrived 

at eq. (57) for the isotropic case. Zimmerman et al. (1991) considered the case of 

small regions of unidirectional ripples, as in eq. (34), which were then assembled 

together so that the direction of striation was randomly distributed. For both 

sinusoidal and sawtooth profiles, their results agree with eq. (57) up to terms of order 

&h>2. They also examined the effect of higher-frequency sinusoidal components in 

the aperture profile, using the assumption that the amplitudes of the sinusoidal com- 

ponents were positively correlated with the wavelengths, as was found to be the case 

by Brown and Scholz (1985). In other words, the small-wavelength roughness will 

usually be of small amplitude; which is to say that there will be no sharp dagger-like 

peaks in the aperture profile. They found that as long as the results are expressed in 

terms of <h> and o;, the relationship between hH, <h>, and oh was essentially 

unaffected. Hence, it seems that there is much evidence to support eq. (57) as an esti- 

mate of the hydraulic aperture in terms of only the mean and standard deviation of the 

aperture distribution. Of course, if the details of the aperture distribution are known, 

the geometric mean of h can also be used to estimate hH,  since (piggott and Elsworth, 
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1993) 

 his latter estimate seems to be accurate to at least 0(0,6) for lognormal aperture dis- 

tributions pagan, 1993), but it is not clear that eq. (58) is preferable to eq. (57) in the 

general case. For example, the numerical simulations of Piggott and Elsworth (1992) 

indicated that the geometric mean is a very poor predictor of the effective conductivity 

when the conductivity follows a bimodal distribution, particularly in two dimensions 

(see also Warren and Price, 1960, Fig. 7). 

Effect of Contact Areas 

As mentioned above, the areas where the rock faces are in contact with each 

other can be thought of as regions where the aperture is zero. However, most of the 

methods used to estimate or bound h~ will break down if the aperture distribution 

function ever takes on the value of zero. For example, the harmonic mean of k ,  which 

provides a lower bound to the effective conductivity, (see eq. (39b)), will degenerate to 

zero in these cases, as will the the geometric mean, since a finite probability of having 

k =O will cause <In@)> +--. Note that a lognormal distribution of apertures does 

not allow the aperture to equal zero, since if ln(h ) varies from - - to + - but vanishes 

as ln(h) + +-, h will take on only positive values. This suggests using methods such 

as those discussed above for the regions where the fracture is open, and treating the 

contact regions by separate methods. This approach has been taken by, for example, 

Walsh (1981) and Piggott and Elsworth (1992). 

To isolate the effect of contact areas, we consider a fracture for which the aper- 

ture is uniform and equal to h,, except for isolated contact regions where h =O (see 

Fig. 6). As usual, flow through this sort of geometry could, in principle, be analyzed 
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by solving the full Navier-Stokes equations. Since this approach is not feasible, we 

again reduce the governing equations to a more tractable form. Following the pro- 

cedure by which the lubrication equation was derived for cases where the aperture was 

smoothly-varying, but nonzero, we find that we again require 

where now the characteristic lengthscale in the plane of the fracture, A, should be 

identified with, say, the dimensions in the (x ,y ) plane of the typical contact region (see 

Fig. 6). We again arrive at the lubrication equation (32b), except that since h =O in 

those regions of the plane where the fracture faces are in contact, the equation has no 

meaning in those regions. Hence, we can only use this equation in the unobstructed 

regions, where h (x , y )=h , ,  in which case eq. (32b) reduces to Laplace’s equation: 

This mathematical model of flow between a pair of parallel plates that are obstructed 

by cylindrical posts is known as the Hele-Shaw model (Bear, 1972, pp. 687-692). 

The boundaries of the contact regions must be treated as boundaries of the region 

in the ( x , y )  plane where this equation is to be solved. Consider one of these boun- 

daries, which will be denoted by T i .  Since no fluid can enter the contact region, the 

component of the velocity vector normal to rj must be zero. Eqs. (30) or (31) show 

that the velocity vector is parallel to the pressure gradient, so we see that 

aP - P (Vp)-n = 0, 
an 



- 40 - 

where n is the outward unit normal vector to T i ,  and n is the scalar coordinate in the 

direction of n .  If we consider a rectangular region such as shown in Fig. 6, with uni- 

form pressures on the x = O  and x =L, boundaries, no flow on the y = O  and y =Lr 

boundaries, and no flow across the interior boundaries r i ,  we have a well-posed boun- 

dary value problem for Laplace’s equation, which will therefore have a unique solution 

(see Bers et al., 1964, pp. 152-154). 

One problem that arises is that, in general, the solution to this problem will not 

satisfy the no-slip boundary conditions on the internal boundaries T i .  In physical 

terms, the Hele-Shaw solution does not account for viscous drag along the sides of the 

posts. The no-slip condition specifies that not only must the normal component of the 

velocity vanish, but so must the tangentiaE component. However, if the components of 

the velocity vector are zero in two mutually orthogonal directions at each point on Ti, 

then the velocity components lux, u,, } must both be zero. But the Hele-Shaw solution 

will generally yield a nonzero velocity 4, where t is the local coordinate tangential to 

ri.  Hence, the Hele-Shaw solution will be in error in a certain region surrounding 

each contact area. In the original mathematical derivation of the the Hele-Shaw qua- 

tions, Stokes (1905, p. 278) hypothesized that the region where the error is appreciable 

will be limited to a thin layer surrounding each Ti, the extent of which in the (x , y ) 

plane will be of order h,. This was verified by Thompson (1968), who developed a 

perturbation solution to the Stokes creeping flow equations, eq. (27), for flow between 

two parallel plates that are propped open by a single obstacle, the planform of which 

in the (x , y ) plane is a circle of radius a .  Thompson used the method of matched I 

asymptotic expansions to piece together a solution valid near the obstacle, and another 

valid far from the obstacle, and found that the relative discrepancy between the Stokes 

and Hele-Shaw models was indeed on the order of ho/a. In fact, he found that the 

relative error in the prediction of the effect that the obstacle has on reducing the flux, 

for a given far-field pressure gradient, was 1.26h0/a. However, this discrepancy is 
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already something of a higher-order effect, in the sense that the parallel plate conduc- 

tance, h,3/12, is the zeroth-order result, and the first-order correction, which is captured 

by the Hele-Shaw model, is due to the fact that the fluid must follow a tortuous path 

around the obstacles. The additional factor of viscous drag on the sides of the post- 

like obstacles, which is not accounted for by the Hele-Shaw model, will generally be 

smaller still than the Hele-Shaw tortuosity correction, since hJa will typically be less 

than one. For example, the findings of Pyrak-Nolte et al. (1987) indicate that typical 

average apertures of fractures in crystalline rock are on the order of lo4- m, 

while asperity sizes (in the fracture plane) are on the order of 10-l- m. Gale et 

al. (1990) measured apertures and asperity dimensions on a natural fracture in a granite 

from Stripa, Sweden, under a normal stress of 8 MPa, and found average values of 

h ~ 0 . 1  mm, a = 1.Omm. 

Kumm et al. (1991) used the Brinkman (1947) equation to further analyze the 

deviations from the Hele-Shaw model caused by finite values of h, /a .  Whereas the 

Hele-Shaw equation is derived by integrating the Stokes equations across the thickness 

of the fracture, the Brinkman equation can be “derived” by integrating the equations 

in the y-direction, which is the direction in the plane of the fracture, perpendicular to 

the direction of the mean flow. The obstacles are then not explicitly included in the 

geometry of the problem, but their effect on retarding the flow is represented by a dis- 

tributed body force that is proportional to the velocity. This body force is found by 

solving the problem of flow past an array of infinitely long, parallel cylinders 

(Howells, 1974; Sangani and Yao, 1988). The results of the Brinkman analysis, along 

with the experimental data collected from various sources by Zimmerman and Kumar 

(1991), show that as long as h,/a c 1, deviations from the Hele-Shaw conductivity will 

be less than 10%. 

The problem of creeping flow through a smooth-walled fracture of aperture h,, 

propped open by an array of circular cylinders of radii a > h, , therefore reduces to the 
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problem of finding the effective conductance of a two-dimensional medium of conduc- 

tance k,, and which contains a dispersion of non-conductive, circular obstacles. This 

is a typical problem in effective medium theory, although it is of a different sort than 

that discussed above in relation to the lubrication model, in which the conductivity 

varied smoothly in space. A review of some of the various methods that have been 

proposed to attack this type of two-component effective medium problem is given by 

Hashin (1983). Fortunately, the predictions of the various methods do not diverge 

appreciably until the areal concentration of obstacles approaches about 0.30, which 

exceeds the amount of contact area that occurs in rock fractures, which is usually less 

than 0.25 (Tsang and Witherspoon, 1981; Pyrak-Nolte et al., 1987). Hence, any rea- 

sonable effective medium theory that has been proposed for two-component systems 

can be used for this problem. 

Walsh (1981) used the effective medium theory that was originally proposed by 

Maxwell (1873, pp. 360-365), who estimated the effective conductivity of a three- 

dimensional medium containing a dispersion of non-conductive spheres. In the termi- 

nology of the present discussion, Maxwell’s method consists of calculating the 

decrease in flow due to a single obstacle of known size and shape, averaging this 

effect over all shapes and orientations of the obstacles, and then equating the resulting 

decrease in flow to that which would be caused by a single circular “obstructiony’ 

which has some effective conductivity keff. The basic solution of the effect of a sin- 

gle circular obstruction on a uniform flow field can be found in Carslaw and Jaeger 

(1959, p. 426). Utilizing this solution, and the procedure outlined by Maxwell, Walsh 

(1981) found that the circular obstacles decrease the conductance below the cubic law 

value by a factor (1 -c)/(l + c), where c is the fraction of the (x , y  ) plane that is 

occupied by asperity obstructions. Hence the hydraulic aperture can be expressed as 

3 1-c 
l + c  

h z  = h,, - . 
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Zimmerrnan et al. (1992) used boundary element calculations to verify the accuracy of 

this result to within about 2% for asperity concentrations up to 0.25 (see also Chen, 

1990). If eq. (57) were applied to a fracture that has aperture ho with probability 

(1-c) and aperture zero with probability c,  it would predict h ~ = h ~ ( 1 - 1 . 5 c +  ...), 

which to first order in c is somewhat, although not substantially, different from eq. 

(62). 

Since the factor involving the asperity concentration c reflects the tortuosity 

induced into the streamlines by the obstacles, this factor would be expected to depend 

on the planform of the asperity region. m e r m a n  et al. (1992) extended Walsh’s 

result to the case where the asperities were a randomly-distributed collection of 

ellipses, oriented randomly so that the overall conductivity was isotropic. Their 

analysis utilized the basic solution to two-dimensional flow around an elliptical obsta- 

cle that was presented by Obdam and Veling (1987). For ellipses of aspect ratio a, 

they found the hydraulic aperture to be given by 

The factor p defined in eqn. (63) is always greater than unity, and monotonically 

increases as the ellipse becomes more elongated. Hence, elliptical obstacles obstruct 

the flow to a greater degree than do circular obstacles. This is consistent with the fact 

that Walsh’s expression for circular obstacles coincides with the theoretical upper 

bound on keff /k, that was derived using variational principles by Hashin and Shtrik- 

man (1962) for a two-component medium, the components of which had conductivities 

k, and 0. The factor p depends weakly on a as long as the obstacles are not very 

elongated. For example, an aspect ratio of 2 leads to p= 1.125, and a = 3 yields 

p=1.333. Although actual contact areas in fractures are not perfectly elliptical in 
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planform, Zimmerman et al. (1992) showed that eq. (63) can be applied to a smooth- 

walled fracture propped open by irregularly-shaped asperities, if the actual asperities 

are “replaced” by ellipses that have the same perimeter/area ratio. 

Another method of accounting for the tortuosity caused by contact areas would be 

to use the effective medium theory of Kirkpatrick (1973). This model, originally 

developed to estimate the conductivity of random electrical networks, does not assume 

any particular shape for the asperity areas, but can be interpreted as corresponding to a 

checkerboard-like geometry in which each block is randomly assigned an aperture 

from the actual aperture distribution function. In the present context, this corresponds 

to each block having either aperture ho with probability (1-c), or aperture 0 with pro- 

bability c .  The finite-difference representation of conduction on such a checkerboard 

geometry would be a square lattice of conductors, in which case Kirkpatrick’s theory 

predicts that 

This model has many arguments in favor of its use. Firstly, it does not require any 

information concerning the geometrical shapes and distribution of the contact areas, 

other than the assumption that these areas are in some sense irregular, which is reason- 

able. At low concentrations, it asymptotically agrees with Walsh’s result for circular 

asperities, since each give a tortuosity factor of (1 -2c), to fist order in c . It also 

predicts a tortuosity factor that is always less than the Hashin-Shtrikman upper bound, 

which is (1-c )/(l+c ). Finally, it correctly predicts the existence of a percolation limit, 

which is a critical value of the contact area (in this case, 0.50) at which flow is com- 

pletely obstructed. Although it seems reasonable that a sufficiently large amount of 

contact area will block off all flow paths, contact areas as large as 0.50 have not been 

reported very often in the literature, so for practical purposes this issue may be moot. 
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Nevertheless, the fact that eq. (64) incorporates the percolation phenomenon in some 

manner strengthens its utility as an estimate of the tortuosity. 

Comparison of Models to Experimental Data 

The question we now address is whether or not the various models and approxi- 

mations presented and discussed above can be used to quantitatively relate the 

hydraulic conductance of a fracture to measured values of the aperture. We will not 

consider issues related to the process of making measurements of the aperture either in 

the field or in the laboratory, which are discussed by Gentier et al. (1989), Hakami and 

Barton (1990), and Johns et al. (1993), among others. We assume that data are avail- 

able pertaining to the distribution function of the apertures, and also on the amount 

(and possibly the shapes) of the contact regions. The question we pose is how these 

data can be used to predict the conductivity, bearing in mind that in many cases, one 

might actually be more interested in the inverse problem of determining apertures and 

contact areas from conductivity data. 

Although many measurements of hcture surface roughness have been reported in 

the literature, as well as many measurements of fracture conductivity, there are very 

few data sets in which both aperture data and hydraulic conductivity have been meas- 

ured on the same fracture. One difficulty is that of relating the roughness measured 

for a single fracture surface to the aperture formed between two opposing surfaces 

when they are in contact (cf., Brown et al., 1986; Wang et al., 1988). Many of the 

measurements upon which certain widely-used roughness-conductivity correlations are 

based were actually made on artificially-roughened channels, the aperture profiles of 

which bore little resemblance to those of real fractures Wmize, 1951; Louis, 1969). 

We will discuss only those available data sets in which measured fracture conductivi- 

ties can be directly compared to aperture measurements made on the same fractures. 
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Comparisons between the various models and the measured values will be made 

on the basis of the cube of the hydraulic aperture, hd, which is essentially equivalent 

to the transmissivity, aside from the factor of 12. The hydraulic apertures will be 

predicted using eight di€ferent schemes that are suggested by the previously-discussed 

analyses. These include using ~ h > ~ ,  <h3>, hz ,  and <h >3[1 - 1.50,2/<h>~]. In each 

case, the averages will be taken over those portions of the fracture that are not in con- 

tact and thereby closed to flow. If the fractional contact area c is known, predictions 

will also be made by correcting the above values by the tortuosity factor (1 -2c), as 

discussed above. 

Gale et al. (1990) measured the apertures and conductivities of two fractures in a 

quartz monzonite granite from Stripa, Sweden, using a resin-impregnation technique 

that allowed aperture measurements to be made on the fracture under the same stress 

conditions as were used in the flow tests; further experimental d e w s  can be found in 

their report. Data from their two samples, which were taken from the same rock core, 

are shown in Table 1, along with the various predicted values of h i .  The values of 

<h> and ch were computed directly by Gale et al. (1990). We computed <h3> by 

assuming that the distribution was lognormal, which is shown by their Figs. 3.19 and 

3.31 to be a reasonably accurate assumption, in which case eq. (55) can be used to 

show that 43 = ch>’/h,6. The values used for hG are arithmetic means of the hG 

values measured on four profiles from each fracture. Since in each case all four 

profiles were statistically very similar, this method of averaging hG should yield nearly 

the same result as would be found by averaging all the individual values of lnh. 

Table 1 shows that use of the mean aperture <h> in the cubic law, even if corrected 

for the contact area, will greatly overestimate the actual conductivity. Use of <h3>, as 

was suggested by Neuzil and Tracy (1981), will result in even greater error. The 

geometric mean hG is somewhat more accurate, particularly if corrected for the effect 

of contact area. The most accurate predictions of hH are those made by using the 
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two-term perturbation estimate, eq. (57), in conjunction with the tortuosity correction, 

(1-2c). Note that for both fractures, a more accurate prediction could be made by 

assuming that the contact areas were non-circular, and using the tortuosity factor given 

by eq. (63). As it is not possible to objectively estimate the equivalent aspect ratio of 

the contact areas from the available data, we have used Kirkpatrick’s “random lattice” 

tortuosity factor. Although Brown (1987) did not use precisely the same hydraulic 

aperture predictions as used in Table 1 to compare against his numerical solutions of 

the lubrication equations, it is worth noting that he also found that ch>3 was a more 

accurate predictor of h i  than was ch3>, and that <h>3(l-c)/(1+c) was still more 

accurate. 

Aperture and hydraulic conductivity measurements were made by Hakami (1989; 

see also H a k e  and Barton, 1990) on epoxy replicas of fractures in five granite cores 

from Sttipa. Sample A was a fine-grained granite, sample B was a leptite, and sam- 

ples {SZ,S3,S4) were quartz monzonites. Mean apertures, averaged over areas of 

about 1cm2, were found by injecting a known volume of dyed water into the fracture 

at various locations, and dividing the volume of the water drop by the observed area it 

occupied in the plane of the fracture. Although no contact area percentages were 

reported, the photographs shown of the water drops (Halcami, 1989, p. 46), as well as 

the aperture histograms at different stress levels (ibid., p. 67), seem to imply that con- 

tact area was minimal. We will therefore assume c =O in our calculations. The 

assumption of minimal contact area is also consistent with the fact that the aperture 

measurements were made under very low values of normal stress (ibid., p. 66). Exper- 

imental values, and the various predictions of the hydraulic aperture, are shown in 

Table 2 for Hakami’s five samples; sample A was measured under two different 

stresses. We used the values of ch> and oh corresponding to the best log-normal fit 

to the aperture distributions; in most cases these values were well within 10% of the 

actual values, but for sample S3 this has the effect of ignoring a few anomalously high 
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apertures, which would alter oh, but would not be expected to affect hH. Of the four 

methods of estimating hd, eq. (57) is in general the most accurate, followed by hz,  

~ h > ~ ,  and then <h3>. In five of the six cases, both eq. (57) and the geometric mean 

yield conductivities that are within a factor of two of the measured value. In one case, 

Al, which was sample A tested under a nonzero normal stress, the measured conduc- 

tance was extremely low, and was not accurately predicted by any of the methods. No 

explanation was given for the extremely low permeability measured in this test. 

Excluding this anodous case, eq. (57) had an average exror (in absolute value) of 

21.5%, whereas the geometric mean had an average error of 42.1%. The fact that eq. 

(57) did not systematically overestimate the conductivity supports our assumption that 

the contact area correction factor is negligible for these cases. 

For both sets of data discussed above, we have found that the expression 

usually provides a good estimate of the fracture conductivity. In fact, it was generally 

superior to the use of the cube of the geometric mean aperture, even after correction 

for the tortuosity due to contact area. This latter estimate is equivalent to that sug- 

gested by Piggott and Elsworth (1992), with (1 -2c )  used as their tortuosity factor z. 

(In contrast to the definition used in the petroleum literature, here the tortuosity factor 

is defined to be a multiplicative constant that is c1, rather than a factor that appears in 

the denominator and is >l.) Since there is much theoretical evidence in support of use 

of the geometric mean in the case of two-dimensional lognormal distributions, whereas 

the correction given by eq. (57) is only an O(d) perturbation approximation, these 

results call for some explanation. One point to bear in mind is that the actual distribu- 

tions always deviate somewhat from being lognormal, and in such cases hG should 

. I  
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only be a first-order estimate of hH. Hence, hG and eq. (57) are both first approxima- 

tions to hH, each in a different sense, for distributions that are slightly perturbed from 

lognormal. Another point is that some error is introduced when replacing the Navier- 

Stokes equations with the lubrication equation, eq. (32), due to finite values of <h>/X, 

as was discussed previously. Eq. (35) implies that these errors tend to reduce the 

effective conductivity below the value predicted by the lubrication model. This may 

explain the fact that hG overestimates hH. If this explanation is correct, it may be for- 

tuitous that eq. (57) just happens to “err” in the right direction. 

I 

Summary 

We have discussed the problem of fluid flow through a rock fracture, treating it as 

a problem in fluid mechanics. First, the “cubic law’’ was derived as an exact solution 

to the Navier-Stokes equations for flow between smooth, parallel plates. For more 

realistic geometries, the Navier-Stokes equations cannot be solved in closed form, and 

they must be reduced to simpler equations. The various geometric and kinematic con- 

ditions that are necessary in order for the Navier-Stokes equations to be replaced by 

the lubrication or Hele-Shaw equations were then studied. A review was given of 

analytical and numerical studies of the lubrication equation for a rough-walled fracture. 

Several analytical and numerical studies lead to the conclusion that the hydraulic aper- 

ture can be predicted (see eqs. 37,57,58) from knowledge of the mean and the standard 

deviation of the aperture distribution. We showed that one can account for the tortuos- 

ity effect caused by regions where the rock walls are in contact with each other by a 

relatively simple correction factor, given by eq. (64), that depends only on the frac- 

tional amount of contact area. Finally, comparison was made between the various 

predictions of hH, and the measured values, for eight data sets from two different 

research p u p s  in which apertures and conductivities were available on the same fi-ac- 

ture. The results showed that, in general, reasonably accurate predictions of 
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conductivity could be made by combining either the perturbation result, eq. (57), or the 

geometric mean, eq. (58), with the tortuosity factor given by eq. (64). 

Acknowledgments 

This work was carried out under U.S. Department of Energy Contract No. DE- 

AC03-76SF00098, for the Director, Office of Civilian Radioactive Waste Management, 

Office of Geologic Disposal, and was administered by the Nevada Operations Office, 

U. S. Department of Energy, in cooperation with the United States Geological Survey, 

Denver. The authors thank Al;hil Dana Gupta and Curt Oldenburg of LBL, Lynn 

Gelhar of MlT, and Ron Linden of the DOE, for reviewing this report. 



- 51 - 

References 

Aitchison, J. and Brown, J. A. C. (1957). The Lognormal Distribution, Cambridge 

University Press, New York. 

Batchelor, G. K. (1967). An Introduction to Fluid Dynamics, Cambridge University 

Press, New York. 

Bear, J. (1972). Dynamics of Fluids in Porous Media, Elsevier, New York. 

Beran, M. J. (1968). Statistical Continuum Theories, Interscience, New York. 

Bers, L., John, F., and Schechter, M. (1964). Partial Differential Equations, Wiley- 

Interscience, New York. 

Brinkman, H. C. (1947). A calculation of the viscous force exerted by a flowing fluid 

on a dense swarm of particles, Appl. Sci. Res. Al, 27-34. 

Brown, S. R. (1987). Fluid flow through rock joints: the effect of surface roughness, 

J.  Geophys, Res. 92, 1337-1347. 

Brown, S. R. (1989). Transport of fluid and electric cment through a single fracture, 

J.  Geophys. Res. 94(B7), 9429-9438. 

Brown, S. R. and Scholz, C. H. (1985). Broad bandwidth study of the topography of 

natural rock surfaces, J .  Geophys. Res. 90(B14), 12575-12582. 

Brown, S. R., Kranz, R. L., and Bonner, B. P. (1986). Correlation between the sur- 

faces of natural rock joints, Geophys. Res. Letts. 13, 1430-1433. 

Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids, Oxford Univer- 

sity Press, Oxford. 

Chen, D. W. (1990). Coupled stiffness-pemabilio analysis of a single rough- 

surfaced ffacture by the three-dimensional boundary-element method, Ph.D. 

dissertation, University of California, Berkeley. 

Coulaud, O., Morel, P., and Caltagirone, J. P. (1991). Numerical modeling of non- 

linear effects in laminar flow through a porous medium, J .  Fluid Mech. 190, 



- 52 - 

393-407. 

Dagan, G. (1979). Models of groundwater flow in statistically homogeneous porous 

formations, Water Resow. Res. 15, 47-63. 

Dagan, G. (1993). Higher-order correction of effective permeability of heterogeneous 

isotropic formations of lognormal conductivity distribution, Tramp. Porous Media 

12,279-290. 

de Marsily, G. (1986). Quantitative Hydrogeology, Academic Press, San Diego, Calif. 

Elrod, H. G. (1979). A general theory for laminar lubrication with Reynolds rough- 

ness, J .  Lubr. Tech. 101, 8-14. 

Gale, J., MacLeod, R., and LeMessurier, P. (1990). Site characterization and valida- 

tion - Measurement of flowrate, solute velocities and aperture variation in natural 

fractures as a function of normal and shear stress, stage 3, Szripa Project Report 

9 U - I I ,  Swedish Nuclear Fuel and Waste Management Company, Stockholm. 

Geertsma, J. (1974). Estimating the coefficient of inertial resistance in fluid flow 

through porous media, SOC. Petrol. Eng. J. 14,445-450. 

Gentier, S., Billaux, D., and van Wet, L. (1989). Laboratory testing of the voids of a 

fracture, Rock Mech. Rock Eng., 22, 149-157. 

Gomberg, J. (1991). U. S. Geological Survey Committee for the Advancement of Sci- 

ence in the Yucca Mountain Project Symposium on "Fractures, Hydrology, and 

Yucca Mountain": Abstracts and Summary, U. S .  Geological Survey Open-File 

Report 9I-I25. 

Gutjahr, A. L., Gelhar, L. W., Bakr, A. A., and MacMillan, J. R. (1978). Stochastic 

analysis of spatial variability in subsurface flows 2. Evaluation and application, 

Water Resour. Res. 14,- 953-959. 

Hakami, E. (1989). Water Flow in Single Rock Joints, Licentiate thesis, Lulea Univer- 

sity of Technology, Lulea, Sweden. 



- 53 - 

Hakami, E. and Barton, N. (1990). Aperture measurements and flow experiments 

using transparent replicas of rock joints, in Rock Joints: Proceedings of the Inter- 

national Symposium on Rock Joints, N. Barton and 0. Stephansson, eds., 

Balkema, Rotterdam, pp. 383-390. 

Hasegawa, E. and Izuchi, H. (1983). On steady flow through a channel consisting of 

an uneven wall and a plane wall, Part 1, Case of no relative motion in two walls 

(sic), Bull. Jap. SOC. Mech. Eng. 26, 514-520. 

Hashin, Z. (1983). Analysis of composite materials - A survey, J. Appl. Mech. 50, 

48 1-505. 

Hashin, Z. and Shtrikman, S. (1962). A variational approach to the theory of the 

effective magnetic permeability of multiphase materials, J. Appl. Phys. 33, 3125- 

3131. 

Horne, R. N. and Rodriguez, F. (1983). Dispersion in tracer flow in fractured geother- 

mal systems, Geophys. Res. Letts. 10, 289-292. 

Howells, I. D. (1974). Drag due to the motion of a Newtonian fluid through a sparse 

random array of small fixed rigid objects, J. Fluid Mech. 64,449-475. 

Johns, R. A., Steude, J. S., Castanier, L. M., and Roberts, P. V. (1993). Nondestruc- 

tive measurements of fi-acture aperture in crystalline rock cores using X ray com- 

puted tomography, J.  Geophys. Res. 98, 1889-1900. 

Jung, R. (1989). Hydraulic in situ investigations of an artificial hcture in the Falken- 

berg granite, Int. J .  Rock. Mech. 26, 301-308. 

Kirkpatrick, S. (1973). Percolation and conduction, Rev. Mod. Phys. 45, 574-588. 

Kumar, S., Zimmerman, R. W., and Bodvarsson, G. S. (1991). Permeability of a frac- 

ture with cylindrical asperities, Fluid Dyn. Res. 7 ,  131-137. 

Landau, L. D. and Lifshitz, E. M. (1960). EZectrudynamics of Continuous Media, Per- 

gamon Press, New York. 



- 54 - 

Langlois, W. E. (1964). Slow Viscous Flow, Macmillan, New York. 

Lee, J. S. and Fung, Y.C. (1969). Stokes flow around a circular cylindrical post 

confined between two parallel plates, J. Fluid Mech. 37, 657-670. 

Lomize, G. M. (1951). Filtratsiia v Treshehinovatykh Porod (Water Flow in Jointed 

Rock), Gosenergoizdat, Moscow. 

Louis, C. (1969). A Study of Groundwater Flow in Jointed Rock and its Influence on 

the Stability of Rock Masses, Ph.D. dissertation, Imperial College, London. 

Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism, Clarendon Press, 

Oxford. 

Murphy, J. R. and Thomson, N. R. (1993). Two-phase flow in a variable-aperture 

fracture, Water Resour. Res. 29, 3453-3476. 

Neuzil, C. E. and Tracy, J. V. (1981). Flow through fractures, Water Resour. Res. 17, 

191-199. 

Obdam, A. N. M. and Veling, E. J. M. (1987). Elliptical inhomogeneities in ground- 

water flow - an analytical description, J. Hydrol. 95, 87-96. 

Patir, N. and Cheng, H. S. (1978). An average flow model for determining effects of 

three-dimensional roughness on partial hydrodynamic lubrication, J.  Lubr. Tech- 

~ l .  100, 12-17. 

Phillips, 0. M. (1991). Flow and Reaction in Permeable Rocks, Cambridge University 

Press, New York. 

Piggott, A. R. and Elsworth, D. (1992). Analytical models for flow through obstructed 

domains, J.  Geophys. Res. 97, 2085-2093. 

Piggott, A. R. and Elsworth, D. (1993). Laboratory assessment of the equivalent aper- 

tures of a rock fracture, Geuphys. Res. Letts. 20, 1387-1390. 

Pozxikidis, C. (1987). Creeping flow in two-dimensional channels, J. Fluid Mech. 180, 

495-5 14. 



- 55 - 

Pozrikidis, C.  (1992). Boundary integral and singularity methods for linearized 

viscous $ow, Cambridge University Press, New York. 

Pruess, K. and Tsang, Y. W. (1990). On two-phase relative permeability and capillary 

pressure or rough-walled rock fractures, Water Resour. Res. 26, 1915-1926. 

Pyrak-Nolte, L. J., Myer, L. R., Cook, N. G. W., and Witherspoon, P. A. (1987). 

Hydraulic and mechanical properties of natural fractures in low permeability rock, 

in Proceedings of the 6th International Congress of Rock Mechanics, G. Herget 

and S. Vongpaisal, eds., Balkema, Rotterdam, pp. 225-231. 

Reynolds, 0. (1886). On the theory of lubrication, Phil. Trans. Roy. SOC. London 177, 

157- 1 34. 

Sangani, A. S. and Yao, C. (1988). Transport processes in random arrays of cylinders. 

II. Viscous flow, Phys. Fluids 31, 2435-2444. 

Schlichting, H. (1968). Boundary-Layer Theory, 6th ed., McGraw-Hill, New York. 

Sherman, F. (1990). Viscous Flow, McGraw-Hill, New York. 

Silliman, S. E. (1989). An interpretation of the difference between aperture estimates 

derived from hydraulic and tracer tests in a single fracture, Water Resour. Res. 

25,2275-2283. 

Sokolnikoff, I. S. (1956). Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, 

New York, 1956. 

Stokes, G. G. (1905). Mathematical and Physical Papers, Cambridge University 

Press, Cambridge. 

Thompson, B. W. (1968). Secondary flow in a Hele-Shaw cell, J.  Fluid Mech., 31(2), 

379-395. 

Tsang, Y. W. and Witherspoon, P. A. (1981). Hydromechanical behavior of a deform- 

able rock fracture subject to normal stress, J. Geophys. Res. B86, 9287-9298. 



- 56 - 

Tsay, R-Y. and Weinbaum, S. (1991). Viscous flow in a channel with periodic cross- 

bridging fibers: exact solutions and Brinkman approximation, J. Fluid Mech. 226, 

125- 148. 

Walsh, J. B. (1981). The effect of pore pressure and confining pressure on fracture 

permeability, Int. J. Rock Mech. 18,429-435. 

Wang, J. S. Y., Narasimhan, T. N., and Scholz, C. H. (1988). Aperture correlation of 

a fractal hcture, J.  Geophys. Res. 93@3), 2216-2224. 

Warren, J. E. and Price, H. S. (1960). Flow in heterogeneous porous media, SOC. 

Petrol. Eng. J .  1, 153-169. 

Witherspoon, P. A., Wang, J. S. Y., Iwai, K., and Gale, J. E. (1980). Validity of cubic 

law for fluid flow in a deformable rock fracture, Water Resour. Res. 16, 1016- 

1024. 

Wright, D. E. (1968). Nonlinear flow through granular media, Proc. Arner. SOC. Civ. 

Eng. Hydr. Div. 94(Hy4), 851-872. 

Zimmerman, R. W. and Kumar, S. (1991). A fluid-mechanical model for blood flow 

in lung alveoli, in Advances in Biological Heat and Mass Transfer, ASME Heat 

Transfer Division Vol. 189, J. J. McGrath, ed., American Society of Mechanical 

Engineers, New York, pp. 51-56. 

Z i m m e m ,  R. W., Kumar, S., and Bodvarsson, G. S. (1991). Lubrication theory 

analysis of the permeability of rough-walled fractures, Int. J. Rock Mech. 28, 

325-33 1. 

Zimmerman, R. W., Chen, D. W., and Cook, N. G. W. (1992). The effect of contact 

area on the permeability of fractures, J. Hydrol., 139, 79-96. 



- 57 - 

Nomenclature 

Roman letters 

a 

C 

F 

g 

8 

h 

h 1,2 

hH 

h* 

c h  > 

k 

kG 

keff 

Lx 

LY 

L 

m 

n 

P 

Pi 

Po 

p  ̂

Q 
Re 

radius of asperity in fracture plane 

areal concentration of asperities 

body force vector, eq. (1) 

gravitational acceleration vector 

magnitude of g 

aperture of fracture 

half apertures, Fig. 2 

hydraulic aperture, eq. (18) 

nominal aperture of mugh fracture 

mean value of aperture 

local conductivity in lubrication model, =h3/12 

geometric mean of conductivity 

effective conductivity 

length of fracture in direction of mean flow 

length of fracture in direction of mean flow 

length of fracture normal to direction of mean flow 

dimension, = 2 for fracture flow; eq. (47) 

direction in fracture plane normal to the asperity boundary 

pressure 

pressure at inlet to fracture 

pressure at outlet to fracture 

reduced pressure, = p  + pgz ; eq. (3) 

volumetric flowrate 

Reynolds number; eq. (19) 
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Re* 

t 

T 

U 

ui 

U 

W 

X 

Y 

Y 

z 

z 

reduced Reynolds number; eq. (25) 

time 

transmissivity of fracture; eq. (16) 

velocity vector 

velocity component in direction i 

order of magnitude of velocity 

width of fracture, normal to mean flow direction, in fracture plane 

direction of mean flow 

direction normal to mean flow, in fracture plane 

In@), where k is the local fracture conductivity 

vertical direction 

direction normal to the fracture plane 

Greek letters 

aspect ratio of elliptical contact region 

shape factor for effective conductivity; eq. (63) 

boundary of asperity (in fracture plane) 

amplitude of sinusoidal aperture perturbation 

relative roughness parameter, = 4 >/A 

characteristic length in plane of fracture 

viscosity of fluid 

density of fluid 

standard deviation of aperture roughness function; eq. (38) 

standard deviation of aperture distribution 

standard deviation of conductivity 

standard deviation of log conductivity 

gradient operator 
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Table 1. Hydraulic transmissivities of fractures in quartz monzonite granite from 
Stripa, Sweden. Aperture data and measured conductivities are from Gale et al. 
(1990). Predictions of hydraulic apertures are made using methods described in the 
text. Transmissivity per unit width is equal to h&2. 

Sample s2 s3 

ch > 180 pm 223 pm 
Oh 106 pm 162 pm 

C .146 .349 

12 3 <h3> 7 . 5 4 ~  m3 51.8 x 10- m 

<h3>(1-2c) 5.34 x m3 15.6 x m3 

<h >3 5.83 x m3 11.1 x m3 

<h>3(1-2c) 4.13 x m3 3.35 x m3 

hd 5.13 x m3 5.13 x m3 

hd (1-2~ ) 3.63 x m3 1.55 x m3 

4 >3[ 1 - 1.50,2/<h >2] 2 . 8 0 ~  m3 2.31 x m3 

<b3[1- 1.50,2/<h>~](1-2~) 1 . 9 8 ~  m3 0 . 7 0 ~  m3 



Table 2. Hydraulic transmissivities of fractures in granite cores from Smpa, Sweden. 
Aperture data and measured conductivities are from €Iakami (1989). Predictions of 
hydraulic apertures are made using methods described in the text. Transmissivity per 
unit width is equal to @12. 

B s2 s 3  s4 A1 A2 

309 464 393 261 83 161 

~~ ~ ~~ ~~ ~~ ~ 

<h> and oh are given in units of pm; other values are in units of 10-l2m3. 
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ESD-9311-0004 

Fig. 1. Parallel-plate fracture of aperture h , with uniform pressures pi and po imposed 

on two opposing faces. The resulting parabolic velocity distribution given by 

eq. (10) is shown in the lower cartoon. 



- 62 - 

X 

ESD-931 I-OOO! 

Fig. 2. Side view of a cross-section of a rough-walled rock fracture containing no 

contact areas. The two half-apertures are h and h2, both defined as positive. 

The characteristic length over which the aperture varies appreciably is denoted 

by A. 
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1 

Fig. 3. Side view of a fracture channel consisting of one smooth wall and one 

sinusoidal wall, with the aperture given by eq. (34). The mean aperture is 

&>, the spatial wavelength is h, and the amplitude of the aperture roughness 

is 8. 
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Results found numerically by Patir and Cheng (1978) and Brown (1987) for 

the hydraulic aperture as a function of the relative roughness. The slightly 

different definitions used for h and (r are discussed in the text. Also plotted 

is eq. (37), which was fitted by Patir and Cheng to their numerical values. 
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ESD-93114007 

Fig. 5. Fracture in which the aperture varies either only in the direction of flow (top), 

or only in the direction transverse to the flow (bottom). First case leads to 

h,3=~h-~>-' ,  which is a lower bound on the actual isotropic conductivity. 

Second case leads to h; = <h3>, which is an upper bound on the actual isotro- 

pic conductivity. 
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Fig. 6. Schematic diagram of computational problem for the Hele-Shaw model, with 

impermeable boundaries at y = O  and y =L,, , constant pressure boundaries at 

x = O  and x =L,, and two internal impermeable boundaries that represent the 

asperity regions. 


